Complementary Aerodynamic Performance Datasets for Variable Speed Power Turbine Blade Section from Two Independent Transonic Turbine Cascades

The 22nd International Symposium on Air Breathing Engines
ISABE2015-20163
Phoenix, Arizona
October 25-30, 2015

Ashlie B. Flegel, NASA Glenn Research Center
Gerard E. Welch, NASA Glenn Research Center
Paul W. Giel, Vantage Partners, LLC
Forrest E. Ames, University of North Dakota
Jonathon A. Long, University of North Dakota
Motivation for VSPT Technology

Principal Challenge
Variability in main-rotor speed:
- 650 ft/s VTOL
- 350 ft/s at Mn 0.5 cruise

Approaches
- Variable gear-ratio transmission
- Variable-speed power turbine (VSPT)
- or combination

VSPT Challenges
- Efficiency at high cruise work factor
 \[\Delta h_0 = \Delta (u_q \cdot U) \approx \text{const. at cruise and takeoff} \]
 \[\Delta h_0/U^2 \text{ cruise is } 3.5 \times \text{takeoff} \]
- 40° to 60° incidence angle variations in all blade row (and EGV) with 50% speed change
- Operation at low Re – transitional flow
 - 28 to 30 k-ft cruise leads to 60 k < \(Re_{cx,2} < 100 \) k
 - Transitional flow

Large Civil Tilt-Rotor
<table>
<thead>
<tr>
<th>TOGW</th>
<th>108k lbm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payload</td>
<td>90 PAX</td>
</tr>
<tr>
<td>Engines</td>
<td>4 × 7500 SHP</td>
</tr>
<tr>
<td>Range</td>
<td>> 1,000 nm</td>
</tr>
<tr>
<td>Cruise speed</td>
<td>> 300 kn</td>
</tr>
<tr>
<td>Cruise altitude</td>
<td>28 – 30 kft</td>
</tr>
</tbody>
</table>

VSPT Approach and Objectives

- Document blade performance over wide incidence angle range, a wide Reynolds number range, and at mission-relevant Mach numbers.
 - NASA’s initial test conducted at low inlet turbulence in order to admit transitional flow.
 - NASA subsequently repeated tests at higher, engine-relevant inlet Tu (8%-15%).
- UND facility smaller scale, able to achieve lower Reynolds numbers.
- UND also measured blade surface heat transfer for transition locations.

Blade Details
- Stagger angle: 20.4°
- Uncovered turning: 19.5°
- Zweifel coefficient, Zw_{des}: 1.06
- Solidity, $C_x / Pitch$: 1.39
NASA Facility Operating Envelope

Inlet Angle, β_i

<table>
<thead>
<tr>
<th>Angle</th>
<th>i</th>
<th>Zw</th>
<th>Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.0°</td>
<td>15.8°</td>
<td>1.22</td>
<td>NASA</td>
</tr>
<tr>
<td>45.0°</td>
<td>10.8°</td>
<td>1.13</td>
<td>NASA</td>
</tr>
<tr>
<td>40.0°</td>
<td>5.8°</td>
<td>1.06</td>
<td>both</td>
</tr>
<tr>
<td>34.2°</td>
<td>0.0°</td>
<td>0.99</td>
<td>both</td>
</tr>
<tr>
<td>28.0°</td>
<td>−6.2°</td>
<td>0.92</td>
<td>both</td>
</tr>
<tr>
<td>18.1°</td>
<td>−16.1°</td>
<td>0.82</td>
<td>both</td>
</tr>
<tr>
<td>8.2°</td>
<td>−26.0°</td>
<td>0.74</td>
<td>both</td>
</tr>
<tr>
<td>−2.5°</td>
<td>−36.7°</td>
<td>0.65</td>
<td>both</td>
</tr>
<tr>
<td>−11.8°</td>
<td>−46.0°</td>
<td>0.58</td>
<td>both</td>
</tr>
<tr>
<td>−16.8°</td>
<td>−51.0°</td>
<td>0.53</td>
<td>both</td>
</tr>
</tbody>
</table>

National Aeronautics and Space Administration
Experimental Facilities

NASA Transonic Turbine Blade Cascade

Flow Parameters

<table>
<thead>
<tr>
<th>Exit Re_{Cx}</th>
<th>Exit Ma_{ls}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.12×10^6 (4.0•Re_b)</td>
<td>0.72</td>
</tr>
<tr>
<td>1.06×10^6 (2.0•Re_b)</td>
<td>0.72</td>
</tr>
<tr>
<td>5.30×10^5 (1.0•Re_b)</td>
<td>0.72</td>
</tr>
<tr>
<td>5.30×10^5 (1.0•Re_b)</td>
<td>0.35</td>
</tr>
<tr>
<td>2.12×10^5 (0.4•Re_b)</td>
<td>0.35</td>
</tr>
</tbody>
</table>

UND Compressible Flow Facility

Flow Parameters

<table>
<thead>
<tr>
<th>Exit Re_{Cx}</th>
<th>Exit Ma_{ls}</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.27×10^5 (1.00•Re_b)</td>
<td>0.72</td>
</tr>
<tr>
<td>2.12×10^5 (0.40•Re_b)</td>
<td>0.72</td>
</tr>
<tr>
<td>6.12×10^4 (0.12•Re_b)</td>
<td>0.72</td>
</tr>
<tr>
<td>4.64×10^4 (0.09•Re_b)</td>
<td>0.72</td>
</tr>
<tr>
<td>5.27×10^5 (1.00•Re_b)</td>
<td>0.35</td>
</tr>
<tr>
<td>2.12×10^5 (0.40•Re_b)</td>
<td>0.35</td>
</tr>
</tbody>
</table>
Test Configurations

NASA

- $C_x = 7.109\,^\circ$
- δ_1
- $span = 6.000\,''$

UND

- Pressure Surface
- Bleed Blocks
- Streamlines $\beta = 40°$
- $\beta = -17°$
- Exit Survey Plane
- Tailboard
- Exit P_s
- Inlet P_s
- Suction Surface
- Bleed Blocks

Diagram:
- Sta. 0
- Sta. 2
- Passage 3
- Passage 4
- Passage 5
- Passage 6
- $y/pitch$
- $x/C_x = 0.415$
- $x/C_x = 1.070$
Blade and Inlet Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NASA Value</th>
<th>UND Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial Chord, C_x [inch]</td>
<td>7.109</td>
<td>2.673</td>
</tr>
<tr>
<td>True Chord [inch]</td>
<td>7.655</td>
<td>2.878</td>
</tr>
<tr>
<td>Pitch, S [inch]</td>
<td>5.119</td>
<td>1.925</td>
</tr>
<tr>
<td>Span, H [inch]</td>
<td>6.000</td>
<td>2.000</td>
</tr>
<tr>
<td>Solidity, C_x/S</td>
<td>1.389</td>
<td>1.388</td>
</tr>
<tr>
<td>Aspect Ratio, H/C_x</td>
<td>0.844</td>
<td>0.748</td>
</tr>
<tr>
<td>Throat Dimension [inch]</td>
<td>2.868</td>
<td>1.062</td>
</tr>
<tr>
<td>Stagger Angle [deg.]</td>
<td>20.35°</td>
<td>20.35°</td>
</tr>
<tr>
<td>Inlet Metal Angle [deg.]</td>
<td>34.2°</td>
<td>34.2°</td>
</tr>
<tr>
<td>Uncovered Turning deg.</td>
<td>19.47°</td>
<td>19.47°</td>
</tr>
<tr>
<td>Exit Metal Angle [deg.]</td>
<td>$-55.54°$</td>
<td>$-55.54°$</td>
</tr>
</tbody>
</table>

Inlet Flow Parameters

<table>
<thead>
<tr>
<th></th>
<th>NASA</th>
<th>UND</th>
<th>Inlet Tu</th>
<th>δ (span/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>low Tu</td>
<td>0.24% - 0.40%</td>
<td>39% - 56%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>high Tu</td>
<td>8% - 15%</td>
<td>19% - 29%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>NASA</th>
<th>UND</th>
<th>Inlet Tu</th>
<th>δ (span/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>low Tu</td>
<td>0.32% - 0.42%</td>
<td>3% - 10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>high Tu</td>
<td>3.4% - 4.5%</td>
<td>7% - 11%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: NASA inlet boundary thickness estimated from inlet Reynolds number scaling. UND inlet boundary layer thickness estimated from power-law assumption from θ measurements.
BLADE LOADING MEASUREMENTS
\[C_{P_s} = \frac{P - \bar{P}_2}{P_{t,1} - \bar{P}_2} \]

\[Re_{C_{x,2}} = 0.4 \times Re_b \]

\[Ma_{2,i} = 0.72 \]

Low \(Tu \)

High \(Tu \)

\[\beta_1 = 40.0^\circ \]

\[i = +5.8^\circ \]

(Cruise)
Blade Loading – Highest Negative Incidence

\(\beta_1 = -16.8^\circ \)

\(i = -51.0^\circ \)

\(\alpha \)

\(\delta \)

\(C_{p_s} = \frac{P - P_2}{P_{t,1} - P_2} \)

\(Re_{C_{x,2}} \) \(Ma_{2,i} \)

\(4.0 \times Re_b \) \(0.72 \)

\(2.0 \times Re_b \) \(0.72 \)

\(1.0 \times Re_b \) \(0.72 \)

\(1.0 \times Re_b \) \(0.35 \)

\(0.4 \times Re_b \) \(0.35 \)

\(x / C_x \) \(x / C_x \)
Blade Loading – Effects of Negative Incidence

\[Cp_s = \frac{P - P_2}{P_{t,1} - P_2} \]

\[Re_{C_x,2} = 4.0 \times Re_b \]
\[Ma_{2,i} = 0.72 \]

Low Tu

\[Re_{C_x,2} = 0.4 \times Re_b \]
\[Ma_{2,i} = 0.35 \]

High Tu

Facility Match Point

Determination of PS cove separation

\[i = -51.0^\circ \]

\[\beta_1 = -16.8^\circ \]

\[i = -51.0^\circ \]
HALF-SPAN FLOWFIELD RESULTS
Total Pressure Coefficient Contours and Secondary Flow Vectors

NASA

$Re_b; \ M_{2,i} = 0.72; \ low \ Tu$

$Re_{C_{x,s}} = 0.09 \cdot Re_b; \ M_{2,i} = 0.72; \ high \ Tu$

$i = -36.7^\circ$

(Takeoff)

$i = +5.8^\circ$

(Cruise)

$C_p_t, \ \Omega = \frac{P_{t,1} - P_t}{P_{t,1} - P_2}$

UND

$i = -36.7^\circ$

(Takeoff)

$i = +5.8^\circ$

(Cruise)
Pitchwise Integrated Data, $i = +5.8^\circ$ (Cruise)

(a) C_p (Area Averaged)

(b) C_p (Area Averaged)

(c) β [deg] (Mass Averaged)

(d) γ [deg] (Mass Averaged)

$Re_{Cx,2}$ $M_{2,i}$

- 527,000 0.72
- 212,000 0.72
- 61,250 0.72
- 46,400 0.72
- 212,000 0.35

Und.
MIDSPAN HEAT TRANSFER MEASUREMENTS
Midspan Stanton Number Distributions

influence of Reynolds number at high Tu

\[i = +5.8° \text{ (Cruise)} \]

\[i = -36.8° \text{ (Takeoff)} \]

Influence of Reynolds number at high Tu:

- **Laminar Flow**
- **Transitional Flow**

PS and **SS**

- Inflection indicates laminar separation.
- Slope reversal indicates transition start.

Separation and downstream reattachment.
MIDSPAN EXIT SURVEYS
Effects of Reynolds Number and Mach Number at $i = +5.8^\circ$

Low Tu

- $0.09\cdot Re_b$ with $Ma_{2,i} = 0.72$
- $0.12\cdot Re_b$ with $Ma_{2,i} = 0.72$
- $0.40\cdot Re_b$ with $Ma_{2,i} = 0.72$
- $1.00\cdot Re_b$ with $Ma_{2,i} = 0.72$

High Tu

- $0.09\cdot Re_b$ with $Ma_{2,i} = 0.72$
- $0.12\cdot Re_b$ with $Ma_{2,i} = 0.72$
- $0.40\cdot Re_b$ with $Ma_{2,i} = 0.72$
- $1.00\cdot Re_b$ with $Ma_{2,i} = 0.72$

UND
Effects of Reynolds Number and Mach Number at $i = -51.0^\circ$

Low Tu

High Tu

$$Cp_t = \frac{P_{t,1} - P_t}{P_{t,1} - P_2}$$

- $Re_{Cx,2}$
- $Ma_{2,i}$

<table>
<thead>
<tr>
<th>Re_{b}</th>
<th>Ma</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>0.72</td>
</tr>
<tr>
<td>2.0</td>
<td>0.72</td>
</tr>
<tr>
<td>1.0</td>
<td>0.62</td>
</tr>
<tr>
<td>1.0</td>
<td>0.35</td>
</tr>
<tr>
<td>0.4</td>
<td>0.35</td>
</tr>
</tbody>
</table>

NASA
Effects of Reynolds Number at $Ma_{2,i} = 0.72$, $i = -51.0^\circ$

UND

$Re_{Cx,2}$

- $0.09 \cdot Re_b$
- $0.12 \cdot Re_b$
- $0.40 \cdot Re_b$
- $1.00 \cdot Re_b$

High Tu

$\beta_1 = -16.8^\circ$

$i = -51.0^\circ$
Effects of Inlet Flow Angle

\[C_{p_t} = \frac{P_{t,l} - P_t}{P_{t,l} - P_2} \]

\[Re_{C_x,2} = 5.30 \times 10^5 \ (1.0 \cdot Re_b) \; ; \quad M_2 = 0.72 \; ; \quad \text{Low Tu} \]
Effects of Inlet Flow Angle

$Re_{C_{x,2}} = 4.64 \times 10^4 (0.09 \cdot Re_b)$; \quad $M_2 = 0.72; \quad$ High Tu
LOSS BUCKETS
Half-Span Average Loss Buckets

Low Tu

High Tu

Facility Re/Re_b $M_{2,i}$

\triangle UND 0.09 0.72

\triangle UND 0.12 0.72

\triangle UND 0.40 0.72

\triangle UND 1.00 0.72

\bigcirc NASA 1.00 0.72

\bigcirc NASA 0.40 0.35

Ω, $C_p t$

incidence, i [deg]
Midspan Loss Buckets

Low Tu

High Tu

Facility Re/Re_b $M_{2,i}$

NASA: solid = passage 4
open = passage 5
Summary

• Complementary facilities provided data over a wider range of flow conditions:
 – NASA’s larger scale provided higher Reynolds number data;
 – UND’s smaller scale provided lower Reynolds number data and match points.

• Data highlighted the effects of:
 – Reynolds number;
 – Exit Mach number;
 – Inlet turbulence levels;
 – Wide incidence range;
 – Relative inlet boundary layer thickness;

• On the following:
 – Blade loading;
 – Wake profiles;
 – Blade row loss levels;
 – Blade row turning levels;
 – Blade surface boundary layer state;
 – Exit flow field characteristics.
Midspan Loss Buckets

Low Tu

High Tu

\[\text{Facility } Re/Re_b, M_{2,i} \]

- **Low Tu**
 - UND: 0.09, 0.72
 - UND: 0.12, 0.72
 - UND: 0.40, 0.72
 - UND: 1.00, 0.72
 - NASA: 4.00, 0.72
 - NASA: 2.00, 0.72
 - NASA: 1.00, 0.72
 - NASA: 1.00, 0.35
 - NASA: 0.40, 0.35

- **High Tu**
 - UND: 0.09, 0.72
 - UND: 0.12, 0.72
 - UND: 0.40, 0.72
 - UND: 1.00, 0.72
 - NASA: 4.00, 0.72
 - NASA: 2.00, 0.72
 - NASA: 1.00, 0.72
 - NASA: 1.00, 0.35
 - NASA: 0.40, 0.35

NASA: solid = passage 4, open = passage 5
Midspan Loss Scaling

Low Tu

$Re^{-0.5}$ Scaled Loss Bucket

<table>
<thead>
<tr>
<th>$Re_{C_x,2}$</th>
<th>Re_b</th>
<th>$M_{2,j}$ passage</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>0.72</td>
<td>4</td>
</tr>
<tr>
<td>4.0</td>
<td>0.72</td>
<td>5</td>
</tr>
<tr>
<td>2.0</td>
<td>0.72</td>
<td>4</td>
</tr>
<tr>
<td>2.0</td>
<td>0.72</td>
<td>5</td>
</tr>
<tr>
<td>1.0</td>
<td>0.72</td>
<td>4</td>
</tr>
<tr>
<td>1.0</td>
<td>0.72</td>
<td>5</td>
</tr>
<tr>
<td>1.0</td>
<td>0.35</td>
<td>4</td>
</tr>
<tr>
<td>1.0</td>
<td>0.35</td>
<td>5</td>
</tr>
<tr>
<td>0.4</td>
<td>0.35</td>
<td>4</td>
</tr>
<tr>
<td>0.4</td>
<td>0.35</td>
<td>5</td>
</tr>
</tbody>
</table>

High Tu

$Re^{-0.1}$ Scaled Loss Bucket

<table>
<thead>
<tr>
<th>$Re_{C_x,2}$</th>
<th>Re_b</th>
<th>$M_{2,j}$ passage</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>0.72</td>
<td>4</td>
</tr>
<tr>
<td>4.0</td>
<td>0.72</td>
<td>5</td>
</tr>
<tr>
<td>2.0</td>
<td>0.72</td>
<td>4</td>
</tr>
<tr>
<td>2.0</td>
<td>0.72</td>
<td>5</td>
</tr>
<tr>
<td>1.0</td>
<td>0.72</td>
<td>4</td>
</tr>
<tr>
<td>1.0</td>
<td>0.72</td>
<td>5</td>
</tr>
<tr>
<td>1.0</td>
<td>0.35</td>
<td>4</td>
</tr>
<tr>
<td>1.0</td>
<td>0.35</td>
<td>5</td>
</tr>
<tr>
<td>0.4</td>
<td>0.35</td>
<td>4</td>
</tr>
<tr>
<td>0.4</td>
<td>0.35</td>
<td>5</td>
</tr>
</tbody>
</table>
Ainley-Mathieson Midspan Loss Scaling

Low Tu

High Tu

![Graph showing Ainley-Mathieson Midspan Loss Scaling](image)

<table>
<thead>
<tr>
<th>Re_{Cx}</th>
<th>Re_b</th>
<th>$M_{2,i}$</th>
<th>Passage</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>0.72</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>0.72</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>0.72</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>0.72</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.72</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.72</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.35</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.35</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>0.35</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>0.35</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

www.nasa.gov
Exit Flow Angles

Low Tu

$i = +10.8^\circ$

High Tu

$i = +10.8^\circ$

$i = -16.1^\circ$

$i = -51.0^\circ$
Average Exit Flow Angle

Low Tu

High Tu

$$\Delta \beta_2 = \beta_2 + 55.54^\circ$$