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✗	  Unity	  Norm	  
✗	  Unbiased

Multiplicative Extended Kalman Filter
Extended	  Kalman	  Filter	  (EKF)	  variant	  
1st	  flight	  use	  SPARS	  (1969)	  
rigorous	  formation	  by	  Lefferts,	  Markley,	  and	  Shuster	  (1982)	  
continued	  refinement	  and	  advocacy	  by	  Markley	  (2003)
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The MEKF uses a reduced three component attitude 
parameterization as the error-state inside the filter.

Could	  use	  any	  three-‐component	  attitude	  representation	  (e.g.	  Euler	  rotation	  axis/
angle,	  Gibbs	  vector,	  Modified	  Rodrigues	  parameters,	  Tait-‐Bryan	  angles,	  etc.)	  
MMS	  chose	  (twice)	  the	  Gibbs	  vector	  parameterization:	  
‣ free	  of	  singularities	  up	  to	  ±180º	  
‣ largest	  possible	  180º	  map	  to	  infinity	  (compatible	  with	  Gaussian	  “tails”)	  
‣ avoids	  accumulation	  of	  numerical	  errors	  in	  full-‐state	  quaternion	  norm	  through	  explicit	  

normalization	  in	  reset	  operation	  that	  is	  neither	  ad	  hoc	  or	  require	  transcendental	  evaluations	  
‣ observation	  model	  insensitive	  to	  sign	  ambiguity	  in	  star	  camera’s	  output	  quaternion	  
‣ diagonals	  of	  error	  covariance	  matrix	  (P)	  map	  directly	  to	  attitude	  error	  variance	  (σ2)

MEKF Error State Idiosyncrasies
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On-board MEKF Models

that will be used in the filter, and it is non-linear in the error-states. In order to make the change of
variables and linearize the error-state dynamics, the 1st-order approximations �q1:3 ⇡ �✓/2 and
dq4 = 1 (see Eq. (4)) are used for the error-vector, and terms that are the product of two (small)
error-states are dropped (�!�✓ ⇡ 0). With these substitutions, Eq. (23) becomes
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which is the desired final form of the error vector dynamics. The dynamics for the full and error
states of the ACS flight software MEKF are summarized in Table 1.

Table 1. Summary of State Dynamics for MMS On-board MEKF

Nonlinear Full-State Model Linearized Error-State Model
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2.2 Measurement Update

There are three sensors on the MMS observatories—a sun sensor (DSS), a star tracker (STS), and
an accelerometer (AMS). Of the three, only the STS is used for on-board (real-time) attitude and
rate determination. The DSS is excluded because its resolution of ±0.125� (450 arcsec) was shown
to contribute little to the solution accuracy. The AMS acceleration measurements are neglected
because of the modest capability of the flight processor (the filter would need to be augmented with
bias states), and the additional power demands (AMS electronics plus thermal control heaters for
bias stability). Nevertheless, the AMS is enabled for maneuvers, and the richness of information
contained in its 1 kHz stream of µg acceleration measurements makes it possible to perform off-line
system calibration using ground-telemetered data (the subject of the second-half of this paper). The
STS and AMS measurements are staggered in time, so there are no update issues with simultaneous
measurements (combining multiple STS camera head solutions is discussed in section 2.2.1).

The specific form of the MEKF used on MMS is sometimes referred to as a Continuous-Discrete
Extended Kalman Filter[7], due to the discrete measurement updates from the on-board sensors

7

MMS	  has	  no	  gyros.	  	  
Inertia	  matrix	  knowledge	  is	  required.

Derivation	  of	  attitude	  error	  dynamics	  derivation	  a	  bit	  
more	  involved	  than	  for	  non-‐additive	  states.

State	  Dynamics

Measurement	  Updates
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Even	  though	  Hk	  is	  not	  used	  here	  (due	  to	  reset	  op)	  it	  is	  needed	  for	  
covariance	  propagation.	  NOTE:	  partial	  derivatives	  are	  with	  respect	  to	  

error	  states	  (but	  result	  only	  differs	  for	  non-‐additive	  states).
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μASC Star Tracker System (STS) provided 
by the Technical University of Denmark 
(DTU)

Four	  camera	  head	  units	  (CHUs)	  
Redundant	  centralized	  electronics	  
4	  Hz	  update	  rate	  
Measurements	  combined	  as	  a	  pre-‐processing	  
step	  in	  to	  single	  measurement	  update	  for	  
computationally	  simpler	  on-‐board	  MEKF	  
processing	  
Spec	  performance	  levels	  (4	  heads	  combined): 

Star Sensor
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Image from MMS-3, CHU-B
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Examining the performance of the MEKF rate estimation for the first two 
thruster-pulses of a calibration maneuver (EA019) executed on 1 April 2015.

On-orbit Performance
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Full EA019 maneuver rate profile
exercises	  all	  twelve	  thrusters	  individually,	  in	  matched	  pulse-‐pairs,	  1/2	  nutation	  cycle	  apart	  
thrusters	  #1	  (radial)	  and	  #12	  (axial)	  exercised	  in	  double	  pairs	  to	  characterize	  warm-‐up

Full Calibration Maneuver

maneuver window
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Star Tracker per 
Camera Head 
Unit (CHU) 
Measurement 
Residuals

EA019 STS Measurement Residuals

Axis Spec*	  (1σ)
Transverse 20	  asec
Boresite 60	  asec

*expected ensemble solution 
performance with all four 

heads measurements
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Augmented	  MEKF	  for	  	  
Ground-‐based	  System	  Identification
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MMS maneuvering performance requires accurate knowledge of
(Fuel)	  Inertia	  Tensor—lacking	  gyroscopes,	  the	  second	  mass	  moment	  of	  inertia	  knowledge	  directly	  
affects	  the	  accuracy	  of	  the	  rate	  estimate.	  Angular	  rate	  errors	  (along	  with	  center-‐of-‐mass	  knowledge)	  
affect	  the	  centripetal	  compensation	  algorithms	  used	  in	  closed-‐loop	  orbital	  maneuvers.	  Since	  the	  dry	  
system	  properties	  were	  well	  known	  prior	  to	  launch,	  only	  the	  fuel’s	  contribution	  to	  inertia	  is	  estimated.	  

(Fuel)	  Center-‐of-‐Mass—knowledge	  of	  the	  lever-‐arm	  from	  the	  CM	  to	  the	  accelerometer	  sensor	  heads	  
affects	  the	  ability	  to	  remove	  gyro-‐dynamic	  biases	  from	  the	  incremental	  velocity	  output	  of	  the	  AMS.	  	  	  

Steady-‐State	  Thrust—closed-‐loop	  incremental	  velocity	  feedback	  removes	  the	  majority	  of	  the	  
maneuvering	  system’s	  sensitivity	  to	  knowledge	  errors	  in	  thruster.	  	  However,	  in	  order	  to	  achieve	  1%	  (3σ)	  
maneuvering	  accuracy,	  it	  was	  shown	  via	  Monte	  Carlo	  simulations	  that	  3%	  (3σ)	  steady-‐state	  thrust	  
knowledge	  was	  necessary	  due	  to	  the	  corruption	  of	  rate-‐propagation	  with	  an	  incorrect	  torque	  (gyro	  
rate-‐substitution	  would	  alleviate).	  

Warm-‐up	  Knock-‐down	  Factor—warm-‐up	  effects	  of	  the	  cat-‐bed	  in	  the	  hydrazine	  thruster’s	  thrust-‐
chamber	  can	  degrade	  initial	  thrust	  by	  as	  much	  as	  15%.	  	  In	  order	  to	  account	  for	  this	  in	  the	  system	  
dynamics,	  a	  simplified	  thermal-‐model	  of	  the	  thruster	  was	  added	  to	  the	  MEKF.	  	  Two	  thermal-‐states	  per	  
thruster	  are	  required.	  	  Thermal	  coefficients	  of	  the	  model	  were	  determined	  from	  pre-‐flight	  test	  data.	  

Accelerometer	  Intrinsic	  Biases—in	  order	  to	  use	  the	  accelerometer	  measures	  for	  thrust-‐determination,	  
the	  intrinsic	  thermo-‐electrical	  biases	  of	  the	  AMS	  sensor	  heads	  must	  also	  be	  estimated.	  

Augmented	  State	  Vector

Case for System ID State Augmentation
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Acceleration Measurement System 
(AMS), manufactured by ZIN 
Technologies

Acceleration Measurement System

12

three orthogonal Honeywell QA3000 
accelerometers
100 kHz analog-to-digital sampling
dynamic range of greater than ±25,000 μg
resolution of less than 1 μg
short-term (1σ) bias stability over a twelve 
hour period of better than 1 μg
effective bandwidth of 250 Hz 
1 KHz (down-sampled) acceleration integrated 
(corrected and summed) to produce an 
incremental velocity-change output at 4 Hz
low-pass bias estimation filter
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Modeled as a proof-mass connected to a rigid-body by tri-axial 
springs, the device acceleration relative to a body-fixed origin is

Introducing the base-body’s center-of mass (rc) yields a truth 
model

where ft is the acceleration due to body-fixed thrusters.

Acceleration measurement model assumes n uni-axial 
measurements (along un) corrupted by bias, noise and scale factor 
errors

Accelerometer Measurement Model

a (small) displacement ⇠ relative to its non-accelerating (rest) state. This conceptual model is suffi-
cient for most applications regardless of the actual device’s internal construction (e.g. cantilevered
beam, electro-magnetic re-balance loop, etc.).

Given the accelerometer’s proof-mass position R
p

with respect to an inertially-fixed origin is
equivalent to the location of a body-fixed origin’s inertial position (R

o

) summed with a local vector
(r

d

) that places the device’s in body-fixed coordinates, plus the proof-mass’ deflection from its
rest-state. This relationship is expressed as the equation
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where the symbol A is used generally in this paper to denote an attitude direction-cosine matrix,
and in this specific instance is the transformation from the body-fixed to inertial frame. Twice
differentiating Eq. (13) with respect to time produces the kinematic acceleration of the device-mass
m
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with respect to the inertial frame as
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where ! is the angular velocity of the body-fixed frame with respect to the inertial frame, expressed
in body coordinates. Assuming the tiny proof-mass deflections are much smaller than the vector
locating the device in the body-frame, then r

p

⇡ r
d

. If we also neglect structural flexure of the
base-body, then rigidity implies ˙r

d

=

¨r
d

= 0, and the kinematic expression of Eq. (14) reduces
even further. Substituting for the acceleration at the sensor-head into Newton’s second law of motion,
equates the total proof-mass acceleration to the sum of the external forces acting on it as follows
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where a
grav

is the acceleration due to a gravitational field. Eq. (16) also moved r̈
p

= ⇠̈ to the
left-hand side of the equality, and uses Newton’s third law to replace the proof-mass acceleration
⇠̈ with the tri-axial spring-force (c

d

is the damping coefficient of the spring, and k
d

its stiffness).
If the dynamics-of-interest are far enough below the bandwidth of the sensor ( ˙V

o

, ˙

! ⌧ k

d

m

p

), the
accelerometer’s internal response will have damped out ( ˙⇠ ! 0), and the device will produce a
steady-state output
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Note that the only external force the device’s proof-mass experiences is gravity, because it is a
field-effect. All other mechanical disturbances to the system must be transmitted through the base-
body via the tri-axial spring. Prior to launch, resting on a clean-room floor, the accelerometer
“sees” gravity on its output because the base-structure is at rest ( ˙V

o

⇡ 0, unless of course there
is an earthquake or heavy-footed technician nearby). In orbit, the expression for the base-body’s
acceleration with respect to inertial can be obtained by differentiating the linear momentum P of
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the base-body with respect to the inertial frame,
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where r
c

is the position of the base-body’s center-of-mass (CM) expressed in the body-fixed frame,
m is the spacecraft mass, and �v

ṁ

is a relative exhaust velocity of any expelled mass (e.g. thrusters).
Even though a rigid-base was assumed in the derivation of the proof-mass motion, choosing not to
nullify the derivatives of the CM at this point provides a placeholder for multi-body effects such
as fuel-slosh and appendage motion, so they remain intact for now. Applying Newton’s second law
and identifying the mass-expulsion as the body-fixed thruster-force (f

t

), Eq. (19) now takes the form
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Assuming that the accelerometer proof-mass is much smaller than that of the base-body (m
d

⌧ m),
the spring reaction-force k

d

m

⇠ can be ignored without inducing significant error. Finally, combining
Eq. (21) with Eq. (17) yields a complete expression for an accelerometer truth-model

a
d

=

f
t

m
+ !̇

⇥
(r

d

� r
c

)| {z }
r

cd

+!

⇥
!

⇥
(r

d

� r
c

)� �
2 · !⇥ṙ
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It is interesting to note the cancellation of the gravitational acceleration terms between the two equa-
tions. In truth, this only holds if the gravitational field is completely uniform. However, with the
semi-major axis of the MMS orbit varying from 1.2–12 Earth radii, the so-called gravity-gradient
effect (defined as the difference in the gravitational field across the spacecraft) is negligible. Specif-
ically, using those inverse-squared distances with a CM-to-sensor displacement (r

cd

) of only one
meter produces a maximum effect of 0.18 µg at perigee and 2 ⇥ 10

�4 µg at apogee—sufficiently
below the threshold of the MMS accelerometer.

Measurement Equation

A discrete-sample at time t
k

of the acceleration from the nth sensor-head, a
n

, is modeled as
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where �
b

is a scale factor error, û is a unit vector along the true sensing axis of the nth sensor
head, b

n

is an intrinsic electro-mechanical bias, and ⌘
n

is sensor noise (possibly non-white). All of
the introduced quantities (�, û, b, ⌘) are both time-varying and functions of temperature. A vector
quantity for the sampled acceleration (a
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) in the body-fixed frame can be reconstructed from the
n (� 3) measurements using the pseudo-inverse of a user-supplied orthogonality matrix O, which
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) ûT

n

3

7775
a

d

+

2

6664

b1

b2
...

b
n

3

7775
+

2

6664

⌘1

⌘2
...

⌘
n

3

7775

9
>>>=

>>>;
(24)

holds true. In the case of MMS, the number of sensor heads is three (n = 3) and—through ex-
tensive ground calibration and on-orbit temperature control—they are believed to be nearly or-
thogonal. For the sake of simplicity in the explication that follows, it is assumed the scale factor,
non-orthogonality, and alignment errors are essentially zero (although the full effects of the errors
are bounded and included in the subsequent Monte Carlo analysis). With the stated assumptions, U
and O are both the identity matrix I, and Eq. (24) reduces to

a
k

= a
d

+ b + ⌘ (25)

VELOCITY ESTIMATION

The quantity of interest from a formation-maintenance perspective is not the acceleration per
se, but the change in velocity of the spacecraft’s center-of-mass due to thrusting. Analogous to a
rate-integrating-gyro for attitude dynamics, the AMS’s primary function for the mission is to act
as an acceleration-integrating-accelerometer during orbital-adjustments. Combining Eq. (25) with
Eq. (22), transforming to the inertial frame, and integrating over the time-interval (t1, t2) produces
the following relationship
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Evaluating the definite integral, and denoting the integrated thrust as the perturbed velocity of the
spacecraft’s center-of-mass �v

c

(t) the relationship takes the form
Z
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where the attitude matrix subscripts b1 and b2 refer to the body’s orientation at times t1 and t2 re-
spectively. Delaying the expansion of the definite integral limits to compress terms, we arrive at
an important result. On the left-hand side of the following expression is the true quantity to be
controlled, �v

c

, and on the right an expression for it in terms of ideal integrated sensor measure-
ments and some additional “error” sources that must be removed (estimated/compensated) in order
to achieve precise maneuvering.
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Methods for estimating the terms of the right-hand side of Eq. (28) will be detailed in the sections
that follow.
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STS measurement sensitivity matrix

AMS measurement sensitivity matrix

AMS measurement noise

Augmented Measurement Models

where the body to inertial transformation A may be dropped because the noise is temporally uncor-
related. While the expected value of the noise is zero-mean—and will not bias the estimate of the
velocity—the variance (mean-squared value) of the integrated noise is
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S(j!) d! · d⌧ (47)

where S(j!) is the power spectral density (PSD) of the noise, and ! is a frequency in rad/s—not
to be confused with the base-body angular rate !. If the input is assumed to be band-limited white
noise, then the PSD is a constant A/2 within the pass-band (f

hz)), and zero otherwise. The velocity
variance becomes
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The QA3000 specification asserts the root-mean-squared noise (a
rms

=

q
E[�v

2
⌘

]) should be less
than 8 µg

rms

in the frequency range 0-10 Hz, and 80 µg
rms

from 10-500 Hz. This implies that if
a (single-sided) periodogram of acceleration-samples over a large time-interval was computed, its
expected magnitude (A) over a given frequency range (e.g. �f

hz

= 10 Hz) should be less than

A0�10 hz
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�
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(49)

Figure 4 shows this is indeed the case for a sample taken from an non-maneuvering MMS-1. With

Figure 4. PSD of MMS-1 AMS 1 kHz Acceleration Data

this base-band noise input driving an integrator-plant, the velocity random walk is then
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A0�10 hz
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·
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⌘
·
p

�t (50)

It can be shown that the noise-response is dominated by the content in the base-band (0-10 Hz) due
to low-pass nature of the integrator (-20 dB/decade). This mitigation strategy for this error-source
is to limit size of the velocity-accumulation window tightly on the thrusting portion of a maneuver.

Other Error Sources

Non-Linearity At operational temperatures, the non-linearity error (of the scale-factor) over the
QA3000’s dynamic range was calculated to be less than 150 ppm.
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Introduced knowledge errors into a 
simulated test-case system 

pair	  of	  pulses	  from	  thruster	  #1	  at	  20	  and	  36	  secs

System ID: 2-Pulse Test-Case
Parameter Error

accelerometer biases +20 µg

fuel center-of-mass +50 mm

fuel moments of inertia +10 kg-m

2

steady-state thrust magnitude +5%

Steady-‐State	  Force	  Estimation	  Test-‐Case	  Results
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System ID: 2-Pulse Test-Case
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System ID: 2-Pulse Test-Case
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System ID: 2-Pulse Test-Case

AMS	  Bias	  Estimation	  Test-‐Case	  Results
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Hundreds of parameters in the high-fidelity simulation of the MMS spacecraft 
were randomly perturbed within the expected distributions and (conservative) 
uncertainty limits of ground-based knowledge.  
The full EA019 maneuver was simulated and statistics collected on the accuracy 
of the augmented MEKF system identification process.  The results from 300 runs 
are shown.

System ID: Monte Carlo Results

Steady-‐State	  Thrust	  Estimation	  Monte	  Carlo	  Statistics

4-‐lbf	  radial	  
thruster

1-‐lbf	  axial	  
thruster
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System ID: Monte Carlo Results
Composite	  Mass	  Property	  Estimation	  Monte	  Carlo	  Statistics

X	  and	  Y	  axes	  
results	  similar

X	  and	  Y	  axes	  
results	  similar
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Ground processing of the EA019 maneuver for MMS1 
produced the following results:

System ID: MMS1 EA019 Flight Results
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System ID: MMS1 EA019 Flight Results
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Comparison of pre-flight and post-calibration system 
identification for observatory MMS1

System ID: MMS1 EA019 Flight Results

State Units Pre-Cal Post-Cal Di↵erence

CM-x mm -0.14 3.31 3.45 —

CM-y mm 0.13 4.72 4.59 —

CM-z mm 605.28 604.56 -0.72 —

Ixx kg-m

2
991.50 968.10 -23.40 (-2.4%)

Iyy kg-m

2
996.25 936.54 -59.71 (-6.0%)

Izz kg-m

2
1614.93 1598.41 -16.52 (-1.0%)

Ixy kg-m

2
-107.49 -82.88 24.61 (-22.9%)

Ixz kg-m

2
-0.01 -0.18 -0.17 —

Iyz kg-m

2
-0.07 -0.30 -0.23 —

Thruster Units Pre-Cal Post-Cal Di↵erence

01 N 17.06 18.38 1.32 7.73%
02 N 17.06 18.20 1.14 6.66%
03 N 17.06 18.26 1.20 7.04%
04 N 17.06 18.24 1.18 6.90%
05 N 17.06 18.64 1.58 9.25%
06 N 17.06 18.74 1.68 9.85%
07 N 17.06 18.49 1.43 8.35%
08 N 17.06 18.34 1.28 7.51%
09 N 4.27 3.94 -0.33 -7.67%
10 N 4.27 4.03 -0.23 -5.46%
11 N 4.27 3.82 -0.44 -10.34%
12 N 4.27 3.97 -0.30 -6.94%



25th ISSFD, Munich, Germany 25 October 2015

Additional Flight Validation

24

Supports the notion that the ground 
estimates of the radial thrust was 

roughy 8% above expectations

Early maneuver performed 
without the AMS feedback used 

by the controller
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Implementation	  details	  with	  regards	  to	  the	  MEKF	  formulation	  were	  
discussed	  

The	  MMS	  on-‐board	  attitude	  and	  rate	  estimation	  MEKF	  was	  documented,	  
and	  flight	  results	  presented	  

An	  augmented	  state	  MEKF	  for	  ground-‐based	  estimation	  of	  thruster	  
output,	  center-‐of-‐mass,	  moments-‐of-‐inertia,	  and	  accelerometer	  biases	  
was	  developed	  

a	  simple	  two-‐pulse	  test-‐case	  results	  were	  shown	  

Monte	  Carlo	  performance	  statistics	  were	  presented	  for	  a	  full	  calibration	  of	  the	  
twelve	  MMS	  thrusters	  

Flight	  system	  identification	  results	  from	  the	  MMS	  EA019	  calibration	  maneuver	  were	  
shown	  and	  compared	  to	  pre-‐flight	  system	  knowledge

Summary



Thank	  you	  for	  your	  attention.	  

Many	  thanks	  to	  our	  conference	  
organizers	  for	  a	  wonderful	  event.	  

Any	  questions?


