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The MEKF uses a reduced three component attitude 
parameterization as the error-state inside the filter.

Could	
  use	
  any	
  three-­‐component	
  attitude	
  representation	
  (e.g.	
  Euler	
  rotation	
  axis/
angle,	
  Gibbs	
  vector,	
  Modified	
  Rodrigues	
  parameters,	
  Tait-­‐Bryan	
  angles,	
  etc.)	
  
MMS	
  chose	
  (twice)	
  the	
  Gibbs	
  vector	
  parameterization:	
  
‣ free	
  of	
  singularities	
  up	
  to	
  ±180º	
  
‣ largest	
  possible	
  180º	
  map	
  to	
  infinity	
  (compatible	
  with	
  Gaussian	
  “tails”)	
  
‣ avoids	
  accumulation	
  of	
  numerical	
  errors	
  in	
  full-­‐state	
  quaternion	
  norm	
  through	
  explicit	
  

normalization	
  in	
  reset	
  operation	
  that	
  is	
  neither	
  ad	
  hoc	
  or	
  require	
  transcendental	
  evaluations	
  
‣ observation	
  model	
  insensitive	
  to	
  sign	
  ambiguity	
  in	
  star	
  camera’s	
  output	
  quaternion	
  
‣ diagonals	
  of	
  error	
  covariance	
  matrix	
  (P)	
  map	
  directly	
  to	
  attitude	
  error	
  variance	
  (σ2)
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On-board MEKF Models

that will be used in the filter, and it is non-linear in the error-states. In order to make the change of
variables and linearize the error-state dynamics, the 1st-order approximations �q1:3 ⇡ �✓/2 and
dq4 = 1 (see Eq. (4)) are used for the error-vector, and terms that are the product of two (small)
error-states are dropped (�!�✓ ⇡ 0). With these substitutions, Eq. (23) becomes
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which is the desired final form of the error vector dynamics. The dynamics for the full and error
states of the ACS flight software MEKF are summarized in Table 1.

Table 1. Summary of State Dynamics for MMS On-board MEKF

Nonlinear Full-State Model Linearized Error-State Model
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2.2 Measurement Update

There are three sensors on the MMS observatories—a sun sensor (DSS), a star tracker (STS), and
an accelerometer (AMS). Of the three, only the STS is used for on-board (real-time) attitude and
rate determination. The DSS is excluded because its resolution of ±0.125� (450 arcsec) was shown
to contribute little to the solution accuracy. The AMS acceleration measurements are neglected
because of the modest capability of the flight processor (the filter would need to be augmented with
bias states), and the additional power demands (AMS electronics plus thermal control heaters for
bias stability). Nevertheless, the AMS is enabled for maneuvers, and the richness of information
contained in its 1 kHz stream of µg acceleration measurements makes it possible to perform off-line
system calibration using ground-telemetered data (the subject of the second-half of this paper). The
STS and AMS measurements are staggered in time, so there are no update issues with simultaneous
measurements (combining multiple STS camera head solutions is discussed in section 2.2.1).

The specific form of the MEKF used on MMS is sometimes referred to as a Continuous-Discrete
Extended Kalman Filter[7], due to the discrete measurement updates from the on-board sensors

7
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μASC Star Tracker System (STS) provided 
by the Technical University of Denmark 
(DTU)

Four	
  camera	
  head	
  units	
  (CHUs)	
  
Redundant	
  centralized	
  electronics	
  
4	
  Hz	
  update	
  rate	
  
Measurements	
  combined	
  as	
  a	
  pre-­‐processing	
  
step	
  in	
  to	
  single	
  measurement	
  update	
  for	
  
computationally	
  simpler	
  on-­‐board	
  MEKF	
  
processing	
  
Spec	
  performance	
  levels	
  (4	
  heads	
  combined): 

Star Sensor
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Image from MMS-3, CHU-B
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Examining the performance of the MEKF rate estimation for the first two 
thruster-pulses of a calibration maneuver (EA019) executed on 1 April 2015.

On-orbit Performance
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Full EA019 maneuver rate profile
exercises	
  all	
  twelve	
  thrusters	
  individually,	
  in	
  matched	
  pulse-­‐pairs,	
  1/2	
  nutation	
  cycle	
  apart	
  
thrusters	
  #1	
  (radial)	
  and	
  #12	
  (axial)	
  exercised	
  in	
  double	
  pairs	
  to	
  characterize	
  warm-­‐up

Full Calibration Maneuver

maneuver window
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Star Tracker per 
Camera Head 
Unit (CHU) 
Measurement 
Residuals

EA019 STS Measurement Residuals

Axis Spec*	
  (1σ)
Transverse 20	
  asec
Boresite 60	
  asec

*expected ensemble solution 
performance with all four 

heads measurements
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MMS maneuvering performance requires accurate knowledge of
(Fuel)	
  Inertia	
  Tensor—lacking	
  gyroscopes,	
  the	
  second	
  mass	
  moment	
  of	
  inertia	
  knowledge	
  directly	
  
affects	
  the	
  accuracy	
  of	
  the	
  rate	
  estimate.	
  Angular	
  rate	
  errors	
  (along	
  with	
  center-­‐of-­‐mass	
  knowledge)	
  
affect	
  the	
  centripetal	
  compensation	
  algorithms	
  used	
  in	
  closed-­‐loop	
  orbital	
  maneuvers.	
  Since	
  the	
  dry	
  
system	
  properties	
  were	
  well	
  known	
  prior	
  to	
  launch,	
  only	
  the	
  fuel’s	
  contribution	
  to	
  inertia	
  is	
  estimated.	
  

(Fuel)	
  Center-­‐of-­‐Mass—knowledge	
  of	
  the	
  lever-­‐arm	
  from	
  the	
  CM	
  to	
  the	
  accelerometer	
  sensor	
  heads	
  
affects	
  the	
  ability	
  to	
  remove	
  gyro-­‐dynamic	
  biases	
  from	
  the	
  incremental	
  velocity	
  output	
  of	
  the	
  AMS.	
  	
  	
  

Steady-­‐State	
  Thrust—closed-­‐loop	
  incremental	
  velocity	
  feedback	
  removes	
  the	
  majority	
  of	
  the	
  
maneuvering	
  system’s	
  sensitivity	
  to	
  knowledge	
  errors	
  in	
  thruster.	
  	
  However,	
  in	
  order	
  to	
  achieve	
  1%	
  (3σ)	
  
maneuvering	
  accuracy,	
  it	
  was	
  shown	
  via	
  Monte	
  Carlo	
  simulations	
  that	
  3%	
  (3σ)	
  steady-­‐state	
  thrust	
  
knowledge	
  was	
  necessary	
  due	
  to	
  the	
  corruption	
  of	
  rate-­‐propagation	
  with	
  an	
  incorrect	
  torque	
  (gyro	
  
rate-­‐substitution	
  would	
  alleviate).	
  

Warm-­‐up	
  Knock-­‐down	
  Factor—warm-­‐up	
  effects	
  of	
  the	
  cat-­‐bed	
  in	
  the	
  hydrazine	
  thruster’s	
  thrust-­‐
chamber	
  can	
  degrade	
  initial	
  thrust	
  by	
  as	
  much	
  as	
  15%.	
  	
  In	
  order	
  to	
  account	
  for	
  this	
  in	
  the	
  system	
  
dynamics,	
  a	
  simplified	
  thermal-­‐model	
  of	
  the	
  thruster	
  was	
  added	
  to	
  the	
  MEKF.	
  	
  Two	
  thermal-­‐states	
  per	
  
thruster	
  are	
  required.	
  	
  Thermal	
  coefficients	
  of	
  the	
  model	
  were	
  determined	
  from	
  pre-­‐flight	
  test	
  data.	
  

Accelerometer	
  Intrinsic	
  Biases—in	
  order	
  to	
  use	
  the	
  accelerometer	
  measures	
  for	
  thrust-­‐determination,	
  
the	
  intrinsic	
  thermo-­‐electrical	
  biases	
  of	
  the	
  AMS	
  sensor	
  heads	
  must	
  also	
  be	
  estimated.	
  

Augmented	
  State	
  Vector

Case for System ID State Augmentation
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Acceleration Measurement System 
(AMS), manufactured by ZIN 
Technologies

Acceleration Measurement System

12

three orthogonal Honeywell QA3000 
accelerometers
100 kHz analog-to-digital sampling
dynamic range of greater than ±25,000 μg
resolution of less than 1 μg
short-term (1σ) bias stability over a twelve 
hour period of better than 1 μg
effective bandwidth of 250 Hz 
1 KHz (down-sampled) acceleration integrated 
(corrected and summed) to produce an 
incremental velocity-change output at 4 Hz
low-pass bias estimation filter
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Modeled as a proof-mass connected to a rigid-body by tri-axial 
springs, the device acceleration relative to a body-fixed origin is

Introducing the base-body’s center-of mass (rc) yields a truth 
model

where ft is the acceleration due to body-fixed thrusters.

Acceleration measurement model assumes n uni-axial 
measurements (along un) corrupted by bias, noise and scale factor 
errors

Accelerometer Measurement Model

a (small) displacement ⇠ relative to its non-accelerating (rest) state. This conceptual model is suffi-
cient for most applications regardless of the actual device’s internal construction (e.g. cantilevered
beam, electro-magnetic re-balance loop, etc.).

Given the accelerometer’s proof-mass position R
p

with respect to an inertially-fixed origin is
equivalent to the location of a body-fixed origin’s inertial position (R

o

) summed with a local vector
(r

d

) that places the device’s in body-fixed coordinates, plus the proof-mass’ deflection from its
rest-state. This relationship is expressed as the equation

R
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(13)

where the symbol A is used generally in this paper to denote an attitude direction-cosine matrix,
and in this specific instance is the transformation from the body-fixed to inertial frame. Twice
differentiating Eq. (13) with respect to time produces the kinematic acceleration of the device-mass
m

p

with respect to the inertial frame as
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where ! is the angular velocity of the body-fixed frame with respect to the inertial frame, expressed
in body coordinates. Assuming the tiny proof-mass deflections are much smaller than the vector
locating the device in the body-frame, then r

p

⇡ r
d

. If we also neglect structural flexure of the
base-body, then rigidity implies ˙r

d

=

¨r
d

= 0, and the kinematic expression of Eq. (14) reduces
even further. Substituting for the acceleration at the sensor-head into Newton’s second law of motion,
equates the total proof-mass acceleration to the sum of the external forces acting on it as follows
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where a
grav

is the acceleration due to a gravitational field. Eq. (16) also moved r̈
p

= ⇠̈ to the
left-hand side of the equality, and uses Newton’s third law to replace the proof-mass acceleration
⇠̈ with the tri-axial spring-force (c

d

is the damping coefficient of the spring, and k
d

its stiffness).
If the dynamics-of-interest are far enough below the bandwidth of the sensor ( ˙V

o

, ˙

! ⌧ k

d

m

p

), the
accelerometer’s internal response will have damped out ( ˙⇠ ! 0), and the device will produce a
steady-state output
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Note that the only external force the device’s proof-mass experiences is gravity, because it is a
field-effect. All other mechanical disturbances to the system must be transmitted through the base-
body via the tri-axial spring. Prior to launch, resting on a clean-room floor, the accelerometer
“sees” gravity on its output because the base-structure is at rest ( ˙V

o

⇡ 0, unless of course there
is an earthquake or heavy-footed technician nearby). In orbit, the expression for the base-body’s
acceleration with respect to inertial can be obtained by differentiating the linear momentum P of

5

the base-body with respect to the inertial frame,
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ṁ

) = m
d2

dt2

✓
R

o

+ A
i b

r
c

◆
+ ṁ �v
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where r
c

is the position of the base-body’s center-of-mass (CM) expressed in the body-fixed frame,
m is the spacecraft mass, and �v

ṁ

is a relative exhaust velocity of any expelled mass (e.g. thrusters).
Even though a rigid-base was assumed in the derivation of the proof-mass motion, choosing not to
nullify the derivatives of the CM at this point provides a placeholder for multi-body effects such
as fuel-slosh and appendage motion, so they remain intact for now. Applying Newton’s second law
and identifying the mass-expulsion as the body-fixed thruster-force (f

t

), Eq. (19) now takes the form
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Assuming that the accelerometer proof-mass is much smaller than that of the base-body (m
d

⌧ m),
the spring reaction-force k

d

m

⇠ can be ignored without inducing significant error. Finally, combining
Eq. (21) with Eq. (17) yields a complete expression for an accelerometer truth-model
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It is interesting to note the cancellation of the gravitational acceleration terms between the two equa-
tions. In truth, this only holds if the gravitational field is completely uniform. However, with the
semi-major axis of the MMS orbit varying from 1.2–12 Earth radii, the so-called gravity-gradient
effect (defined as the difference in the gravitational field across the spacecraft) is negligible. Specif-
ically, using those inverse-squared distances with a CM-to-sensor displacement (r

cd

) of only one
meter produces a maximum effect of 0.18 µg at perigee and 2 ⇥ 10

�4 µg at apogee—sufficiently
below the threshold of the MMS accelerometer.

Measurement Equation

A discrete-sample at time t
k

of the acceleration from the nth sensor-head, a
n

, is modeled as
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where �
b

is a scale factor error, û is a unit vector along the true sensing axis of the nth sensor
head, b

n

is an intrinsic electro-mechanical bias, and ⌘
n

is sensor noise (possibly non-white). All of
the introduced quantities (�, û, b, ⌘) are both time-varying and functions of temperature. A vector
quantity for the sampled acceleration (a

k

) in the body-fixed frame can be reconstructed from the
n (� 3) measurements using the pseudo-inverse of a user-supplied orthogonality matrix O, which
ideally cancels the true alignment matrix U =

⇥
u1 u2 . . . u

n

⇤
T and scale-factor errors in a
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manner for which
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>>>=

>>>;
(24)

holds true. In the case of MMS, the number of sensor heads is three (n = 3) and—through ex-
tensive ground calibration and on-orbit temperature control—they are believed to be nearly or-
thogonal. For the sake of simplicity in the explication that follows, it is assumed the scale factor,
non-orthogonality, and alignment errors are essentially zero (although the full effects of the errors
are bounded and included in the subsequent Monte Carlo analysis). With the stated assumptions, U
and O are both the identity matrix I, and Eq. (24) reduces to

a
k

= a
d

+ b + ⌘ (25)

VELOCITY ESTIMATION

The quantity of interest from a formation-maintenance perspective is not the acceleration per
se, but the change in velocity of the spacecraft’s center-of-mass due to thrusting. Analogous to a
rate-integrating-gyro for attitude dynamics, the AMS’s primary function for the mission is to act
as an acceleration-integrating-accelerometer during orbital-adjustments. Combining Eq. (25) with
Eq. (22), transforming to the inertial frame, and integrating over the time-interval (t1, t2) produces
the following relationship

Z
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A
i b

a
k
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Z
t2

t1

A
i b
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A
i b
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!̇

⇥r
cd

+ !

⇥
!

⇥r
cd

�
d⌧ (26)
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Z
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t1

A
i b

⌘ d⌧

Evaluating the definite integral, and denoting the integrated thrust as the perturbed velocity of the
spacecraft’s center-of-mass �v

c

(t) the relationship takes the form
Z

t2

t1

A
i b

a
k

d⌧ = �v

c

(t2)� �v

c

(t1) + A
i b2

[!(t2)]
⇥r

cd

(t2)� A
i b1

[!(t1)]
⇥r

cd

(t1) (27)

� A
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ṙc(t2) + A
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ṙc(t1) +

Z
t2
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A
i b

b d⌧ +

Z
t2

t1

A
i b

⌘ d⌧

where the attitude matrix subscripts b1 and b2 refer to the body’s orientation at times t1 and t2 re-
spectively. Delaying the expansion of the definite integral limits to compress terms, we arrive at
an important result. On the left-hand side of the following expression is the true quantity to be
controlled, �v

c

, and on the right an expression for it in terms of ideal integrated sensor measure-
ments and some additional “error” sources that must be removed (estimated/compensated) in order
to achieve precise maneuvering.
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=
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A
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(28)

Methods for estimating the terms of the right-hand side of Eq. (28) will be detailed in the sections
that follow.
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STS measurement sensitivity matrix

AMS measurement sensitivity matrix

AMS measurement noise

Augmented Measurement Models

where the body to inertial transformation A may be dropped because the noise is temporally uncor-
related. While the expected value of the noise is zero-mean—and will not bias the estimate of the
velocity—the variance (mean-squared value) of the integrated noise is

E[�v

2
⌘

] ⇡
Z

t2

t1

E
⇥
⌘

2
⇤

d⌧ =

Z
t2

t1

1

2⇡

Z 1

�1
S(j!) d! · d⌧ (47)

where S(j!) is the power spectral density (PSD) of the noise, and ! is a frequency in rad/s—not
to be confused with the base-body angular rate !. If the input is assumed to be band-limited white
noise, then the PSD is a constant A/2 within the pass-band (f

hz)), and zero otherwise. The velocity
variance becomes
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d⌧ = A f
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�t (48)

The QA3000 specification asserts the root-mean-squared noise (a
rms

=

q
E[�v

2
⌘

]) should be less
than 8 µg

rms

in the frequency range 0-10 Hz, and 80 µg
rms

from 10-500 Hz. This implies that if
a (single-sided) periodogram of acceleration-samples over a large time-interval was computed, its
expected magnitude (A) over a given frequency range (e.g. �f

hz

= 10 Hz) should be less than

A0�10 hz

 (a
rms

)

2

�f
hz

=

8

2 µg2

10 Hz
= 6.4

µg2

Hz
= 615.9

�
µm
s2

�2

Hz
(49)

Figure 4 shows this is indeed the case for a sample taken from an non-maneuvering MMS-1. With

Figure 4. PSD of MMS-1 AMS 1 kHz Acceleration Data

this base-band noise input driving an integrator-plant, the velocity random walk is then

(�v

⌘

)

rms


p

A0�10 hz

· �t =

⇣
24.8

µm
s

·
p

Hz
⌘
·
p

�t (50)

It can be shown that the noise-response is dominated by the content in the base-band (0-10 Hz) due
to low-pass nature of the integrator (-20 dB/decade). This mitigation strategy for this error-source
is to limit size of the velocity-accumulation window tightly on the thrusting portion of a maneuver.

Other Error Sources

Non-Linearity At operational temperatures, the non-linearity error (of the scale-factor) over the
QA3000’s dynamic range was calculated to be less than 150 ppm.
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Introduced knowledge errors into a 
simulated test-case system 

pair	
  of	
  pulses	
  from	
  thruster	
  #1	
  at	
  20	
  and	
  36	
  secs

System ID: 2-Pulse Test-Case
Parameter Error

accelerometer biases +20 µg

fuel center-of-mass +50 mm

fuel moments of inertia +10 kg-m

2

steady-state thrust magnitude +5%

Steady-­‐State	
  Force	
  Estimation	
  Test-­‐Case	
  Results



25th ISSFD, Munich, Germany 25 October 2015

System ID: 2-Pulse Test-Case
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System ID: 2-Pulse Test-Case
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System ID: 2-Pulse Test-Case

AMS	
  Bias	
  Estimation	
  Test-­‐Case	
  Results
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Hundreds of parameters in the high-fidelity simulation of the MMS spacecraft 
were randomly perturbed within the expected distributions and (conservative) 
uncertainty limits of ground-based knowledge.  
The full EA019 maneuver was simulated and statistics collected on the accuracy 
of the augmented MEKF system identification process.  The results from 300 runs 
are shown.

System ID: Monte Carlo Results

Steady-­‐State	
  Thrust	
  Estimation	
  Monte	
  Carlo	
  Statistics

4-­‐lbf	
  radial	
  
thruster

1-­‐lbf	
  axial	
  
thruster
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System ID: Monte Carlo Results
Composite	
  Mass	
  Property	
  Estimation	
  Monte	
  Carlo	
  Statistics

X	
  and	
  Y	
  axes	
  
results	
  similar

X	
  and	
  Y	
  axes	
  
results	
  similar
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Ground processing of the EA019 maneuver for MMS1 
produced the following results:

System ID: MMS1 EA019 Flight Results
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System ID: MMS1 EA019 Flight Results
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Comparison of pre-flight and post-calibration system 
identification for observatory MMS1

System ID: MMS1 EA019 Flight Results

State Units Pre-Cal Post-Cal Di↵erence

CM-x mm -0.14 3.31 3.45 —

CM-y mm 0.13 4.72 4.59 —

CM-z mm 605.28 604.56 -0.72 —

Ixx kg-m

2
991.50 968.10 -23.40 (-2.4%)

Iyy kg-m

2
996.25 936.54 -59.71 (-6.0%)

Izz kg-m

2
1614.93 1598.41 -16.52 (-1.0%)

Ixy kg-m

2
-107.49 -82.88 24.61 (-22.9%)

Ixz kg-m

2
-0.01 -0.18 -0.17 —

Iyz kg-m

2
-0.07 -0.30 -0.23 —

Thruster Units Pre-Cal Post-Cal Di↵erence

01 N 17.06 18.38 1.32 7.73%
02 N 17.06 18.20 1.14 6.66%
03 N 17.06 18.26 1.20 7.04%
04 N 17.06 18.24 1.18 6.90%
05 N 17.06 18.64 1.58 9.25%
06 N 17.06 18.74 1.68 9.85%
07 N 17.06 18.49 1.43 8.35%
08 N 17.06 18.34 1.28 7.51%
09 N 4.27 3.94 -0.33 -7.67%
10 N 4.27 4.03 -0.23 -5.46%
11 N 4.27 3.82 -0.44 -10.34%
12 N 4.27 3.97 -0.30 -6.94%
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Additional Flight Validation

24

Supports the notion that the ground 
estimates of the radial thrust was 

roughy 8% above expectations

Early maneuver performed 
without the AMS feedback used 

by the controller
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Implementation	
  details	
  with	
  regards	
  to	
  the	
  MEKF	
  formulation	
  were	
  
discussed	
  

The	
  MMS	
  on-­‐board	
  attitude	
  and	
  rate	
  estimation	
  MEKF	
  was	
  documented,	
  
and	
  flight	
  results	
  presented	
  

An	
  augmented	
  state	
  MEKF	
  for	
  ground-­‐based	
  estimation	
  of	
  thruster	
  
output,	
  center-­‐of-­‐mass,	
  moments-­‐of-­‐inertia,	
  and	
  accelerometer	
  biases	
  
was	
  developed	
  

a	
  simple	
  two-­‐pulse	
  test-­‐case	
  results	
  were	
  shown	
  

Monte	
  Carlo	
  performance	
  statistics	
  were	
  presented	
  for	
  a	
  full	
  calibration	
  of	
  the	
  
twelve	
  MMS	
  thrusters	
  

Flight	
  system	
  identification	
  results	
  from	
  the	
  MMS	
  EA019	
  calibration	
  maneuver	
  were	
  
shown	
  and	
  compared	
  to	
  pre-­‐flight	
  system	
  knowledge

Summary



Thank	
  you	
  for	
  your	
  attention.	
  

Many	
  thanks	
  to	
  our	
  conference	
  
organizers	
  for	
  a	
  wonderful	
  event.	
  

Any	
  questions?


