Assuring NASA’s Safety and Mission Critical Software

Wesley Deadrick
IV&V Office Lead
NASA’s Independent Verification and Validation Program
Fairmont, WV
Origins of IV&V within NASA

• NASA’s IV&V Program: established in 1993
• Founded under the NASA Office of Safety and Mission Assurance (OSMA) as a direct result of recommendations made by the National Research Council (NRC) and the Report of the Presidential Commission on the Space Shuttle Challenger Accident.
Developing complex, safety and mission-critical software systems is inherently challenging, and that creates risk.
Independent Verification and Validation (IV&V) is an objective examination of safety and mission critical software processes and products.

Independence: 3 key parameters:
- Technical Independence
- Managerial Independence
- Financial Independence

NASA IV&V perspectives:
- Will the system’s software...
 - Do what it is supposed to do?
 - Not do what it is not supposed to do?
 - Respond as expected under adverse conditions?

Systems Engineering: Determines if the **right system** has been built and that it has been **built correctly**.

IV&V Technical Approaches:
- Aligned with IEEE 1012
- Captured in a Catalog of Methods
- Spans the full project lifecycle

IV&V Assurance Strategy
The IV&V Project’s strategy for providing mission assurance
Assurance Strategy is driven by the specific needs of an individual project
Implemented via an Assurance Design
Communicated via Assurance Statements
What is IV&V? (continued)

• The IV&V Assurance Strategy is the selection and implementation of IV&V validation and verification processes
 – Implementation of the IV&V processes are driven by the IV&V Project’s risk assessment and unique characteristics
 – The Assurance Strategy is tailored to the needs of the individual projects

• The validation process provides **empirical evidence** that engineering products:
 – Satisfy system requirements allocated to software
 – Solve the right problems
 – Satisfy the intended use and user needs in expected operational environments

• The verification process provides **empirical evidence** that engineering products:
 – Conform to requirements (for example: for correctness, completeness, consistency, accuracy) during all life cycle phases (requirements, design, code, test)
 – Satisfy standards and best practices
 – Establish a basis for assessing the completion of each life cycle phase, and initiating other life cycle phases
• IV&V processes include assessments, analyses, evaluations, reviews, inspections, and testing of software artifacts during the entire development lifecycle that create evidence
 – Evidence is used to formulate recommendations that improve the quality (or reliability) of the system software
 – Evidence is used to make conclusions about the quality (or reliability) of the system software
 – Evidence is used to gain insight into the technical progress
 – Evidence is used to judge how thorough you’ve critiqued the system

• How much evidence → it is a trade-off between criticality of the system being acquired/deployed
 – Life-sustaining subsystems would warrant an evidence package that clearly & objectively shows the software will operate safely (or clearly shows that it won’t)
 – Data management subsystems may warrant less of an evidence package

• The amount of evidence needed determines the rigor of the analysis
 – Analytical Rigor is the type and amount of IV&V processes to use for analysis
Establishing the IV&V Assurance Strategy

• The IV&V Program assesses the system to determine:
 – The inherent risk associated with the system capabilities
 – The role of software in those capabilities
 – Which software elements of the system warrant IV&V analysis
 – Software elements are generally the focal point of IV&V analyses; however, other lifecycle artifacts (for example: concept documentation, system design, etc...) are utilized to inform lower-level analyses

• Our process is called “Portfolio Based Risk Assessment” (PBRA)
 – Results in scores for impact (a measure of the effect of a problem) and likelihood (the potential for the existence of errors) for each system capability and software element
 – Enables informed decision making regarding:
 • What parts of the system should IV&V work on
 • What analytical rigor should IV&V apply (for example: dynamic analysis should be conducted to thoroughly test the implementation of the protocol used for communications)
Establishing the IV&V Assurance Strategy (continued)

Responsible Subsystems

<table>
<thead>
<tr>
<th>Subsystem Criticality Profile</th>
<th>Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Impact

- Subsystem 1 – do not recommend IV&V
- Subsystem 2 – recommend IV&V utilizing Static Analysis
- Subsystem 3 – recommend IV&V utilizing Dynamic Analysis
- Subsystem n ...

Subsystem Criticality Profile

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Criticality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Amount of Rigor & Evidence Needed

<table>
<thead>
<tr>
<th>Manual Analysis</th>
<th>Static Analysis</th>
<th>Dynamic Analysis</th>
<th>Formal Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMEs conduct formal or informal inspections & evidence is recorded simply as issues</td>
<td>SMEs evaluate structure & content using various perspectives supported by CASE tools. Evidence is recorded as issues & supplemented with coverage</td>
<td>SMEs execute system & evaluate results. Evidence is recorded more thoroughly as to make the case for what works and what are limitations</td>
<td>SMEs apply formalisms & mathematical rigor to prove existence or absence of critical properties</td>
</tr>
</tbody>
</table>

Desirable Capabilities

- Conduct testability investigations
- Launch MDRS
 - Trajectory control
 - x
 - Altitude Control
 - x
- Approach MDRS
 - Trajectory control
 - x
 - Altitude Control
 - x
- Maintain flight systems
 - Establish and maintain power
 - x
 - Maintain and maintain thermal control
 - x
 - Perform fault detection
 - x
 - Establish and maintain communications
 - x
 - Gather engineering and housekeeping data
 - x
- ECL
 - Pre-DL
 - x
 - Entry
 - x
 - Descent
 - x
 - Landing
 - x
- Perform surface operations
 - Traverse the Martian surface
 - x
 - Acquire and handle samples
 - x
 - Evaluate current station via THS data
 - x
 - Perform reconnaissance activity
 - x
 - Collect science data
 - x

Less ——— Amount of Rigor & Evidence Needed ——— more

- Manual Analysis
- Static Analysis
- Dynamic Analysis
- Formal Analysis
Implementing the IV&V Assurance Strategy

- IV&V Assurance Strategy is implemented through the Assurance Design
 - The Assurance Design specifics the Technical Reference, inputs, analysis techniques, and objective evidence necessary to achieve the IV&V Project’s Objectives
 - Like the Assurance Strategy, the Assurance Design is specific to the needs of an individual project
 - Constructed to allow the IV&V Project to generate evidence to assure the critical capabilities and mitigate system risk
 - Areas of risk identified in the PBRA are key inputs into the development of the Assurance Design

- Assurance Statements are utilized to communicate the results of the implementation of the IV&V Assurance Strategy
 - A statement of the assurance that is being provided (or intended to be provided) by IV&V to a stakeholder or stakeholders on a system or subsystem
 - Assurance statements are typically formulated at the beginning of a IV&V Project and refined as necessary throughout execution
Tools for Implementing the IV&V Assurance Strategy

• NASA’s IV&V Program strives to continually develop new capabilities to support the execution of the IV&V Assurance Strategy
 – IV&V Techniques are documented in a Catalog of Methods (CoM)
 – Techniques are continually refined and tailored to the needs of the projects

• To maintain relevance, the IV&V Program selectively invests in new technologies necessary to assure NASA’s safety and mission critical software
 – NASA’s IV&V Program is advancing the state of the practice in Cybersecurity / Information Assurance and Independent Testing
 • Advanced techniques and capabilities are being developed to enable the program to keep pace with current development trends and emerging risk factors
 • Information Assurance and Independent Testing are becoming an increasingly prominent component of IV&V Project’s Assurance Strategies
Cybersecurity / Information Assurance

Threat and Risk Assessment
- FISMA Compliance
- Life-cycle
 - Provide mission security assurance throughout design, development, implementation, operation, maintenance, and disposition
 - Assessment and Authorization (A&A)
- Authority to Operate (ATO)

Vulnerability Assessment / Penetration Testing
- Implementation of Security Controls
- Monitoring of Security Controls
- Static Code Analysis (SCA)

IV&V In-Phase IA Support
- Build security in “from the ground up.”
- Security Architecture Verification
- IV&V Methods

CyberLab
- Component of ITC JSTAR Lab
- Virtualized servers
- Penetration Test tools
- Cybersecurity Knowledge Base
- Cybersecurity Training Program
- Mission System Virtualization and Testing
Independent Testing

Develop, maintain, and operate adaptable test environments for NASA's IV&V Program that enable the dynamic analysis of software behaviors for multiple NASA missions.

Simulation
- Functional Software-only Simulators
- NASA Operational Middleware (NOS)
 - Common emulation software
 - Middleware
- Spacecraft Simulators
 - Ground systems, instruments, spacecraft dynamics
- Small Sat
- Integrate many technologies to create solutions

Automation
- Simulation Verification
- Increase Testing
 - Unit Testing
 - System Testing
- Automated Installations and Simulator Deployments

Testing
- Provide evidence-based assurance to customer
- Risk-focused independent testing
- Focused on testing adverse conditions
 - Fault injection, back-to-back scenarios, etc.

Virtualization
- Heavy reliance on virtualization technologies
 - Development
 - Simulator Releases
 - Rapid Deployment
 - Evaluation Environments
Summary
Benefits of IV&V

- Yields higher confidence that delivered products are error free and meet the user needs.
- Increases likelihood of uncovering high-risk errors early in the development lifecycle.
 - Allows time for the design team to evolve a comprehensive solution rather than forcing them into a makeshift fix to accommodate deadlines
- Delivers ongoing status indicators and performance reporting to decision makers (e.g. program managers).
 - The customer is provided an incremental preview of system performance with the chance to make early adjustments.
- Reduces the need for rework from the developing contractor thereby reducing total costs to programs and projects.
- Facilitates the transfer of system and software engineering best practices.

IV&V leads to higher quality products, reduced risk, greater insight, reduced cost, and knowledge transfer.
QUESTIONS?
IV&V plays a key role in a number of high-profile NASA and non-NASA missions.
Generic Look at IV&V

1. **Needs Analysis & Concept Phase**
 - **Concept Analysis**
 - Validate selected solution, validate s/w reuse strategy, verify sys. architecture is complete, ensure security threats & risks are known.

2. **Requirements Specification**
 - **Requirements Analysis**
 - Ensure the requirements are high quality (correct, consistent, complete, accurate, unambiguous, and verifiable) and adequately meet the needs of the system and user.

3. **Design**
 - **Design Analysis**
 - Ensure the design is a correct, accurate, and complete transformation of the requirements that will meet the operational need under nominal and off-nominal conditions and that no unintended features are introduced.

4. **Implementation**
 - **Code Analysis**
 - Ensure the implementation is correct, accurate, and complete, relative to requirements, operational need under nominal and off-nominal conditions, and introduces no unintended features.

5. **Integration & Test**
 - **Test Analysis**
 - Ensure testing will serve as a sufficient means to verify and validate that the implementation meets the requirements and operational need under nominal and off-nominal conditions.

6. **Ops & Maintenance**
 - **Operational & Maintenance Analysis**
 - Ensure operating procedures are correct and usable, new constraints & changes are understood and appropriately addressed, and ensure anomalies are understood and appropriately addressed.

7. **Criticality Analysis**
 - Identify most critical areas of the system.