Online tools for uncovering data quality (DQ) issues in satellite-based global precipitation products

Zhong Liu1,2 and Gil Heo2

1 NASA GES DISC
2 CSISSL, George Mason University

\textit{IN006: Approaches to Improved Collection and Dissemination of Earth Science Data Quality Information-2015 AGU Fall Meeting}
Outline

• Introduction
• DQ challenges
• Online tools
• Examples
• Conclusion
• Future work
• Acknowledgements
• Links/information
Introduction

- Precipitation is a critical variable in the global hydrologic cycle and our daily lives (droughts, floods, diseases, etc.).

Yangtze River near ChongQing during the 2010 droughts in SW China

1991 Bangladesh cyclone. Fatalities: ~140,000
Introduction (Cont’d)

• Data quality (DQ) information is very important in research and applications

In a nutshell

TRMM satellite Algorithms Data products
Introduction (Cont’d)

DQ in precipitation products:

• Observation issues (accuracy, spatial and temporal sampling, etc.)
• Single satellite issues (anomaly, orbit boost, etc.)
• Multi-satellite and multi-sensor issues, plus gauge (for bias correction) issues (more complicated)
• Algorithms and production issues (physics, software bugs, etc.)
Challenges

- DQ has many attributes or facets (i.e., errors, biases, systematic differences, uncertainties, benchmark, false trends, false alarm ratio, etc.)
- Sources can be complicated (measurements, environmental conditions, surface types, algorithms, etc.) and difficult to be identified especially for multi-sensor and multi-satellite products with bias correction (TMPA, IMERG, etc.)
- How to obtain DQ info fast and easily, especially quantified info in ROI? Existing parameters (random error), literature, DIY, etc.
- How to apply the knowledge in research and applications.
- Here, we focus on online systems for integration of products and parameters, visualization and analysis as well as investigation and extraction of DQ information.
Online Tools

• Giovanni – TOVAS for TRMM Versions 6 and 7 intercomparisons (TMI, PR, Multi-satellite products). Level-3 3-hourly, daily and monthly datasets. Latest: New capabilities and new datasets from different projects and missions

• Others, i.e. CSU CRDC Chris Kummerow
Giovanni: http://giovanni.gsfc.nasa.gov
Examples

• Existing parameters (random errors in TMPA and IMERG)
• Online visualization and analysis (TRMM PR monthly data, TMPA monthly data, and GPM IMERG half-hourly products (Early, Late and Final))
An Example: Random Error

- Given in standard products (TMPA, IMERG (monthly below))
TRMM PR Monthly Product (3A25)

- TRMM orbit boost from 350 km to 403 km in Aug. 2001
Convective (unconditional)

Stratiform (unconditional)
Conditional Mean Rain

Area-Averaged Time Series
(Region: 180W-180E, 37S-37N)

- Cond Mean Rain Rate (0.5x0.5 deg) (TRMM_3A25.006) (mm/hr)
- Cond Mean Rain Rate (0.5x0.5 deg) (TRMM_3A25.007) (mm/hr)

Empty granules between 7th-24th 2001 due to the orbit boost
Missing data between 29th May – 18th Jun 2009 due to PR anomaly
TMPA Versions 6 and 7

• 3B43 monthly product

A V-shape issue in V6
Latest Giovanni

- Inter-comparisons among Integrated Multi-satelliteE Retrievals for GPM (IMERG) Early, Late and Final half-hourly products (Poster in H049)
- Myanmar Flooding in July 2015
IMERG (Cont’d)

Early (X) vs. Late (Y)

Early (X) vs. Final (Y)

Late (X) vs. Final (Y)
Conclusion

• Importance to have DQ information in research and applications
• Online tools (no data and software download needed) facilitate DQ investigation through data exploration and comparison such as GES DISC Giovanni
• Giovanni examples (TRMM and GPM datasets)
Future Plans

Need more information and knowledge in online DQ tool development:

• Better understand DQ attributes or facets (a collection of best practices in different disciplines, for example) and algorithms for analysis

• Prototypes in several key DQ areas or disciplines (measurements, input datasets, algorithms, output datasets, etc.). A library of algorithms or toolbox? Trace-back capabilities.

• More data products. For precipitation, atmospheric and environmental conditions, orbital products (Level-1, Level-2), ancillary information (satellite, sensor anomaly, etc.), better grouping of similar products, etc.

• Research: error propagation (3-hourly to daily), application of knowledge, etc.
Acknowledgements

- NASA Research Opportunities in Space and Earth Science- 2010 (ROSES-2010), NNH10ZDA001N-ESDRERR, Appendix A.32: “Earth System Data Records Uncertainty Analysis”
- NASA GES DISC Giovanni Team
Information

• Giovanni: http://giovanni.gsfc.nasa.gov or Google search “NASA giovanni”

• My poster: *Explore GPM IMERG and Other Global Precipitation Products with GES DISC GIOVANNI* (Today in Moscone South Poster Hall H13H-1646, 13:40-1800)

• Comments and suggestions for new features: gsfc-help-disc@lists.nasa.gov