Adaptable Single Active Loop Thermal Control System (TCS) for Future Space Missions

Issam Mudawar & Seunghyun Lee
Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL)
Mechanical Engineering Building, 585 Purdue Mall
West Lafayette, IN 47907-2088

Mohammad Hasan
NASA Glenn Research Center
Fluid Physics and Transport Branch
21000 Brookpark Rd,
Cleveland, OH 44135
Develop **Adaptable Single-Loop Thermal Control System (ASL-TCS)** that can tackle widely varying heat loads of different space missions and both cold and warm environments while improving system performance, reducing weight and volume, and ensuring reliable operation irrespective of gravity.
Thermal Requirement for Different Missions

Thermal loads and effective sink temperatures for different missions based on Orion Multi-Purpose Crew Vehicle (MPCV)

<table>
<thead>
<tr>
<th></th>
<th>Launch to LEO</th>
<th>TLC, TNEOC, TMC</th>
<th>LLO</th>
<th>LSO</th>
<th>NEO</th>
<th>MSO</th>
<th>LMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Load</td>
<td>1.2 kW</td>
<td>1 kW</td>
<td>5 kW</td>
<td>6.25 kW</td>
<td>TBD</td>
<td>6.25 kW</td>
<td>5 kW</td>
</tr>
<tr>
<td>Effective Sink Temperature</td>
<td>-93 to -66°C (180 to 207K)</td>
<td>-198°C (75 K)</td>
<td>-213 to 17°C (60 to 290 K)</td>
<td>-56 to -34°C (217 to 239K)</td>
<td>TBD</td>
<td>-123 to -23°C (150 to 250K)</td>
<td>22°C (295 K)</td>
</tr>
</tbody>
</table>

LEO: Low Earth Orbit
LLO: Low Lunar Orbit
TLC: Trans Lunar Coast
TNEOC: Trans Near Earth Objects Coast
TMC: Trans Mars Coast

LSO: Lunar Surface Operation
NEO: Near-Earth Object
MSO: Mars Surface Operation
LMO: Low Mars Orbit

LLO and LMO associated with heat sink temperatures that exceed lowest minimum fluid temperature of 2°C at inlet to cabin HX, therefore requiring heat pump mode.
Requirements for Heat Pump Mode

\(T_{\text{cabinHX,in}} = 2^\circ\text{C} \):
- prevent frost formation on evaporator surfaces
- evaporation temperature

\(T_{\text{evap}} = 5^\circ\text{C} \):
- maintain adequate condenser performance

Condenser pinch temp. = 5°C

LLO:
\(T_{\text{sink}} = 17^\circ\text{C}, \ T_{\text{cond,out}} = 22^\circ\text{C} \)

LMO:
\(T_{\text{sink}} = 22^\circ\text{C}, \ T_{\text{cond,out}} = 27^\circ\text{C} \)

Max \(T_{\text{lift}} = 80^\circ\text{C} \) when \(T_{\text{evap}} = 5^\circ\text{C} \) (60°C for R404a with \(T_{\text{crit}} = 72.07^\circ\text{C} \))

\(Q_{\text{cabinHX}} = 0.75 \ \text{kW} \)

\(Q_{\text{avionicsHX}} = 0 - 5.5 \ \text{kW} \)

Pressure:
- Max pressure = \(P_{\text{sat}} \) at \(T_{\text{cond,sat}} = T_{\text{evap}} (= 5^\circ\text{C}) + T_{\text{lift}} (= 80^\circ\text{C}) \)
- Min pressure = \(P_{\text{sat}} \) at \(T_{\text{cabinHX,in}} = 2^\circ\text{C} \)

Radiator Area:
\[
A_{\text{radiator,s}} = A_{\text{vapor}} + A_{\text{sat}} + A_{\text{liquid}}, \quad T_{\text{cond,sat}} = T_{\text{evap}} + T_{\text{lift}}
\]
\[
A_{\text{vapor}} = \frac{\dot{m}_{\text{hp}} c_{p,f} \left(T_{\text{cond,in}} - T_{\text{cond,sat}}\right)}{\varepsilon \sigma \left\{\left(T_{\text{cond,in}} + T_{\text{cond,sat}}\right)^4 - T_{\text{sink}}^4\right\}}, \quad A_{\text{sat}} = \frac{\dot{m}_{\text{hp}} h_{\text{fg}}}{\varepsilon \sigma \left\{T_{\text{cond,sat}}^4 - T_{\text{sink}}^4\right\}}, \quad A_{\text{liquid}} = \frac{\dot{m}_{\text{hp}} c_{p,f} \left(T_{\text{cond,sat}} - T_{\text{cond,out}}\right)}{\varepsilon \sigma \left\{\left(T_{\text{cond,sat}} + T_{\text{cond,out}}\right)^4 - T_{\text{sink}}^4\right\}}
\]

Coefficient of Performance:
\[
COP = \frac{Q_{\text{cabinHX}} + Q_{\text{avionicsHX}}}{W_{\text{comp}}/\eta_{\text{comp}}}, \quad \eta_{\text{comp}} = 85\%
\]
\[
W_{\text{comp}} = \int_{P_{\text{avionicsHX,out}}}^{P_{\text{cond,in}}} V \, dP = \dot{m}_{\text{hp}} \left(h_{\text{cond,in}} - h_{\text{avionicsHX,out}}\right)
\]
Mass Flow Rate:
- LLO: Lower $T_{\text{cond,out}}$, lower enthalpy at inlet to cabin HX, higher evaporator enthalpy rise, lower mass flow rate
- NH_3 requires lowest flow rate

Pressure:
- Max pressure highest for NH_3, lowest for HFE7000
Mass Flow Rate:
- Area decreases with increasing T_{lift}
- NH$_3$ requires smallest area but area differences among fluids are small
Coefficient of Performance (COP) for Heat Pump Mode

Low Lunar Orbit (LLO)

- Decreases with increasing T_{lift} because of higher compressor work
- Higher for LLO because of lower evaporator inlet enthalpy
- Fairly equal for different fluids

Low Mars Orbit (LMO)

$T_{evap} = 5°C$
1. Chlorofluorocarbons (CFCs)
 • Consist of chlorine, fluorine and carbon
 • Ex: R11, R12, R113, R114 and R115
 • High ozone depletion potential (ODP)
 • Already banned

2. Hydrochlorofluorocarbons (HCFCs)
 • Consist of hydrogen, chlorine, fluorine and carbon
 • Ex: R22, R123, R124 and R142b
 • Small but finite ODP
 • Being gradually phased out

3. Hydrofluorocarbons (HFCs)
 • Consist of hydrogen, fluorine and carbon
 • Ex: R404a, R134a, R245fa, HFE7000
 • Zero ODP; low global warming potential (GWP)
 • Currently preferred refrigerants

Fluid Selection

<table>
<thead>
<tr>
<th>Type</th>
<th>Rating</th>
<th>Critical Pressure (MPa)</th>
<th>Critical Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia</td>
<td>B2</td>
<td>11.33</td>
<td>132.25</td>
</tr>
<tr>
<td>R404a</td>
<td>HFC</td>
<td>A1</td>
<td>72.12</td>
</tr>
<tr>
<td>R134a</td>
<td>HFC</td>
<td>A1</td>
<td>101.06</td>
</tr>
<tr>
<td>R245fa</td>
<td>HFC</td>
<td>B1</td>
<td>154.01</td>
</tr>
<tr>
<td>HFE7000</td>
<td>HFC</td>
<td>A1</td>
<td>165.00</td>
</tr>
<tr>
<td>R123</td>
<td>HCFC</td>
<td>B1</td>
<td>183.68</td>
</tr>
</tbody>
</table>

Toxicity Rating:
- Class A: no evidence of toxicity below 400 ppm
- Class B: evidence of toxicity below 400 ppm

Flammability Rating:
- Class 1: no flame propagation in open air
- Class 2: may propagate flame under certain conditions in open air
- Class 3: highly flammable
Comparison of Fluid Performances

NH₃: Requires smallest flow rate but highest condenser pressure; exhibits toxicity and flammability

R404a: An HFC that requires high condenser pressure; exhibits no toxicity or flammability, zero ODP and low GWP

R134a: An HFC that provides compromise between reducing flow rate and reducing pressure; exhibits no toxicity or flammability, zero ODP and low GWP

R245fa: An HFC that provides compromise between reducing flow rate and reducing pressure; exhibits no flammability, zero ODP and low GWP, but some toxicity

HFE7000: An HFC that requires low condenser pressure but high flow rate; exhibits no toxicity or flammability, zero ODP and low GWP; used as replacement to R123

R123: An HCFC that requires low condenser pressure but high flow rate; exhibits no toxicity or flammability but some ODP

No significant differences among fluids in terms of radiator area or COP

Preferred Coolant: R134a (1,1,1,2-Tetrafluoroethane, CH₂FCF₃)
- LLSL-HX used high temperature of subcooled liquid exiting condenser to further superheat vapor before entering compressor

- Compared to basic heat pump: 8 to 8' and 4 to 4'
T-S Diagram for Heat Pump with LLSL-HX for Low Mars Orbit (LMO) using R134a

\[T_{evap} = 5^\circ C, \ T_{lift} = 50^\circ C \]
\[\eta_{comp} = 0.85, \ \epsilon_{reg} = 0.9 \]

\[P_{cond} = 1492 \text{ kPa} \quad (T_{sat} = 55^\circ C) \]
\[P_{cond,out} = 706.3 \text{ kPa} \quad (T_{sat} = 27^\circ C) \]
\[P_{evap} = 349.9 \text{ kPa} \quad (T_{sat} = 5^\circ C) \]

\[T_{lift} = 50^\circ C \]

\[T_{evap} = 5^\circ C, \ T_{lift} = 50^\circ C \]
\[\eta_{comp} = 0.85, \ \epsilon_{reg} = 0.9 \]

\[COP' = \left(\frac{Q_{cabinHX} + Q_{avionicsHX}}{W_{comp} + \Delta W_{comp}} \right) + \Delta Q_{cooling} = \left[1 + \left(\frac{\Delta Q_{cooling}}{Q_{cabinHX} + Q_{avionicsHX}} \right) \right] \]

\[COP \]
Heat Pump with LLLSL-HX versus Basic Heat Pump Mode for R134a

Mass Flow Rate: appreciable reduction with LLLSL-HX

COP: some degradation with LLLSL-HX

Radiator Area: some improvement with LLLSL-HX

η_{comp} = 0.85, \varepsilon_{reg} = 0.9, T_{lift} = 50°C

NASA 2015 Boiling and Two-Phase Flow Laboratory (BTPFL) November 2015
Heat Pump Test Loop

Throttling Valve ($C_v = 0.73$)

Throttling Valve ($C_v = 1.8$)

Crew H/X

Avionics H/X

Condenser

Turbine Flow Meter

Filter

Liquid Tank

Fan

Solid-state Controller

Variable Frequency Drive

Power Meter

Oil Separator

Suction Accumulator

Pressure Switch

Filter

Compressor
1-mm Mini-Channels

G-7 Inlet plenum

<table>
<thead>
<tr>
<th></th>
<th>Max. Heat Load, Q (kW)</th>
<th>Max. Heat Flux, q” (W/cm²)</th>
<th>Overall Dimensions</th>
<th>Number of Mini-Channels</th>
<th>Expected Pressure Drop (by correlation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabin HX</td>
<td>0.75 kW</td>
<td>3.13</td>
<td>Length : 152.4 mm (6”) Width : 152.4 mm (6”)</td>
<td>75</td>
<td>1.26 psi</td>
</tr>
<tr>
<td>Avionics HX</td>
<td>5.5 kW (LSO/MSO)</td>
<td>4.58</td>
<td>Length: 609.6 mm (24”) Width: 203.2 mm (8”)</td>
<td>100</td>
<td>6.34 psi</td>
</tr>
</tbody>
</table>
Avionics HX: Cross Section and Temperature Measurements

G-7 Housing
Copper block
Heater
G-10 Insulation
Polycarbonate Cover Plate
Aluminum Cross Bars (H-Beam)

Thermocouples inside copper block

Thermocouple at inlet
Thermocouples inside copper block
Thermocouple at outlet
Heat Transfer Characteristics and Dryout Effects
Avionics H/X: Heat Flux Effects

Avionics H/X (L = 609.6 mm)

$G_{\text{avionics}} = 283.53 \text{ kg/m}^2\text{s}$

q''_{avionics}

$[\text{W/m}^2]$

- 16145.9
- 28255.3
- 36328.2
- 44401.1

$\frac{h_{\text{avionics}}}{T} [\text{W/m}^2\text{K}]$

$x_df = 0.445$

x_e
- **Intermittent Dryout**: mostly in liquid film surrounding elongated slug flow bubble or due to vapor blanket formation within the liquid slug
- **Incipient Dryout**: dry wall patches in annular film
- **Dryout Completion**: annular flow replaced by mist flow, with cooling provided only by droplet deposition
Avionics H/X: Two-Phase Flow Patterns and Heat Transfer Mechanisms

(i) $x_e < 0.36$
- Liquid film
- Intermittent dryout due to vapor blanket formation in liquid slug
- Bubble formed by liquid bridging
- Intermittent dryout in liquid film

(ii) $0.36 < x_e < 0.50$
- Wavy annular liquid film shear driven by vapor core
- Liquid droplets entrained in vapor core

(iii) $0.50 < x_e < 0.74$
- Incipient dryout caused by formation of dry patches in liquid film
- Dry wall patches cooled only by droplet deposition
Macro-channel:

Chen (1966)

Liu & Winterton (1961)

Mini/Micro-channel:

Lazarek & Black (1982)

Tran et al. (1996)

Kandlikar (2004)

Lee & Mudawar (2005)

Bertsch et al. (2009)

Kim & Mudawar (2014)
Comparison of Present Average Two-Phase Heat Transfer Coefficient with Predictions of Universal Methodology

Kim & Mudawar (2014)

MAE = 21.19%, $\theta = 69.92\%$, $\zeta = 95.12\%$

\begin{align*}
\text{Crew H/X, R134a} \\
\text{Avionics H/X, R134a}
\end{align*}

$\begin{align*}
htp,ave,exp [W/m^2K] \\
htp,ave,pred [W/m^2K]
\end{align*}$
Universal Predictive Methodology for Saturated Flow Boiling Heat Transfer in Small Diameter Tubes

Consolidated database:
10,805 saturated boiling heat transfer coefficient data points from 37 sources

- Working fluid:
 FC72, R11, R113, R123, R1234yf, R1234ze, R134a, R152a, R22, R236fa, R245fa, R32, R404a, R407C, R410A, R417A, CO₂, water

- Hydraulic diameter:
 0.19 < \(D_h \) < 6.5 mm

- Mass velocity:
 19 < \(G \) < 1608 kg/m²s

- Liquid-only Reynolds number:
 57 < \(Re_{fo} \) < 49,820

- Flow quality:
 0 < \(x \) < 1

- Reduced pressure:
 0.005 < \(P_R \) < 0.69

\[
h_f = \left(h_{nb}^2 + h_{cb}^2 \right)^{0.5}
\]

For nucleate boiling dominant regime:

\[
h_{nb} = \left[2345 \left(\frac{Bo \ P_H}{P_F} \right)^{0.70} P_R^{0.38} (1 - x_e)^{-0.51} \right] \left(0.023 \frac{Re_f^{0.8}}{Pr_f^{0.4}} \frac{k_f}{D_h} \right)
\]

For convective boiling dominant regime:

\[
h_{cb} = \left[5.2 \left(\frac{Bo \ P_H}{P_F} \right)^{0.08} We_{fo}^{-0.54} + 3.5 \left(\frac{1}{X_n} \right)^{0.94} \left(\frac{\rho_g}{\rho_f} \right)^{0.25} \right] \times \left(0.023 \frac{Re_f^{0.8}}{Pr_f^{0.4}} \frac{k_f}{D_h} \right)
\]

where \(Bo = \frac{q_H'}{G h_{fg}} \), \(P_R = \frac{P}{P_{crit}} \), \(Re_f = \frac{G(1 - x_e)D_h}{\mu_f} \)

\[
We_{fo} = \frac{G^2 D_h}{\rho_f \sigma}, \quad X_n = \left(\frac{\mu_f}{\mu_g} \right)^{0.1} \left(\frac{1 - x_e}{x_e} \right)^{0.9} \left(\frac{\rho_g}{\rho_f} \right)^{0.5}
\]

\(q_H' \) effective heat flux averaged over heated perimeter of channel

\(P_H \): heated perimeter of channel

\(P_F \): wetted perimeter of channel
Universal Predictive Methodology for Saturated Flow Boiling Heat Transfer in Small Diameter Tubes

Nucleate Boiling Dominant Data

- 8284 nucleate boiling dominant data
- MAE = 20.7%

Convective Boiling Dominant Data

- 2541 convective boiling dominant data
- MAE = 19.0%

Nucleate Boiling Dominant Data

- Single-phase Liquid
- Bubbly flow
- Slug flow
- Annular flow
- Mist flow

Convective Boiling Dominant Data

- Single-phase Liquid
- Bubbly flow
- Slug flow
- Annular flow
- Mist flow

ASGSR 2015

Boiling and Two-Phase Flow Laboratory (BTPFL)

November 2015
Parallel channel instability: Small amplitude, high frequency pressure drop oscillations (4,000 - 10,000 Pa over period of 1.33 s)
Pressure Drop Oscillations in Crew H/X

Discrete Fourier transform: pressure drop response in frequency domain
(power spectrum peak of 0.74 Hz (~ 1.33 sec)

R134a
\[G_\text{crew} = 264.63 \text{ kg/m}^2\text{s} \]
\[q''_\text{crew} = 16146.9 \text{ W/m}^2 \]