High Temperature Joining and Characterization of Joint Properties in Silicon Carbide-Based Composite Materials

Michael C. Halbig ¹ and Mrityunjay Singh ²

¹ NASA Glenn Research Center, Cleveland, OH
² Ohio Aerospace Institute, Cleveland, OH

2015 Materials Science & Technology Conference & Exhibition, Columbus, OH, October 4-8, 2015
Outline

- Introduction and Objectives
 - Critical Needs and Benefits
- Ceramic Joining Technologies: Overview
 - Characterization of the paste
 (Particle size effect, conversion, and microstructure)
- Future Plans - Mechanical testing of sub-elements and subcomponents
- Summary/Conclusions
Goals and Objectives

Goals:

Deliver the benefits of ceramics in turbine engine applications: higher temperature capability, and reduced cooling and weight, which contribute to increased efficiency, performance, horsepower, range, and payload, and lower operation costs for future engines.

Objectives:

Develop joining and integration technologies which enable the wider utilization of ceramic matrix composite (CMC) turbine engine components by allowing for the fabrication of complex shaped CMC components and their incorporation within surrounding metal based systems.
Joining and Integration of Ceramics and CMCs for Turbine Engine Components

Approach

- Develop single, multiple, and hybrid interlayer approaches to aid in the joining of CMCs to CMCs and to metals.
- Optimize processing conditions so that joints and parts remain strong and crack free.
- Investigate inter-relations between processing, microstructure, and properties.
- Evaluate the thermal and mechanical properties of the joint.
- Scale-up of processing to larger and more complex shaped sub-components.
- Evaluate joints in relevant conditions which are comparable to engine operating environments.
Joining of singlet vanes to form doublets and joining of vane airfoils to ring sections (for smaller engines) - Allows for a reduction in part count, seals, and leakage

Joining of airfoil and end caps - Easier fabrication compared to a continuous 3-D CMC vane
Potential Applications for Ceramic to Metal Integration

Lean Direct Fuel Injector
Enabling for internal fuel circuit, sensor and actuator integration, and incorporation into metallic fuel system

NASA/Boeing Variable Geometry Chevron

“Chevrons” could deploy on takeoff to reduce jet noise, retract in cruise to reduce drag.

Concept courtesy of Eric Eckstein, University of Bristol, U.K.
Thermally-Actuated, High Temp. Morphing Composites

Isotropic Bimorph- Omnidirectional Moments

Composite Construction Allows General Planforms

High expansion layer
Low expansion layer

Metal, high CTE
UD composite, low CTE along fibers

Courtesy of Eric Eckstein, University of Bristol, U.K.

Inconel 625
Cusil ABA
C/ SiC

Inconel 625
Cusil ABA
C/ SiC
Integration and Joining Technology Development

Ceramic to Ceramic (CMC to CMC) System:

• **Brazing** - liquid metal flows into a narrow gap between the mating surfaces and solidifies to form a permanent bond. *Also for ceramic to metal joining.*

• **High Temperature Reactive Joining** - two step reactive formation of high temperature capable joints using carbon paste and Si infiltration (*ARCJoinT*).

• **Diffusion Bonding** - mating surfaces are pressed together and heated to cause bonding by interdiffusion of the components.

• **Refractory Eutectic Phase Bonding** - melting of a eutectic phase from a solid to a single phase liquid (*REABond*).

Uniform, dense, crack-free joints from all approaches.
High Temperature Joining Approaches

Limitations of Current Joining Approaches

Non-SiC-Based Approach
- Chemical and thermal incompatibility of interlayer and substrate
- Residual thermal stresses => lower strength, microcracking, and debonding
- Low temperature capability than parent material capability
- Formation of intermediate or non-favorable phases

Other SiC-Based Approaches
- Two-step, two-phase processes
- Residual carbon is prone to oxidation leading to porosity
- Residual silicon lowers temp. capability to <2400°F (1316°C)

A new high temperature SiC-based joining approach is needed.
Overview of Pre-ceramic Paste Composition for High Temperature Joints
- Single-step Elevated Temperature Joining (SET)

J5A, J5A Nano 1, J5A Nano 2 - in descending order of SiC particle size
Furnace Weight Loss Studies

Materials:
J5A, J5A Nano 1, and J5A Nano 2 + 10, 20, 30 wt% Silicon

Procedure:

Cure
90°C overnight

Binder burnout
1000°C in Argon

Pyrolysis
1200°C, 1350°C, or 1450°C

Binder Burnout
1000°C in Argon

1200°C - 1450°C in low vacuum (10^{-2} Torr)

1450°C in high vacuum (10^{-8} – 10^{-6} Torr)
Weight Retention of Pre-Ceramic Pastes

Weight retention values are promising for all samples → secondary infiltration steps may not be necessary

Weight loss trends found in furnace weight loss studies similar to TGA data
• All compositions after pyrolysis show a high yield of SiC.
• Vaporization of Si occurs in vacuum due to its high vapor pressure.
Joining of SiC-Based Composites Using Pastes - Perpendicular SA-Tyrannohex with N1+J5A+Si

Perpendicular SA-Tyrannohex with N1+J5A+Si (x1 tape)
Single-Step Elevated Temperature Joining: Higher Temperature Capable C, Si, and SiC-Based Pastes

Approach: 30 mil thick green tapes of SiC, Si, and carbon powders of varying particle sizes as well as several other additives.

Benefits: high temp. capability and one-step SiC formation.

X-Ray Diffraction analysis of three slurry compositions heat treated at 1450°C for 30 min.

<table>
<thead>
<tr>
<th>Composition</th>
<th>SiC</th>
<th>Si</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>J5A+Si</td>
<td>99</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>J5A+N1+Si</td>
<td>91</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>J5A+N2+Si</td>
<td>92</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

High conversion to SiC suggests the compositions will provide one-step SiC formation.

Good initial results with J5A+N1+Si and J5A+N2+Si. Repeat and optimize with J5A+Si for less shrinkage.
Mechanical Testing: In-House Capability for Testing According to ISO 13124

Schematic diagram of cross bonded sample and fixture for **measuring tensile bond strength**

Schematic diagram of cross bonded sample and fixture for **measuring shear bond strength**

Testing in Tension

Results show the need for additional analysis and improved test methods.

Testing in Shear

Failure Location

Stress (MPA) versus location
Mechanical Testing: Single Lap Offset - REABond Joined SA-Tyrannohex

As-processed joint for SA-THX in perpendicular orientation

Strengths of Perpendicular THX Joints

- Perpendicular Tyrannohex with 1 layer Si-Hf
- Perpendicular Tyrannohex with 2 layers Si-Hf

Residual Strength Test
- 350 hr run out at 1200°C and 25 MPa
- tested at 1200°C
- highest strength seen in a SLO test, 135 MPa

Excellent joint stability and strength retention

Single lap offset shear test to be used for in-house screening.
Joining Technology Demonstration
- Sub-element tests in a relevant environment

Goal: Apply joining to sub-elements and sub-components and test to higher TRL in under relevant conditions.

Steps:
• Join coupons to form profiles of vane/blade sub-elements.
• Conduct thermal exposures and evaluate residual strength and damage (microscopy and NDE). Also conduct strength tests on non-exposed sub-element(s).
• Introduce mechanical stress for thermo-mechanical conditions, i.e. 2400°F laser induced thermal gradient exposure. Laser focused at airfoil or joint region.
Conclusions

• Current joining methods have limitations:
 – Use temperatures are limited to <2400°F (1316°C) and much lower
 – Chemical and thermal incompatibility with SiC/SiC CMCs

• The Single-step Elevated Temperature (SET) joining approach offers:
 – No residual C or Si
 – High weight retention and SiC conversion
 – Use temperatures >2400°F
 – Good joint formation observed, some optimization needed

• New test methods are needed to evaluate joining approaches

• The SET joining will be demonstrated to a higher TRL through single-lap offset shear tests and demonstration of joined vane sub-elements in relevant thermo-mechanical engine conditions
Acknowledgements

This work is currently supported by the NASA Transformational Tools and Technologies (TTT) Project of the Transformative Aeronautics Concepts Program