Recent Progress in the Development of a Multifunctional Smart Coating for Autonomous Corrosion Detection and Protection

NASA Corrosion Technology Laboratory, Kennedy Space Center, FL, USA

Research Partner: M. Gillis, M. Blanton, J. Hanna, and J. Rawlins
The University of Southern Mississippi, Hattiesburg, MS, USA

Smart Coatings 2015, February 25-27, Orlando, Florida, USA
Outline

Introduction
- Corrosion Protective Coatings
- Electrochemical Nature of Corrosion
- pH Change and Corrosion
- pH Sensitive Microcapsules
- Smart Coating Response to Corrosion

Encapsulation
- Concept vs Reality
- Hydrophobic Core Microcapsules
- Hydrophilic Core Microcapsules
- Microparticle

Corrosion Indication
- Development and Optimization
- Early Indication of Corrosion
- Indication of Hidden Corrosion
- Fluorescent Corrosion Indicating Coating

Corrosion Inhibition
- Development and Optimization
- Corrosion Protection: Steel
- Corrosion Protection: Al Alloys

Self Healing
- Self Healing Approaches
- Self Healing Coating: 2 Capsules
- Self Healing Coating: 1 Capsule

Summary

Acknowledgement
Introduction
Corrosion Protective Coatings

- **Barrier (passive)**

- **Barrier plus corrosion inhibiting components:**
 - Sacrificial (zinc-rich primers)
 - Corrosion inhibitors (can have detrimental effects on the coating properties and the environment; most expensive additive; subject to progressively stricter environmental regulations)

- **Smart (active)**
Electrochemical Nature of Corrosion

Overall Reaction:

$$2H_2O + O_2 + 2Fe \rightarrow 2Fe^{2+} + 4OH^-$$

Anodic:

$$Fe \rightarrow Fe^{2+} + 2e^-$$

Cathodic:

$$2H_2O + O_2 + 4e^- \rightarrow 4OH^-$$
pH change and Corrosion

Elapsed Time: 0 hours

1.5 hours

4.5 hours

0.5 hours

3 days
pH Sensitive Microcapsule

Microcapsule containing pH indicator (inhibitor, self healing agents)

The shell of the microcapsule breaks down under basic pH (corrosion) conditions

pH indicator changes color and is released from the microcapsule when corrosion starts
Smart Coating Response to Corrosion

1. Corrosion indicators
 - incorporated into coating

2. Corrosion inhibitors

3. Healing agents

Ruptured Microcapsule:
- indicates corrosion
- protects metal from corrosion
- repairs damaged area

Corrosion causes capsule to rupture

Mechanical damage causes capsule to rupture

$\text{O}_2 + \text{H}_2\text{O} \rightarrow \text{OH}^-$

$\text{Fe}^{2+} \rightarrow \text{Fe}^{3+}$
Microcapsule Response to pH Increase
Encapsulation
- Initial concept: a simple pH sensitive microcapsule
- Reality: wide range of active ingredients and various coating systems
- Result: a portfolio of different control delivery systems to fit the needs
- pH sensitive microcapsules, pH sensitive microparticles, and inorganic microcontainers.
- pigment-graded materials with good coating compatibility in free flowing powder forms.
Hydrophobic Core Microcapsules

Interfacial polymerization of oil-in-water microemulsion procedure for making hydrophobic-core microcapsules. Oil is shown in yellow and water in blue.
Hydrophilic Core Microcapsules

Interfacial polymerization of water in oil microemulsion process for hydrophilic-core microcapsules. Oil is shown in yellow and water in blue.
Hydrophilic-core Microcapsules

SEM images of hydrophilic-core microcapsules
Microparticle Formation

1. Addition of active agents in solution
2. Mixing & Ouzo effect
3. Solvent Diffusion & polymerization
4. Further Polymerization
Corrosion Indicating Microparticles

SEM image of microparticles with color changing indicator (left) and with fluorescent indicator (right)
Microparticles with Inhibitors

SEM and EDS of microparticles with corrosion inhibitor phenylphosphonic acid (PPA)
Inorganic Carriers
Microcapsules for Self-healing Coatings

Optical micrographs of spherical and elongated microcapsules for self-healing of mechanical scratches
Corrosion Indication
Development and Optimization: Indication

Oil core microcapsule formulation was developed by interfacial polymerization process.

The pH sensitivity of the microcapsules was tested.

Oil core microcapsule formulation was modified to reduce the capsule size.

Oil core microcapsule containing corrosion indicator pHph (2wt%) was synthesized.

Oil core microcapsule formulation was modified to yield free flowing powder. Corrosion indicator microcapsules were prepared as free flowing powder.

Water core microcapsule formulation was developed by interfacial polymerization process.

Water core microcapsule formulation was modified to reduce microcapsule cluster formation. The new formulation also uses environmentally friendly reagents.

Water core microcapsule formulation was optimized by using a water soluble wall forming prepolymer. The synthesis time was also reduced, and the microcapsule wall properties were improved.

Water core microcapsules containing corrosion indicator pHph (5wt%) were synthesized.

Water core microcapsules were prepared as free flowing powder.

The pH sensitivity of the microcapsules was tested.

MFPTT microparticles with incorporated pHph (30wt%) were synthesized.
Early Indication of Corrosion

Salt immersion test results of panels coated with a clear polyurethane coating loaded with 10% indicator microparticles in their core. The coating detects corrosion in the scribed area at a very early stage (30 seconds) before the appearance of rust is visible (2 hours).
Early Indication of Corrosion
Indication of Hidden Corrosion

Pad 39B MLP-1: Bolt from Victaulic joint on center upper shield

Conceptual illustration of corrosion indication in structural bolts at the launch pad

Indication of hidden corrosion by color change
Indication of Hidden Corrosion

<table>
<thead>
<tr>
<th>System label</th>
<th>Metal Substrate</th>
<th>Coating systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zinc galvanized nut and bolt</td>
<td>Clear urethane coating containing 10% phenolphthalein (phph) microcapsules.</td>
</tr>
<tr>
<td>2</td>
<td>Zinc galvanized nut and bolt</td>
<td>First coated with epoxy, then top coated with clear urethane containing 10% phph microcapsules.</td>
</tr>
<tr>
<td>3</td>
<td>Sand blasted nut and bolt</td>
<td>The ends of the nut and bolt were coated with inorganic zinc coating; the entire nut and bolt was coated with urethane containing 10% phph microcapsules.</td>
</tr>
<tr>
<td>4</td>
<td>Sand blasted nut and bolt</td>
<td>The ends of the nut and bolt were coated with inorganic zinc coating. The entire nut and bolt was coated with epoxy and then top coated with a clear urethane containing 10% phph microcapsules.</td>
</tr>
<tr>
<td>5</td>
<td>Zinc galvanized nut and bolt</td>
<td>The ends of the nut and bolt were coated with urethane containing 10% phph microcapsules.</td>
</tr>
<tr>
<td>6</td>
<td>Zinc galvanized nut and bolt</td>
<td>The ends of the nut and bolt were coated with epoxy and then top coated with urethane containing 10% phph microcapsules.</td>
</tr>
</tbody>
</table>

Coating systems used for hidden corrosion indication testing.

Nut and bolt set up for crevice corrosion testing. The pictures show results after 600 hour of salt fog exposure.
Florescent Corrosion Indicating Coating

- Color changing corrosion indicators: a simple approach
- Florescent corrosion indicators provide very sensitive detection at very low indictor particle loading (0.05-0.5%) in coatings.
Confocal scanning laser microscopy 2D images of fluorescent corrosion sensing coating on steel. Unexposed panel (left) and near scribe after 15 hours of immersion in 5% NaCl (right).
Florescent Corrosion Indicating Coating

Diamond Clad w/ Fluorescein 0:00

1000-1000
0-1000
TECAN reflectance fluorescence spectroscopy scanning composite image on the coated cold rolled steel panel during salt immersion exposure up to 5.5 hours, with an artificial defect in the middle. While the main event is at the defect sites, there are many other corrosion events occurring as early as 1 hour.
Fluorescence corrosion sensing coating for early corrosion detection. TECAN scan image after 5.5 hours salt water immersion testing is in the middle, while a picture and optical microscopy images (100X) of the panel after 15 hours of salt water immersion testing are shown on the left and right.
Florescent Corrosion Indicating Coating

Laser Scannin Microscopy (LSM) confocal fluorescent microscope image
Corrosion Inhibition
Oil-core microcapsules developed using interfacial polymerization. The pH sensitivity of the microcapsules was tested. Oil-core microcapsules with organic and some inorganic inhibitors, such as CeCl₃, were synthesized. Oil-core microcapsules optimized to reduce the emulsion stability for easy microcapsule separation. This process yields a free-flowing powder.

Water-core microcapsule developed using interfacial polymerization. Water-core microcapsule modified to reduce microcapsule cluster formation. The new formulation uses environmental friendly reagents. Various water soluble inhibitors were encapsulated: cerium nitrate, sodium molybdate, sodium phosphate, calcium metaborate, and phenyl phosphonic acid.

Water core microcapsule synthesis was optimized by using a water soluble wall forming pre-polymer. The synthesis time was also reduced, and the microcapsule wall properties were improved.

Different inorganic inhibitors were encapsulated at different concentrations. These microcapsules were then heat treated at different conditions to achieve various release rates. They were incorporated into coatings for testing.

Corrosion tests showed the need to control the permeability of the capsule wall to avoid the leaching of inhibitor into coating when the encapsulated inhibitor concentration is too high. To address this problem, MFPTT microparticles containing various corrosion inhibitors were synthesized.
Corrosion Protection: Steel

Improve Existing System: Inorganic Zinc
- Inorganic zinc is watched for environmental impact.
- Provides excellent protection when steel is sand-blasted to white metal - difficult for hard to access area.
- Inhibitor particles can improve adhesion - reduce cost and improve protection.

Develop New System: Polymer Coating
- Environmental friendly corrosion protective coating through controlled releasing inhibitors.
- Partner with commercial companies for product development.
- Improved protection for steel.

Next Generation: Waterborne
- While solvent based coatings still dominate heavy protection areas, the next generation will be solvent free systems: waterborne, powder coating.
- New particle formulas are being developed to target these systems.

Corrosion Protection Function Development

Controlled release inhibitors have been used in three areas of coating development for steel protection: improved inorganic zinc, new Cr free organic coating, and effective solvent-free coatings.
Organic coating formulations being developed with industrial partners for steel protection. Steel panels after accelerated cyclic corrosion testing (left), and coated steel panels being tested at beach atmospheric testing.
New inorganic delivery systems being developed (left) show great promise for improving corrosion protection of waterborne system (right).
Corrosion Protection: Al Alloys

<table>
<thead>
<tr>
<th>Method</th>
<th>System</th>
<th>Al 7XXX (0.3% Cu)</th>
<th>Al7XXX (0.6% Cu)</th>
<th>Al7XXX (0.9% Cu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual</td>
<td>Without Inhibitor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>With Inhibitor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEM</td>
<td>without inhibitor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>With inhibitor</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Further testing and development to extend the protection benefits to Al alloys.
- Some encapsulated inhibitors proven to be effective for protecting Al alloy substrates as well.
- The inhibitor particles will be used to develop Cr free paint for different Al alloys.
Self Healing
Self-Healing Approaches

Several self healing coating systems have been developed, including 1 capsule and 2 capsule healing systems, as well as self sealing system using flowable polymers. Elongated microcapsules were also developed for thin film applications. So far, one capsule healing system performs the best and provides significant improvement for epoxy coating on steel substrate.
Self Healing Coating: 2 Capsules

Control and 2-Part siloxane capsule system (siloxane and tin catalyst), blended into an epoxy primer coating, after 700 hrs of salt fog exposure testing. Coating thickness is about 400µm and microcapsule content is 20 wt%.

Siloxane (up) and tin catalyst (down) microcapsules
The authors are developing a smart coating, based on pH-sensitive microcontainers, for early corrosion detection, corrosion inhibition, and self-healing.

The corrosion indicating function has been tested by incorporating encapsulated color changing and fluorescent indicators into coatings of interest. Salt immersion test results showed that the coating detects corrosion at a very early stage before the appearance of rust is visible.

Salt fog test results showed the effectiveness of the encapsulated corrosion indicator in detecting hidden corrosion in an epoxy coating with urethane as a top coat.

Salt fog test results showed the effectiveness of an encapsulated corrosion inhibitor.

Salt fog test results showed the effectiveness of an encapsulated self-healing system.