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Leppert and Cecil (2015) compared high-resolution airborne brightness temperatures (BTs) with a hydrometeor identification (HID) applied 

to ground-based, dual-polarimetric radar data using data from three days of intense convection during the Mid-latitude Continental 

Convective Clouds Experiment (MC3E) over Oklahoma in 2011.

The BT data used in Leppert and Cecil (2015) was collected by the Advanced Microwave Precipitation Radiometer (AMPR) and Conically 

Scanning Microwave Imaging Radiometer (CoSMIR) at frequencies similar to those used by the Global Precipitation Measurement (GPM) 

Microwave Imager (GMI; 10−183 GHz [Hou et al. 2014]), and the radar data was obtained from the Vance, OK Weather Surveillance Radar –

1988 Doppler (WSR-88D) radar.

Leppert and Cecil (2015) found that hail is associated with an ice-scattering signature at all frequencies examined, including 10.7 GHz, but 

frequencies ≤37.1 GHz appeared most useful for identifying hail.

Graupel could be identified in the MC3E analysis by its strong scattering signature at higher frequencies (i.e., 165.5 GHz) and its relative 

lack of a scattering signature at frequencies ≤19.4 GHz.

Another important result from the MC3E analysis of Leppert and Cecil (2015) is that the high frequency channels show potential for 

distinguishing particle types other than hail and graupel (e.g., wet snow, aggregates).

The results shown here are a very preliminary expansion from the work of Leppert and Cecil (2015) by comparing GMI BTs with an HID 

applied to several WSR-88D radars.

Specifically, this work is a proof-of-concept before advancing toward 2 primary objectives:

1.) Build empirical relationships between GMI BTs and hydrometeor types derived from ground-based dual-polarization radar.

2.) Build physical understanding of relationships between satellite measurements and hydrometeor types.

1. Introduction

2. Data/Methodology

Data: Passive microwave GMI BTs and GPM Ground Validation System Validation Network (VN) data (Schwaller and Morris 2011).  

The VN database consists of matched ground-based radar data (~70 WSR-88D radars mostly in the eastern half of the U.S.) and GPM 

satellite data from GPM overpasses that have at least 100 "Rain_Certain" pixels (from the GPM DPR 2A-Ku product) within at least 100 km 

of one of the ground-based radars. The VN dataset also includes an HID using an algorithm adapted from Dolan and Rutledge (2009) and 

used in Leppert and Cecil (2015).

Data is used from March 2014 through April 2015.

To minimize the effect of the signal from one hydrometeor species dominating the signal from other species and to better isolate the 

signal from each species separately, a subjective hierarchy of hydrometeor categories was applied.  Each hydrometeor type was assigned a 

certain priority, and the type with the greatest priority was assigned to represent an entire vertical profile.  The big drops category was 

given the highest priority followed by hail, high density graupel, low density graupel, rain, wet snow, aggregates, ice crystals (which were 

combined with vertically-oriented ice), and drizzle.  The reasoning is that if hail, for example,  is present anywhere in a column, its 

scattering will have a greater effect on the BT than any rain, ice crystals, etc., elsewhere in the column.

5. Conclusions

For the lowest BTs at all GMI frequencies, hail and graupel are most probable.

Hydrometeor probabilities show the same general qualitative patterns using GMI data and higher-resolution MC3E data, but the 

lowest frequency GMI channels show less distinction between hydrometeor types (presumably due to beamfilling / footprint size).

At higher frequencies, the distribution of BTs associated with profiles that contain hail or either graupel category shows greater 

separation from the distribution of BTs associated with profiles that contain no hydrometeors (i.e., a stronger ice-scattering 

signature) using the high-resolution data from Leppert and Cecil (2015) relative to the distributions using GMI BTs, as expected.

Caveats: The High-Resolution results in Figure 6 are from a very limited sample of severe thunderstorm cases in MC3E.  The 

Lower-resolution results in Figure 5 are from a larger sample that we have looked at much less carefully so far.
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3. Example Cases

Figure 1. Brightness temperatures collected by GMI at a) 10.7 GHz, b) 18.7 GHz, c) 36.5

GHz, f) 89.0 GHz, g) 166.0 GHz, and h) 183.3±7 GHz over the Huntsville, AL WSR-88D radar

(KHTX) on 29 April 2014 near 0650 UTC. The associated composite reflectivity and HID are

shown in d) and e), respectively. The range rings are shown for 50 and 100 km. Note that

data is excluded within 30 km of the radar to ensure adequate radar sampling through a deep

layer, and the reflectivity data is averaged over the GMI resolution.

Figure 2. As in Fig. 1, but valid over the St. Louis, MO WSR-88D radar (KLSX) on 28 April

2014 near 0745 UTC.

 Figure 1 shows a case with both convective and stratiform rain near Huntsville, AL.  Two more intense “cells” are southeast of the radar (most apparent 

in the 36.5-GHz panel) with maximum reflectivity >48 dBZ and significant scattering in 36.5-GHz and higher frequency channels.

 As expected, hail and high density graupel are associated with these convective cores, while rain and low-density graupel are the dominant 

hydrometeor species in the weaker reflectivity regions elsewhere in Fig. 1.

 These convective cells exhibit a clear ice scattering signature at all frequencies ≥36.5 GHz with the lowest BTs observed at 89.0 and 166.0 GHz.

 The case depicted in Fig. 2 near St. Louis shows the trailing stratiform region of a mesoscale convective system with somewhat weaker reflectivity and 

ice scattering than observed in the most intense convection in Fig. 1.

 Nevertheless, hail and graupel are the predominant hydrometeor species shown in Fig. 2e.  Note that even if one radar range gate in the matched 
GMI−radar volume is classified as hail, the application of the hydrometeor hierarchy will assign the entire volume to hail.  Further investigation is 

required.

4. Probability 

Figure 3. Probability of big drops (BD), hail (HL), high density

graupel (HG), low density graupel (LG), rain (RN), wet snow

(WS), aggregates (AG), ice crystals (IC), or drizzle (DZ) being

the dominant hydrometeor type from the hierarchy as a function

of a) 10.7-, b) 18.7-, c) 36.5-, d) 89.0-, e) 166.0-, and f) 183.3±7-

GHz BT as measured by GMI. Data is taken from 268 GPM

overpasses of WSR-88D radars in the southeastern U.S. during

April−October 2014.

Figure 4. Probability of various hydrometeor species (same

species as in Fig. 3) being the dominant species from the

hierarchy as a function of a) 10.7-, b) 19.4-, c) 37.1-, d) 89.0-, e)

165.5-, and f) 183.3±7-GHz BT as measured by AMPR or

CoSMIR on 22 April or 23−24 May 2011 over the KVNX radar.

This figure is adapted from Leppert and Cecil (2015).

 The low end of BTs shown 

in Fig. 3 are generally 

shifted to higher values 

than the low end of the 

BTs in Fig. 4 due to GMI 

having coarser horizontal 

resolution.

 Basic qualitative patterns 

are generally similar 

between Figs. 3 and 4.

 Figure 4 shows that hail, 

high density graupel, and 

associated big drops 

dominate at the lowest 

BTs for each frequency 

(Fig. 3 generally shows the 

same, except there are no 

identified big drops in the 

VN dataset).

 At warmer BTs in Fig. 4, 

wet snow and aggregates 

become most probable, 

especially at higher 

frequencies, while rain 

becomes most probable 

for warmer BTs in Fig. 3.

 These are preliminary 

results – much more 

investigation required!

Figure 5. Brightness temperature probability distribution

functions for vertical profiles that contain hail, high density

graupel, low density graupel, and no hydrometeor types valid at

a) 10.7, b) 18.7, c) 36.5, d) 89.0, e) 166.0, and f) 183.3±7GHz

as measured by GMI. Data is taken from 799 GPM

overpasses of WSR-88D radars over the eastern U.S. in the

VN dataset during April−October 2014. The BT bin size is 10

(5) K to the left (right) of the vertical line in each panel, and the

“none” frequency values have been scaled by 0.5 in order to

limit the plottig range. The minimum BT measured at each

frequency and associated with hydrometeors is indicated by the

number in the top-left corner of each panel.

Figure 6. As in Fig. 5, except valid at a) 10.7, b) 19.4, c)

37.1, d) 89.0, e) 165.5, and f) 183.3±7GHz as measured

by AMPR or CoSMIR on 22 April or 23−24 May 2011 over

the KVNX radar. This figure is adapted from Leppert and

Cecil (2015).

 Figures 5 and 6 show the 

probability of measuring a 

certain BT given the 

presence of hail, graupel, 

etc., whereas Figs. 3 and 4 

show the probability of 

finding a hydrometeor 

species given a particular 

BT.

 The PDFs are not noticably 

different for any of the 

precipitation-ice categories 

at frequencies ≥36.5 GHz in 

Fig. 5 from GMI.  They are 

different in the higher-

reolution airborne data (Fig. 

6).

 At the highest frequencies, 

the distributions for hail and 

both graupel categories 

show greater separation 

from the distribution for the 

none category using MC3E 

data in Fig. 6 relative to what 

is observed in Fig. 5 with 

GMI data.

 Differences between Figs. 5 

and 6 are not surprising 

given horizontal resolution 

differences of the BT data 

used for each figure. 

 We have not worked with the 

VN data (at left) enough yet 

to have a fullunderstanding 

of all appropriate caveats


