
(Preprint) AAS XX-XXX

LINEAR COVARIANCE ANALYSIS FOR PROXIMITY OPERATIONS
AROUND ASTEROID 2008 EV5

Cinnamon A. Wright∗, Sagar Bhatt†, David Woffinden‡, Matthew Strube§, Chris
D’Souza¶

The NASA initiative to collect an asteroid, the Asteroid Robotic Redirect Mission (ARRM),
is currently investigating the option of retrieving a boulder from an asteroid, demonstrat-
ing planetary defense with an enhanced gravity tractor technique, and returning it to a lunar
orbit. Techniques for accomplishing this are being investigated by the Satellite Servicing
Capabilities Office (SSCO) at NASA GSFC in collaboration with JPL, NASA JSC, LaRC,
and Draper Laboratory, Inc. Two critical phases of the mission are the descent to the boulder
and the Enhanced Gravity Tractor demonstration. A linear covariance analysis is done for
these phases to assess the feasibility of these concepts with the proposed design of the sensor
and actuator suite of the Asteroid Redirect Vehicle (ARV). The sensor suite for this analysis
includes a wide field of view camera, LiDAR, and an IMU. The proposed asteroid of interest
is currently the C-type asteroid 2008 EV5, a carbonaceous chondrite that is of high interest
to the scientific community. This paper presents an overview of the linear covariance anal-
ysis techniques and simulation tool, provides sensor and actuator models, and addresses the
feasibility of descending to the surface of the asteroid within allocated requirements as well
as the possibility of maintaining a halo orbit to demonstrate the Enhanced Gravity Tractor
technique.

INTRODUCTION

The Asteroid Robotic Redirect Mission is evaluating two different options to fulfill the primary goal of
redirecting a small asteroid or boulder and inserting it into a lunar orbit. Option A is to target and capture
a ten-meter class asteroid (up to 1000 metric tons,) whereas Option B is to target a larger asteroid, collect a
two- to four-meter boulder (up to 70 metric tons) from the surface, and perform a planetary defense demon-
stration.1 Techniques for accomplishing this are being investigated by the Satellite Servicing Capabilities
Office (SSCO) at NASA GSFC in collaboration with JPL, NASA JSC, LaRC, and Draper Laboratory, Inc.
The planetary defense phase consists of an Enhanced Gravity Tractor (EGT) demonstration, which uses the
gravitational force of the spacecraft and boulder to deflect the orbit of the asteroid. This concept was first
proposed by Lu and Love in 2005.2 A follow-on mission is being planned to then send astronauts to study the
asteroid while it is in orbit around the moon. Previous work was done to develop a similar mission concept for
Itokawa.3 The focus of this paper will be to assess the feasibility of Option B given the current configuration
for asteroid 2008 EV5.

Two critical phases of the mission are the descent to the surface of the asteroid and the planetary defense
demonstration. A linear covariance analysis is performed for each of these phases. The next section gives a
brief overview of linear covariance (LinCov) analysis and the tool utilized in this research. Then an overview
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of the dynamics as well as the sensor and actuator models is presented. Finally the concept of operations,
control logic, and results are discussed for each flight phase.

LINEAR COVARIANCE ANALYSIS OVERVIEW

In general, to perform the necessary analysis and evaluation of a GN&C system, there are several key
variables of interest, including environment dispersions δx, navigation dispersions δx̂, actual navigation
error δe, and onboard navigation error δê. These variables characterize the system’s performance and are
used to develop and validate mission objectives and requirements.4 Extensive effort and resources are often
allocated for the very purpose of producing and analyzing the quantities of these system parameters. For this
paper, they are instrumental in characterizing the overall system and navigation performance for descending
to the asteroid’s surface and demonstrating the enhanced gravity tractor concept. This section is dedicated
to formally defining these metrics and summarizing the analysis techniques and simulation tools adopted for
obtaining them.

Performance Metric Definitions

The environment dispersions are defined as the difference between the environment state x and the nominal
state x̄. The environment state is an (n× 1) vector that represents the true or actual state. The nominal state
is also an (n × 1) vector that represents the desired or reference state. The covariance of the environment
dispersions, D, indicates how precisely the system can follow a desired trajectory.

δx
∆
= x− x̄, D = E

[
δxδxT

]
(1)

The environment (or true) dispersions are often referred to as simply dispersions (e.g., trajectory dispersions,
position dispersions, relative dispersions).

The navigation dispersions are defined as the difference between the navigation state x̂ and the nominal
state. The navigation state is an (n̂× 1) vector that represents the estimated state.

δx̂
∆
= x̂−Nx̄, D̂ = E

[
δx̂δx̂T

]
(2)

The matrix N is an (n̂× n) mapping matrix that defines the estimated state in terms of the true and nominal
state. It typically cancels the attitude rate state when gyro measurements are incorporated in lieu of an angular
rate estimate. An inverse mapping takes the estimated state to the true state, represented with an (n×n̂) matrix
NT. The covariance of the navigation dispersions, D̂, reflect how precisely the onboard system thinks it can
follow a prescribed reference trajectory.

The true navigation error is the difference between the environment and navigation states. It is also the
difference between the environment and the navigation dispersions.

δe
∆
= Nx− x̂ = Nδx− δx̂, P = E

[
δeδeT

]
(3)

The covariance of the true navigation error, P, characterizes how precisely the onboard navigation system can
determine the actual state. The onboard navigation error is never computed but is used to develop the onboard
navigation filter equations. It is defined as the difference between the design state, x, and the navigation state.

δê
∆
= x− x̂, P̂ = E

[
δêδêT

]
(4)

The covariance of the onboard navigation error, P̂, shows how precisely the onboard navigation system
thinks it can determine the actual state. The performance of the onboard navigation system is determined by
comparing P̂ to the actual navigation performance P. It is the covariances of the true dispersions, navigation
dispersions, true navigation error, and the onboard navigation error that are ultimately used to analyze and
assess the performance of a proposed GN&C system.
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Obtaining the Performance Metrics

A common approach to obtain these performance metrics is to use a Monte Carlo simulation as shown in
Figure 1, where the sample statistics of hundreds or thousands of runs are used to numerically compute the
desired covariance matrices.

D =
1

N − 1

∑
δxδxT D̂ =

1

N − 1

∑
δx̂δx̂T

P =
1

N − 1

∑
δeδeT

This same statistical information can be obtained using linear covariance analysis techniques5, 6, 7, 8 by
directly propagating, updating, and correcting an augmented state covariance matrix C,

C = E
[
δXδXT

]
(5)

where the augmented state δXT = [δxT δx̂T] consists of the true dispersions and the navigation dispersions.
Notice that by simply pre- and post-multiplying the augmented state covariance matrix by the following
matrices, the covariance matrices for the trajectory dispersions, navigation dispersions, and the navigation
error can be obtained.

D =
[
In×n, 0n×nN

T
]
C
[
In×n, 0n×nN

T
]T

D̂ = [ N0n×n, In̂×n̂ ]C [ N0n×n, In̂×n̂ ]
T

P = [ NIn×n, −In̂×n̂ ]C [ NIn×n, −In̂×n̂ ]
T

Consequently, Monte Carlo and linear covariance analysis techniques provide a complimentary analysis pack-
age since they each generate the same statistical information using different approaches. The strengths and
weaknesses of one technique often offset the other. Such is the case when developing and analyzing the
preliminary trajectory design and concept of operations for close-proximity asteroid operations.

Figure 1. GN&C Performance Metrics in a Generic Monte Carlo Simulation4

SIMULATION OVERVIEW

For this preliminary design phase and feasibility study, a linear covariance analysis tool is utilized. Minor
adjustments are made to a previously developed rendezvous and docking LinCov simulation8, 9 by including
the gravitational attraction between both the target (asteroid) and chaser (ARV) bodies, which is typically
neglected in rendezvous scenarios between two orbiting vehicles. For this simulation, the absolute states of
the ARV and the target asteroid are modeled in the Sun-Centered Inertial reference frame. The asteroid 2008
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EV5 is considered in this paper. It has a mass of mt=1.05E+11 kg,10 a gravitational parameter of 7 m3/s, and
a radius of 200 m. The asteroid trajectory and initial position and velocity is obtained from a Horizons .bsp
file.11 The initial attitude is qt = [ -0.1812, -0.9587, 0.1929, 0.1039], and the asteroid rotates about its north
pole with a four hour period. The asteroid inertia, Jt, has moments of inertia [4.42855, 4.48630, 4.76455]
1015 kg·m2 computed using dimensions from Reference 10 and zero products of inertia.

The ARV mass is mc=9000 kg, and ARV inertia, Jc, has moments of inertia [81886.5, 120382.5, 117450]
kg·m2 and zero products of inertia. The simulation starts on December 31, 2023, and uses a fourth-order
Runge-Kutta method with a 1 s time step. A spherical gravity field and J2000 reference frame centered at the
Sun are utilized.The relative initial state in Asteroid-Centered Inertial reference frame is a position of [-152.85
-158.54 333.91] m and a velocity of [-7.161 85.66 37.397] mm/s with and initial attitude of qc =[0.1988,
-0.0032, -0.9578, -0.2076]. The relative states are estimated using a suite of sensors described later in this
section. The relative 3σ uncertainty in the initial states is as follows: 10 m in position, 5 mm/s in velocity,
1 deg in attitude, 1 arcsec/s in attitude rate. The 3σ process noise is 1.1727E-6 m/s/

√
s for translation and

0.001E-9 rad/
√

s for rotation. The translational and rotational maneuver execution errors are given in Tables
4 and 5. The concept of operations for each phase will be discussed in more detail later.

Dynamic Modeling

The asteroid rendezvous simulation models include the chaser and target translation and rotational dynam-
ics; disturbance accelerations and torques; strap-down inertial measurement units (IMUs), optical navigation
camera, and FPOSE (from Flash LiDAR pose) measurements; and the torques and velocity changes gener-
ated by momentum wheels and thrusters. The truth model state is defined by 13 target states xt, 13 chaser
states xc, and parameter states associated with various aspects of the sensors used onboard the chaser xp.
The 13 asteroid target states include the inertial position and velocity vectors, the quaternion defining the
orientation of the target with respect to the inertial frame, and the target’s angular rate coordinatized in the
target reference frame. Similarly, the 13 chaser states are inertial position and velocity, the inertial-to-body
quaternion, and angular rate. The k parameter states such as the sensor or actuator biases, misalignments,
scale factor terms, and other error sources are modeled as first-order Markov processes with time constants,
τk.

x = [xt; xc; xp]
T (6)

xt =
[
rt; vt; q

t
i; ω

t
t

]T
xc = [rc; vc; q

c
i ; ω

c
c]
T

xp = [xp1; xp2; ...; xpk]
T (7)

The dynamics for the chaser, target, and parameter states are defined as,

ṙt = vt (8)
v̇t = gt + ηat (9)

˙̄qti =
1

2
ωtt ⊗ q̄ti (10)

ω̇tt = J−1
t

[
τ tg − ωtt × Jtω

t
t

]
+ ηαt

(11)

ṙc = vc (12)
v̇c = gc + actrl + ηac (13)

˙̄qci =
1

2
ωcc ⊗ q̄ci (14)

ω̇cc = J−1
c

[
τ cctrl + τ cg − ωcc × Jcω

c
c

]
+ ηαc

(15)
ẋpk = −xpk/τk + ηpk (16)

where Jt and Jc are the target and chaser inertia matrices, respectively. The accelerations due to gravity
acting on the target and chaser vehicles, gt and gc, are based on multi-body point-mass gravity terms. The
gravitational torques, τ tg and τ cg , are derived from Wertz.12 The control inputs, actrl and τ cctrl, are the
accelerations and torques executed by the actuators on the chaser spacecraft defined in Eq. (27) and Eq. (29)
respectively. The random disturbances, ηat , ηαt

, ηac , and ηαc
, are included in the models to account for

unmodeled forces and torques acting on each body such as drag, solar radiation pressure, venting gases, etc.

Sensor Modeling

The analysis assumes several different sensors, including an optical camera, FPOSE, and an IMU. The
mounting configurations of the cameras are illustrated in Figure 2.
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Figure 2. ARV and Sensor Locations

Measurement Frequency 10 s

Distortion Coefficient [0.06 0 0]

Resolution 2592 x 1944

Focal Length 4.7 mm

Medium Field of View (MFOV) 10 deg

Wide Field of View (WFOV) 30 deg

Measurement Noise 1 pixels

Pixel Density 2758 pixels/mm

Table 1. Camera Parameters

Optical Camera Model The optical camera model is based on the models described in the references by
Owen13 and D’Souza.14 The parameters for the cameras currently baselined for the mission and used in
this simulation are given in Table 1. A process called Stereophotoclinometry (SPC)15 will be used for the
optical navigation. This process includes generating maplets and correlating images, and landmarks within
images, with those maplets. Landmark locations are identified as columns of the matrix ltlmrk. The landmark
positions are specified in the target body frame and transformed to the inertial frame as lilmrk = Ti

tl
t
lmrk.

The location of the landmark in the inertial frame is the position of the asteroid plus the landmark position
relative to the center of the asteroid rilmrk = rit + lilmrk. Assuming the camera is at the center-of-mass of the
chaser vehicle, if the chaser position is known in the inertial frame ric then the apparent vector in the inertial
frame is simply the difference ailmrk = rilmrk − ric, as depicted in Figure 3(b).

(a) Camera and coordinate systems13 (b) Apparent position of land-
mark, a, position of camera rc,
position of asteroid rt, and po-
sition of landmark with respect
to the asteroid llmrk

Figure 3. Optical Navigation Model Definitions

The apparent location of the landmark feature relative to the camera in the optical camera frame, aolmrk, as
shown in Figure 3(a) is

aolmrk = A = [M N L] = To
ia
i
lmrk (17)

where To
i is the rotation matrix from the inertial frame to the optical camera frame. Expanding Eq. (17), the

apparent location of the landmark features can be expressed in terms of the navigation states, which include
the target inertial position rit, the target orientation uncertainty θtt, the chaser inertial position ric, and the
chaser attitude error θcc.

aolmrk = To
c(I− [θcc×])T̂c

i

[
rit + T̂i

t(I + [θtt×])ltlmrk − ric

]
(18)

At the detector, the image appears inverted with pixel coordinates (x,y) which are a function of the apparent
location of the landmarks A = aolmrk, the camera focal length f , and the pixel biases, bx and by .
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(
x
y

)
=

f

AL

(
AM
AN

)
+

(
bx
by

)
(19)

The logic to determine whether the landmark is visible is then executed. Radial distortion is added which dis-
torts the image toward or away from the optical axis. Tip and tilt terms are added to account for misalignment
due to the detector not being perfectly perpendicular to the optical axis. Then the corrected image locations(

x
′

y
′

)
=

(
x
y

)
+

(
xr2 xy x2

yr2 y2 xy

) ε1
ε2
ε3

 (20)

are transformed to pixel, s and l line coordinates,(
s
l

)
=

(
Kx Kxy

Kyx Ky

)(
x

′

y
′

)
+

(
so
lo

)
(21)

where K contains the reciprocal of the pixel dimensions.13 Additional logic has been implemented to check
whether each landmark is within the FOV of the camera and to enforce a minimum maplet resolution of 10
cm.

FPOSE Model FPOSE uses LiDAR data to generate a six degree-of-freedom position and orientation
measurement relative to a target object. This will be used for the descent phase and the target will be the
boulder of interest. The measurement is modeled with a constant and a Markov bias.16 The relative position
vector in the FPOSE frame is given by the equation

r̃frel = Tf
bT

b
i (rt − rc) + bfρ + βfρ + ηfρ , (22)

where rt and rc are the target and chaser inertial position vectors, bfρ is the relative position constant bias,
βfρ is the relative position Markov bias, and ηfρ is the relative position measurement noise.

The relative attitude measurement in the FPOSE sensor frame is processed as a derived measurement, θ̃
f

rel.
It is effectively the residual to be processed by the onboard navigation filter,

I −
[
θ̃
f

rel×
]

= T̃f
t

[
T̂t
iT̂

i
cT̂

c
f

]
(23)

where the estimate of the derived relative attitude measurement is a function of the target attitude uncertainty
θtt, the chaser attitude error state θcc, the constant bias bfθ , a Markov bias βfθ , and noise ηfθ .

θ̃
f

rel = T̂f
t θ

t
t − T̂f

cθ
c
c + bfθ + βfθ + ηfθ (24)

The Markov and constant bias 3σ uncertainties for translation and orientation were 57 cm and 1 deg with
a time constant of 600 s and 19 cm and 1 degree of measurement noise. The FPOSE uncertainty parameters
used for this simulation were obtained from test data with a satellite mock-up as the target. A test campaign
to collect data that more closely represents this scenario is planned for the future.

IMU Model The gyro model is based upon a package of three orthogonal strapdown gyros, each measur-
ing the chaser’s angular velocity along its input axis. The measured angular velocity is a function of the true
angular rate ωc with a gyro bias βimug , scale factor simug , misalignment µimug , and the gyro angular random
walk υimug .

ω̃imu = T
(
µimug

) {
I +

[
simug \

]}
Timu
c ωc + βimug + υimug (25)

The gyro performance parameters are summarized in Table 2.

The measured accelerations from the accelerometers are a function of the non-gravitational accelerations
ai, the accelerometer bias βimua , scale factor simua , misalignment µimua , and the accelerometer random walk
υimua .

ãimu = T
(
µimua

) {
I + [simua \]

}
Timu
c Tc

i a
i + βimua + υimua (26)

The accelerometer performance parameters are summarized in Table 3.
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Constant Bias

Angle Random Walk Uncertainty 0.018 deg/
√

hr (3σ)

Bias Uncertainty 0.45 deg/hr (3σ)

Scale Factor Uncertainty 15 ppm (3σ)

Misalignment Uncertainty 75 arcsec (3σ)

Markov Bias

Time Constant 100 s

SS Uncertainty 0.09 deg/hr (3σ)

Markov Scale Factor

Time Constant 100 s

SS Uncertainty 100 ppm (3σ)

Table 2. Gyro Parameters

Constant Bias

Velocity Random Walk Uncertainty 150 µg/
√

Hz (3σ)

Bias Uncertainty 300 µg (3σ)

Scale Factor Uncertainty 525 ppm (3σ)

Misalignment Uncertainty 45 arcsec (3σ)

Markov Bias

Time Constant 60 s

SS Uncertainty 45 µg (3σ)

Markov Scale Factor

Time Constant 100 s

SS Uncertainty 525 ppm (3σ)

Table 3. Accelerometer Parameters

Actuators

Actuators are used to manipulate the spacecraft’s translational and rotational velocities. The actual accel-
eration aictrl is a function of the commanded acceleration âicmd plus an associated maneuver bias bmvr, scale
factor smvr, misalignment µmvr, and execution noise ηmvr terms.

aictrl = Ti
cT (µmvr)

[
{I + [smvr\]} T̂c

i â
i
cmd + bmvr + ηmvr

]
(27)

The commanded acceleration is computed using a proportional-derivative (PD) controller

âicmd = Kr (r̄− r̂) +Kv (v̄ − v̂) (28)

The reaction control system (RCS) produces the torques required to alter the chaser’s attitude rate. The
imparted torque is modeled as a function of the commanded torque τ̂ ccmd plus a torque bias brot, scale factor
srot, misalignment µrot, and noise ηrot terms.

τ cctrl = T (µrot) [{I + [srot\]} τ̂ ccmd + brot + ηrot] (29)

The commanded torques are also computed using a PD controller to achieve the desired orientation

τ̂ ccmd = Jc {Kθ (δθc) +Kω (ω̄cc − ω̂
c
c)} (30)

where δθc is the 3-element rotation vector representing the angular difference between the desired attitude
quaternion q̄ic and the actual attitude qic. The translational and rotational gains in this paper areKr = Kθ =
ω2
n and Kv = Kω = 2ζωn, with natural frequency ωn = 2π/600 rad/s and damping ratio ζ =

√
2/2. The

translational and rotational maneuver execution errors are summarized in Tables 4 and 5 respectively.

DESCENT TO THE ASTEROID SURFACE

One of the most critical phases of the mission is the descent to the surface of the asteroid. To successfully
collect the boulder, the capture arms must be centered directly over the object to within 50 cm. The descent
phase starts 50 m above the surface of the asteroid. The spin rate of the spacecraft is controlled to stay
above the boulder. Six degree-of-freedom control is applied until the ARV is 20 m above the surface. From
that point on, control is only applied in the horizontal direction and the gravitational force of the asteroid is
allowed to pull the ARV to the surface. At 20 m, the downward velocity is required to be 7 cm/s or less.
Measurements are processed for seven different landmarks which are shown with the trajectory in Figure
4(a). One landmark is located at the top of the boulder and the other landmarks are 10 and 25 meters away in
different directions. In this scenario, it takes about 15 minutes to descend from 50 meters above the surface
to the surface of the asteroid.
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Bias Initial Uncertainty 1 mN

Scale Factor Initial Uncertainty 1000 ppm

Misalignment Initial Uncertainty 1 mrad

Bias Time Constant 10000 sec

Scale Time Constant 10000 sec

Misalignment Time Constant 10000 sec

Process Noise 150 mN/
√

s

Table 4. Translational 3σ Maneuver Errors

Bias Initial Uncertainty 1 mN·mm

Scale Factor Initial Uncertainty 100 ppm

Misalignment Initial Uncertainty 1 mrad

Bias Time Constant 10000 sec

Scale Time Constant 10000 sec

Misalignment Time Constant 10000 sec

Process Noise 3e-7 mNm/
√

s

Table 5. Rotational 3σ Maneuver Errors

Control Logic

The translational and rotational control logic each implement PD controllers as described in Eq. (28) and
Eq. (30) respectively. The attitude guidance is designed to align the boulder capture mechanism (along the
ARV axis of symmetry) with the desired line of descent, which is fixed in the asteroid frame. The desired
angular rate is about the direction of translational acceleration. The translational guidance relies upon a
pre-planned reference trajectory (relative position and velocity), delivered by the rendezvous and proximity
operations team at GSFC until the ARV reaches 20 m above the surface. At this point the control logic
inhibits thruster firings along the direction normal to the asteroid surface to avoid pluming the boulder, letting
the asteroid’s gravity pull the ARV to the surface.

(a) Nominal Descent Trajectory with Landmarks (b) Dispersions Along Nominal Trajectory

(c) Relative 3σ Position Environment Dispersions (d) Relative 3σ Position Navigation Errors

Figure 4. Dispersion and Navigation Errors for Descent Phase
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Results

A requirement for the boulder capture phase is for the horizontal dispersions to remain within 50 cm.
Figures 4(b) - 4(d) show the dispersions and navigation errors for this scenario. The dispersions in the altitude
direction increase drastically after 20 m because no control is applied in that direction but the crosstrack and
downrange dispersions are well within the requirement, at about 25 cm.

ENHANCED GRAVITY TRACTOR DEMONSTRATION

A secondary goal of this mission is to demonstrate planetary defense capabilities. The effect of deflecting
an asteroid kinematically can be uncertain, especially since many asteroids are rubble piles. The path of
an asteroid can be deflected by hovering, or in this case maintaining a halo orbit, in front of the asteroid.
This technique uses the gravitational force of the boulder and the spacecraft to deflect the asteroid.17 After
collecting the boulder, the spacecraft will maneuver to a safe distance away from the asteroid and perform
analyses to better estimate the new mass properties of the spacecraft and boulder. The spacecraft will then
insert into a halo orbit around the velocity direction of the asteroid, r = 1 km from the center of the asteroid,
and remain there for six days. The spacecraft will then transition to a halo orbit r = 400 m from the center
of the asteroid (with a halo orbit radius of rh = 346m) and remain there for 30 days. At this point, the
Wide FOV Camera and the LiDAR will be blocked by the boulder, so only the Medium and Narrow FOV
cameras will be available. At this distance the MFOV sensor will be most useful. Because of the location of
the camera, shown in Figure 2, the camera will only be pointed toward the asteroid during half of the orbit,
unless the ARV rotates to point the camera in the other direction. The halo orbit is shown in Figure 5(a).

(a) Gravity Tractor Halo Orbit (b) Dispaced Orbit Gravity Tractor (c) Nominal Trajectory in Inertial Frame

Figure 5. Gravity Tractor Halo Orbit

Control Logic

One option that was investigated for the EGT demonstration was to use only the Solar Electric Propul-
sion (SEP) System to supply a constant force to counteract the component of gravitational force along the
asteroid’s velocity vector17 as shown in Figure 5(b)

FSEP = −FG =
Gmt(mc +mb)

r2

(x
r

)
(31)

wheremt,mc, andmb are the mass of the asteroid, spacecraft, and boulder respectively. The initial velocity
for the halo orbit is set so that the centripetal acceleration of the halo orbit equals the vertical component of
the gravitational force due to the asteroid vz = rhω, where rh is the radius of the halo orbit. The radius of
the halo orbit is also set so that the thrusters do not plume the surface of the asteroid. Another option is to use
a PD controller to maintain a desired halo orbit. The performance results of both techniques are investigated.
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(a) Case 1: Dispersed trajectory (b) Case 1: Trajectory Dispersions (c) Case 1: Navigation error

(d) Case 2: Dispersed trajectory (e) Case 2: Trajectory Dispersions (f) Case 2: Navigation error

(g) Case 3: Dispersed trajectory (h) Case 3: Trajectory Dispersions (i) Case 3: Navigation error

(j) Case 4: Dispersed trajectory (k) Case 4: Trajectory Dispersions (l) Case 4: Navigation error

Figure 6. Halo orbit performance results.

Results

Several factors such as halo orbit size, orbit maintenance strategy, unmodeled accelerations, measure-
ment pass duration, frequency of each available measurement pass, camera field-of-view, number of features
tracked, and resolution influence the overall gravity tractor performance. Although each of these have been
investigated, this paper will focus on several that influenced the overall vehicle and mission operations, in-
cluding orbit maintenance strategy, measurement pass duration, and measurement pass frequency.

The nominal trajectory provided in Figure 5(c) is used to investigate the closed-loop GN&C performance
with four different test cases: 1) constant thrust profile with continuous measurements, 2) closed-loop PD
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controller with a 10 minute measurement pass duration once per orbit, 3) closed-loop PD controller with a
90 minute measurement pass once per orbit, and 4) closed-loop PD controller with a 10 minute measurement
pass twice per orbit. For these cases, a generic relative sensor is used to highlight important trends, but the
camera model has also been incorporated to confirm performance levels and show the expected measurement
pass duration as a function of field-of-view and the number of features.

Figures 6(a) - 6(c) show the results for Case 1 in which continuous thrust is applied while processing
continuous measurements. Due to the instability of the gravity tractor orbit, even though the navigation error
stays tightly bounded and constant thrust is applied, the dispersions grow to almost 2 km. This highlights
the limitations of using a simple constant thrust halo orbit strategy and emphasizes the need for a feedback
control implementation for long duration halo orbit maintenance.

Figures 6(d) - 6(f) show the results for Case 2 which illustrates the advantage of using a closed-loop PD
controller for maintaining the vehicle on the halo orbit. Although the nominal thrust profiles for the PD
controller and the constant thrust methodologies are largely the same, the resulting trajectory dispersions are
drastically reduced from several kilometers to several hundred meters by incorporating a feedback controller.
For this second scenario, the measurement pass duration was limited to 10 minutes and only one measurement
pass was allocated per orbit.

Figures 6(g) - 6(i) show the results for Case 3 where a PD controller is used but the measurement pass
duration is extended from 10 minutes to 90 minutes. This represents the scenario where either the camera
FOV is increased or the camera is gimbaled to track landmark features for longer periods. By tracking
the features for a longer duration, the maximum 3σ RSS trajectory dispersion dropped from 370 m to 70
m. The improvement comes because the time required to propagate the navigation solution in between
measurement passes is reduced. Since the trajectory dispersions largely follow the navigation error when
using a PD controller, the trajectory dispersions are reduced by limiting the error growth due to propagating
the navigation solution.

Figures 6(j) - 6(l) show the results for Case 4 which uses a PD controller and only a 10 minute measurement
pass duration but with the frequency of measurement passes increased from once per orbit to twice per orbital
period. Although not formally derived at this phase, it is desired that the maximum 3σ RSS trajectory
dispersions remain within 50 m. This accuracy can be accomplished by having short but more frequent
measurement passes. So even though the measurement duration is only 10 minutes, the maximum 3σ RSS
relative trajectory dispersions are less than 35 m when the frequency is twice per orbit.

Figure 7 provides a breakdown of the major factors such as initial condition uncertainty, maneuver exe-
cution errors, process noise (unmodeled accelerations), sensor accuracy, and other environment disturbances
that contribute to the overall relative position dispersions. This error budget4 is generated using Case 4 as an
example because this scenario represents the recommended approach where potentially short measurement
passes occur multiple times per orbit. In Figure 7, the solid dark (maroon) line represents the 3σ RSS relative
position dispersions given all the potential error sources as previously shown in Figure 6(k). The contribu-
tion of each error source is then represented with a corresponding line and their RSS value is shown with
the dashed light (cyan) colored line. These results show the long-term dominating error sources are sensor
measurement and maneuver execution errors.

CONCLUSIONS

These results demonstrate that with the current set of sensors baselined for the ARRM Option B mission
it is feasible to meet requirements for the boulder capture phase of the mission. Using only a continuous,
open-loop, thrust profile to maintain the gravity tractor halo orbit, however, is not feasible when accounting
for unknown perturbations. The instability of the halo orbit requires a closed-loop controller for long term
orbit maintenance and it is recommended that a second measurement arc be added to decrease the navigation
error. Future analyses are planned to model thruster locations, throttling, and gimbaling.
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Figure 7. Relative 3σ Trajectory Dispersion Error Budget (Case 4)
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