Mars2020 Entry, Descent, and Landing Instrumentation (MEDLI2): Science Objectives and Instrument Requirements

Deepak Bose,¹ Todd White,² Mark Schoenenberger,³ Chris Karlgaard,³ and Henry Wright³

¹NASA Ames Research Center, Moffett Field, CA
²ERC, Inc. Moffett Field, CA
³NASA Langley Research Center, Hampton, VA
Mars Entry Instrumentation

MEDLI2 maintains the same sensor count as MEDLI, but targets different aspects of EDL at a higher data sampling rate.
Impact of MEDLI

- **Improved system performance** using flight data to substantiate reduction in TPS design margins → lower mass or additional capability
- **Reduced risk** by validating vehicle aerodynamics, TPS performance and entry environment
- **Reconstructed aerodynamics** for wind relative attitude and force coefficients
- **Reconstructed as-flown atmospheric density**
- **Flight qualified sensors** for pressure and temperature measurements
MEDLI2 Objectives

• **Backshell Aerothermal Environment**
 – Large uncertainty applied in backshell TPS design
 – Radiative heating predicted to be a contributor
 – Wind tunnel testing and CFD simulations have lower fidelity

• **Supersonic Aerodynamics**
 – Larger uncertainty in supersonic aerodynamics than hypersonic phase (3% vs. 10%)
 – IMU-only based reconstruction does not account for contribution of winds
 – Afterbody pressure contribution to drag based on Viking era pressure model

• **Turbulent Heating Footprint on Forebody**
 – No predictive tool for onset and coverage of turbulent heating
 – Uncertain mechanisms of transition to turbulence

• **Atmospheric Density Reconstruction**
 – For atmosphere reconstruction and evaluation of EDL system performance
MEDLI2 Forebody Thermal Instrumentation

- **Science objectives**: Measure baseline heating, transition to turbulence, turbulent heating footprint, heating augmentation due to fencing at tile gaps

- Forebody thermal instrumentation includes **11 PICA plugs** with embedded thermocouples
 - Two plugs (1-2) with three thermocouples each to measure in-depth thermal response
 - Nine plugs (3-11) with one thermocouple for aerothermal reconstruction

- A combination of Type-S and Type-K TCs
 - Range: -100 to 1800 C
 - Data Rate: 2-8 Hz

- **Post-flight reconstruction target**:
 - Heat flux: ±15 W/cm2
 - Transition to turbulence: 1 sec
MEDLI2 Afterbody Thermal Instrumentation

- **Science objectives:** Measure/reconstruct
 - Aeroheating (reconstructed and direct measurement)
 - RCS interaction (if any)
 - Radiative heating (under consideration)

- Afterbody instrumentation includes **6 SLA-561V thermal plugs**
 - Each plug will have 1 or 2 Type-K thermocouple for aerothermal reconstruction
 - Range: -100 to 1400 C
 - Data Rate: 2-8 Hz

- **3 Heat flux gages** will also be used for fast-response direct heat flux measurements
 - Range: 0-15 W/cm²
 - Data Rate: 16 Hz

- **Post-flight reconstruction target:**
 - Heat flux reconstruction: ±3 W/cm² at 8 Hz
 - Direct heat flux measurement: ±1 W/cm² at 16 Hz
MEDLI2 Forebody Pressure Measurement

- **Science objectives**: Reconstruct
 - wind relative vehicle attitude (supersonic)
 - axial force coefficient (supersonic)
 - as-flown atmospheric density

- **Six pressure transducers** measure surface pressure in the range relevant for supersonic flight
 - Range: 0-1 psia
 - Data Rate: 8 Hz

- **One pressure transducer** to measure stagnation point pressure during hypersonic flight for reconstruction of atmospheric density
 - Range: 0-5 psia
 - Data Rate: 8 Hz

- The “supersonic” port locations are based on a constrained-optimization process to minimize error in the reconstruction of angles of attack and side-slip

- **Post-flight reconstruction target**:
 - Vehicle attitude: ±0.5 degrees
 - Axial force coefficient: ±2%
 - Atmospheric winds: ±10 m/s, Atmospheric density: ±5%
MEDLI2 Afterbody Pressure Measurement

- **Science Objectives:**
 - Improve backshell pressure model
 - Estimate backshell contribution to drag

- **One pressure measurement** port in the afterbody
 - Range: 0-0.1 psia
 - Data Rate: 8 Hz
 - Engagement with suitable vendors ongoing based on responses from industry

- The current port location is defined based on available wind tunnel data and CFD analysis

- Further refinement of the location will occur based on the results of on-going ballistics range test

- **Post-flight reconstruction target:**
 - Measure backshell pressure within 4 Pa
Summary

• EDL instrumentation for Mars-2020 mission (called MEDLI2) is being developed with an extended scope beyond MEDLI

• MEDLI2 will emphasize
 – Backshell aerothermal and TPS
 – Supersonic aerodynamics
 – Forebody turbulent heating footprint
 – Atmospheric density

• Instrument requirements and reconstruction targets have been defined

• Vendors for instrumentation being identified for off-the-shelf sensor technologies

• Sensors selection, performance testing/calibration, and “do-no-harm” demonstration will occur in the next 1-2 years