BROWN ENGINEERING

@ a.i. solutions

" TELEDYNE




y / .‘. TELEDYNE
' BROWN ENGINEERING

@ a.i. solutions

e System design as an optimization problem
e Often, the desires are out reaching the realities

e What are the key merit functions

e Optical Performance

 Mechanical Performance

 Thermal Performance

 Complexity & Reliability
e What are the constraints

e Mass — available & planned launch vehicles

e Volume - shroud interior volume

* Cost & Schedule

e Risk —technical, schedule, cost and mission success
e How Advanced Mirror Technology Development program

fits in to all this
e Building better tools
* Increasing TRL levels
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Hubble represented the state-of-the art when first
designed, but much of its cost was actually long term
storage. Each component was designed almost
independent of other parts of the satellite and the
primary mirror was only a small portion of the total mass.
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Kepler was cost sensitive and no backup mirror was
available for the primary mirror, so it and it’s support
system were designed to have two rotation positions
for attachment (in the event of damage during
testing).

All the manufacturing and handling equipment were
design simultaneously with the mirror and special
reinforcements added just for tooling.
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This was the first segmented space telescope, and much of the design was done
by different organizations for different assemblies. One of the driving
constraints was the shroud volume of the intended launch vehicle.
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HOW DOES AMTD FIT IN?

The goals of AMTD are to establish the technology
basis for these anticipated projects.

Tools to evaluate the optical, mechanical and thermal
performance efficiently.

Material databases and proven manufacturing
techniques to feed the analysis tools

Databases to establish risks and cost estimates on a
neutral basis.
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* Primary Mirror and Suspension

* Metering Structure

e Secondary Mirror and suspension
e PMA backplane/truss
e Stray-light and Thermal Baffles

e Science Instruments

e Satellite

* Power
e Communications
e Station keeping and pointing

WHAT MAKES UP THE MASS

EVERYONE FIGHTING FOR A LARGER SHARE
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 Here the science dominates the requirements
 Monolithic versus segmented (diffraction)
 Thermal and mechanical stability over time

* On axis versus off axis

e Bigger is almost always better, but not always!
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Has to survive launch environments.
Has to deploy and function on orbit.

Has to survive qualification and ground
testing.

Has to survive manufacture.
Has to survive in stowed configuration

LOADING INCLUDES ACCELERATION, SINUSODAL, RANDOM AND
THERMAL

7/17/2015
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* Response to gradients
e Response to transients
e Temporal stability
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e Science expectations

 Mission life expectations

 Deployment risk (more complex, more risks)
e Manufacturing risks

e Test and alignment risks

e Cost and schedule risks

SCIENCE BUDGETS ARE LIMITED, THE PROJECT(S) WITH THE LOWEST COST
AND RISKS WITH GOOD SCIENCE WILL HAVE THE BEST CHANCE OF FUNDING.
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e Example of imposing a criteria, such as lowest bending mode of the mirror, which is not
difficult for small mirrors to achieve, but impossible for larger mirrors.

e Assumptions, ULE as material, waterjet light-weighted core, frit bonded, limited to current
or reasonable future enhancement capabilities of these techniques.

CRITERIA | 2meter | 4meter | 6meter | 8meter

---.'-----.'--
100 hertz 100 911 106 14908 106 (2)  (2)
PTG 130 231 5727 204 (1) (O @ @

(1) Doubling facesheet thickness (24010 kg) still only increased f=109 hz.
(2) Upper limits of feasible design (32,312 kg) only produced f=66 hz. at 8 meter OD
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