Cryogenic Air Breathing Apparatus and Liquid Air Fill Station for Outby Mine Escape

Donald Doerr, Ed Blalock, Ken Cohen and Dave Bush
LABTECH Inc., BCS Life Support LLC, and NASA

18 February 2015
SME Conference,

This effort is completed as part of CDC Inter-Agency Agreement (IAA/SAA)
CDC Agreement No: 12FED1213259, NASA SAA No: KCA-4357
Contents

Theory of operation

Design schematic and fabrication

Machine Tests

Human Tests

Conclusion
The Cryogenic Breathing Apparatus

- Uses cryogenic (liquid air)
 - 53 lb/ft³ (1.14 gm/cm³), -318°F (77°K), store at very low pressure
 - Contains 8 liters
- Liquid air stored in 2 Dewars (metal thermos bottles)
- Liquid expands 728:1 to produce gaseous air in a heat exchanger
- Gas at 75 psi and approximately 55°F fed to mask
- Mask is conventional positive pressure, demand
How does CryoBA work?

- **2 Dewars (vacuum jacketed vessel)**
- **Heat exchanger for supply loop**
- **Pressure demand SCBA mask**
- **Buildup loop (pressurizes system)**
Two Prototypes designed
- 1 – wide spaced Dewars – minimum thickness
- 2 – close spaced Dewars – narrow pack

Add pics if CryoBA2 here
Cryogenic BA characteristics

- Operates in 90° off-vertical attitudes
- Positive pressure demand SCBA
- Provides cool source of air for 2 hours
- Carries 14 lb liquid air, total pack weight = 42 lb (19kg)
- Can meet 29 CFR part 84 requirements
- Low profile (approx 7” (17.8cm)deep)

User operated fill QD
Machine Testing

Perform machine testing on Posichek3
- Testing at NIOSH 40 l/min
- No body heat to aid heat exchanger
- No active air circulation (person moving)
- Off-vertical attitudes tested

Mask pressure waveforms
10 sec (left) - 2 hours (right)
Human Testing

- Protocols approved by NASA and NIOSH IRB’s
- Protocols per 42 CFR 84 subpart H
- Subjects instrumented for ECG
- CryoBA instrumented for O2, CO2, pressure, temp.
- Exercise per Tables 1, 3 and 4 – each for 2 hours
 - Treadmill walking, crawling
 - Wall pulley
 - Overcast carrying weight
 - Resting prone, supine, left side, right side
- Off-vertical tests – 30 minutes each
 - Full and ¼ full
 - Prone, supine, left side, right side
Human Testing in NASA Biomedical Laboratory
Human Protocols – Results

Table 3
Human Protocols - Results

Table 4

<table>
<thead>
<tr>
<th>Time (Minutes)</th>
<th>Test 3012</th>
<th>Test 3015</th>
<th>Test 3018</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>Time (Minutes)</th>
<th>Test 3012</th>
<th>Test 3015</th>
<th>Test 3018</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Human Tests – Results
Protocol 3 - 4

- Additional data:
 - Mask Pressure
 - Always positive
 - Varied between +1 IWG to 3.5 IWG
 - Mask Temperature
 - Inhaled/exhaled temperature monitored
 - Ranged between 75 – 85°F
Human Testing Result

Summary

- Oxygen measure inside oral nasal mask – normal
- CO2 measured inside oral nasal mask – normal
- Mask pressure - +1 IWG to +3.5 IWG
- Mask temperatures reflect exhaled temps cooled by incoming air - 75°F to 85°F
- Duration – 2 hours
Cryogenic Air Supply and Fill Station

- Use CryoASFS to fill cryogenic breathing apparatus
- User can fill
- User can breathe on mask while filling
- Fill time – approx 4 minutes
- Prototype 1 ASFS can fill 4 units simultaneously
- ASFS has capability to perform multiple serial fills (~40)
- Locate every 1:30 in egress path

CryoBA + 3 other packs being filled
Conclusion

• This 2 hour version of the NASA Liquid Air Pack can meet 29 CFR 84 subpart H requirements
• Simple for miner to initial fill (while breathing)
• Simple for miner to refill during egress every 1:30
• This pack should meet needs of miners escaping disaster
• Could use within a Level A encapsulated suit to provide heat stress relief for hazardous material operations