
Writing Custom Nagios Plugins

Janice Singh

Introduction

• About the Presentation

– audience

• anyone with basic nagios knowledge

• anyone with basic scripting/coding knowledge

– what a plugin is

– how to write one

– troubleshooting

• About Me

– work at NAS (NASA Advanced Supercomputing)

– used Nagios for 5 years

• started at Nagios 2.10

• written/maintain 25+ plugins

NASA Advanced Supercomputing

• Pleiades

– 11,312-node SGI ICE supercluster

– 184,800 cores

• Endeavour

– 2 node SGI shared memory system

– 1,536 cores

• Merope

– 1,152 node SGI cluster

– 13,824 cores

• Hyperwall visualization cluster

– 128-screen LCD wall arranged in 8x16 configuration

– measures 23-ft. wide by 10-ft. high

– 2,560 processor cores

• Tape Storage - pDMF cluster

– 4 front ends

– 47 PB of unique file data stored

Ref: http://www.nas.nasa.gov/hecc/

Nagios at NASA Advanced Supercomputing

• one main Nagios server

• systems behind firewall send data by nrdp

• some clusters behind firewall

– one cluster uses nrpe for gathering data

– other clusters use ssh

• Post processor prepares visualization (HUD) data

– separate daemon

– Nagios APIs provide configuration and status data

– provides file read by HUD

– general architecture adaptable for other uses

HUD

Plugins – Nagios extensions

• Built-in plugins

– Aren’t truly built-in, but they come standard when you install

nagios-plugins

• check_disk

• check_ping

• Custom plugins

– Let you test anything

– The sky’s the limit - if you can code it, you can test it

What are Plugins?

Nagios configuration to define a service that will use the plugin

check_mydaemon.pl:

define service {

host linuxserver2

service_description Check MyDaemon

check_command check_mydaemon

}

define command {

command_name check_mydaemon

command_line check_mydaemon.pl –w 5 –c 10

}

Reasons to write your own plugin

• There isn’t a plugin out there that tests what you want

• You need to test it differently

Guidelines

• Any Language you want

• There is only one rule: it must return a nagios-accepted value

ok (green) 0

warning (yellow) 1

critical (red) 2

unknown (orange) 3

Plugin Psuedocode

• General outline of what a plugin needs to do:

– initialize object (if object oriented code)

– read in the arguments

– set variables

– do the test

– return results

• This is just a suggestion

For Perl: Nagios::Plugin

Instantiate Nagios::Plugin object (the 'usage' parameter is mandatory)

my $p = Nagios::Plugin->new(

usage => ”usage_string",

version => $version_number,

blurb => ‘brief info on plugin',

extra => ‘extended info on plugin’

);

For Perl: Nagios::Plugin (cont).

adding an argument ex: check_mydaemon.pl -w

define help string neatly – use below instead of qq

my $hlp_strg = ‘-w, --warning=INTEGER:INTEGER\n’ .

‘ If omitted, warning is generated.’;

$p->add_arg(

spec => 'warning|w=s’,

help => $hlp_strg

required => 1,

default => 10,

);

#accessing the argument

$p->opts->warning

For Perl: Nagios::Plugin (cont).

finishing the script:

$p->nagios_exit(

return_code => $p->check_threshold($result),

message => " info on what $result means"

);

if you are not using check_threshold use text for return code:

return_code => ‘OK|WARNING|CRITICAL|UNKNOWN’

For Perl: Nagios::Plugin (cont).

• When you’ve done your code and have $result to compare

to the thresholds:

– $return_code = $p->check_threshold($result)

– follows nagios convention of min:max

• check_mydaemon.pl –w 5 will warn on anything > 5

• check_mydaemon.pl –w :5 will warn on anything > 5

• check_mydaemon.pl –w 5: will warn on anything < 5

• check_mydaemon.pl –w 5:7 will warn on anything <5

or >7

• if you overlap critical and warning, critical has

precedent

Overcoming issues

• Test needs elevated privilege

• nagios can be run as root but is not secure

– run the test as root via cronjob; write info to a flat file

– use nagios plugin to read and process the file

• Output of the test was too big

– the resulting nrdp command hit a kernel limit

– use ssh to get the output to the main nagios server

ex: ssh blah blah

– use plugin on the main server to process it

Nagios perfdata

• Nagios is designed to allow plugins to return optional

performance data in addition to normal status data

– in nagios.cfg enable the process_performance_data option.

– Nagios collects this information to be displayed on the GUI

– in the format “|key1=value1,key2=value2,…,keyN=valueN

– this can be anything that has a numerical value

Troubleshooting

• The Nagios display says: return code XXX is out of bounds

– your script returns anything other than 0,1,2,3

– otherwise it is a nagios error.

• Google is your friend

– ex: 13 usually means a permission error

– sometimes all it tells you is “something went wrong”

– these disappeared at our site when we switched to

Nagios::Plugin

• try running the plugin from the command line

– verify who you are running as

– verify the arguments passed in

Troubleshooting (cont).

• Timing is everything!

– launching too many processes

– files can get overwritten

• by cron jobs

• by multiple nagios processes

• if perfdata is enabled, the perfdata log is the most useful

Questions

• Any Questions

