Assuring NASA’s Safety and Mission Critical Software

Wesley Deadrick
IV&V Office Lead
NASA’s Independent Verification and Validation Program
Fairmont, WV
Origins of IV&V within NASA

- NASA's IV&V Program: established in 1993
- Founded under the NASA Office of Safety and Mission Assurance (OSMA) as a direct result of recommendations made by the National Research Council (NRC) and the Report of the Presidential Commission on the Space Shuttle Challenger Accident.
Developing complex, safety and mission-critical software systems is inherently challenging, and that creates risk.
Independent Verification and Validation (IV&V) is an objective examination of safety and mission critical software processes and products.

Independence: 3 key parameters:
- Technical Independence
- Managerial Independence
- Financial Independence

NASA IV&V perspectives:
- Will the system’s software...
 - Do what it is supposed to do?
 - Not do what it is not supposed to do?
 - Respond as expected under adverse conditions?

IV&V Technical Approaches:
- Aligned with IEEE 1012
- Captured in a Catalog of Methods
- Spans the full project lifecycle

Systems Engineering: Determines if the **right system** has been built and that it has been **built correctly**

IV&V Assurance Strategy
The IV&V Project’s strategy for providing mission assurance
Assurance Strategy is driven by the specific needs of an individual project
Implemented via an Assurance Design
Communicated via Assurance Statements
What is IV&V? (continued)

• The IV&V Assurance Strategy is the selection and implementation of IV&V validation and verification processes
 – Implementation of the IV&V processes are driven by the IV&V Project’s risk assessment and unique characteristics
 – The Assurance Strategy is tailored to the needs of the individual projects

• The validation process provides **empirical evidence** that engineering products:
 – Satisfy system requirements allocated to software
 – Solve the right problems
 – Satisfy the intended use and user needs in expected operational environments

• The verification process provides **empirical evidence** that engineering products:
 – Conform to requirements (for example: for correctness, completeness, consistency, accuracy) during all life cycle phases (requirements, design, code, test)
 – Satisfy standards and best practices
 – Establish a basis for assessing the completion of each life cycle phase, and initiating other life cycle phases
What is IV&V? (continued)

- IV&V processes include assessments, analyses, evaluations, reviews, inspections, and testing of software artifacts during the entire development lifecycle that create **evidence**
 - Evidence is used to formulate recommendations that improve the quality (or reliability) of the system software
 - Evidence is used to make conclusions about the quality (or reliability) of the system software
 - Evidence is used to gain insight into the technical progress
 - Evidence is used to judge how thorough you’ve critiqued the system

- How much evidence → it is a trade-off between criticality of the system being acquired/deployed
 - Life-sustaining subsystems would warrant an evidence package that clearly & objectively shows the software will operate safely (or clearly shows that it won’t)
 - Data management subsystems may warrant less of an evidence package

- The amount of evidence needed determines the rigor of the analysis
 - Analytical Rigor is the type and amount of IV&V processes to use for analysis
Establishing the IV&V Assurance Strategy

- The IV&V Program assesses the system to determine:
 - The inherent risk associated with the system capabilities
 - The role of software in those capabilities
 - Which software elements of the system warrant IV&V analysis
 - Software elements are generally the focal point of IV&V analyses; however, other lifecycle artifacts (for example: concept documentation, system design, etc...) are utilized to inform lower-level analyses
- Our process is called “Portfolio Based Risk Assessment” (PBRA)
 - Results in scores for impact (a measure of the effect of a problem) and likelihood (the potential for the existence of errors) for each system capability and software element
 - Enables informed decision making regarding:
 - What parts of the system should IV&V work on
 - What analytical rigor should IV&V apply (for example: dynamic analysis should be conducted to thoroughly test the implementation of the protocol used for communications)
Establishing the IV&V Assurance Strategy (continued)

Responsible Subsystems

<table>
<thead>
<tr>
<th>Subsystem Criticality Profile</th>
<th>Impact</th>
<th>Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1, 2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1, 2, 3, 4, 5</td>
<td></td>
</tr>
</tbody>
</table>

Subsystem 1 – do not recommend IV&V

Subsystem 2 – recommend IV&V utilizing Static Analysis

Subsystem 3 – recommend IV&V utilizing Dynamic Analysis

Subsystem n ...

Desirable Capabilities

<table>
<thead>
<tr>
<th>Conduct Capability Investigations</th>
<th>Launch of Flights</th>
<th>Entry</th>
<th>Descent</th>
<th>Landing</th>
<th>Perform Surface Operations</th>
<th>Traverse Mars Surface</th>
<th>Acquire and handle samples</th>
<th>Evaluate current position w/ THR data</th>
<th>Perform reconnaissance activity</th>
<th>Collect science data</th>
</tr>
</thead>
<tbody>
<tr>
<td>XS</td>
<td>X</td>
</tr>
<tr>
<td>XS</td>
<td>X</td>
</tr>
<tr>
<td>XS</td>
<td>X</td>
</tr>
<tr>
<td>XS</td>
<td>X</td>
</tr>
<tr>
<td>XS</td>
<td>X</td>
</tr>
</tbody>
</table>

Manual Analysis

- SMEs conduct formal or informal inspections & evidence is recorded simply as issues

Static Analysis

- SMEs evaluate structure & content using various perspectives supported by CASE tools. Evidence is recorded as issues & supplemented with coverage

Dynamic Analysis

- SMEs execute system & evaluate results. Evidence is recorded more thoroughly as to make the case for what works and what are limitations

Formal Analysis

- SMEs apply formalisms & mathematical rigor to prove existence or absence of critical properties

Amount of Rigor & Evidence Needed

- **Manual Analysis**: Less
- **Static Analysis**: More
- **Dynamic Analysis**: More
- **Formal Analysis**: More
Implementing the IV&V Assurance Strategy

• IV&V Assurance Strategy is implemented through the Assurance Design
 • The Assurance Design specifics the Technical Reference, inputs, analysis techniques, and objective evidence necessary to achieve the IV&V Project’s Objectives
 • Like the Assurance Strategy, the Assurance Design is specific to the needs of an individual project
 • Constructed to allow the IV&V Project to generate evidence to assure the critical capabilities and mitigate system risk
 • Areas of risk identified in the PBRA are key inputs into the development of the Assurance Design

• Assurance Statements are utilized to communicate the results of the implementation of the IV&V Assurance Strategy
 • A statement of the assurance that is being provided (or intended to be provided) by IV&V to a stakeholder or stakeholders on a system or subsystem
 • Assurance statements are typically formulated at the beginning of a IV&V Project and refined as necessary throughout execution
Tools for Implementing the IV&V Assurance Strategy

- NASA’s IV&V Program strives to continually develop new capabilities to support the execution of the IV&V Assurance Strategy
 - IV&V Techniques are documented in a Catalog of Methods (CoM)
 - Techniques are continually refined and tailored to the needs of the projects
- To maintain relevance, the IV&V Program selectively invests in new technologies necessary to assure NASA’s safety and mission critical software
 - NASA’s IV&V Program is advancing the state of the practice in Cybersecurity / Information Assurance and Independent Testing
 - Advanced techniques and capabilities are being developed to enable the program to keep pace with current development trends and emerging risk factors
 - Information Assurance and Independent Testing are becoming an increasingly prominent component of IV&V Project’s Assurance Strategies
Cybersecurity / Information Assurance

Threat and Risk Assessment
- FISMA Compliance
- Life-cycle
 - Provide mission security assurance throughout design, development, implementation, operation, maintenance, and disposition
 - Assessment and Authorization (A&A)
- Authority to Operate (ATO)

Vulnerability Assessment / Penetration Testing
- Implementation of Security Controls
- Monitoring of Security Controls
- Static Code Analysis (SCA)

IV&V In-Phase IA Support
- Build security in “from the ground up.”
- Security Architecture Verification
- IV&V Methods

CyberLab
- Component of ITC JSTAR Lab
- Virtualized servers
- Penetration Test tools
- Cybersecurity Knowledge Base
- Cybersecurity Training Program
- Mission System Virtualization and Testing
Independent Testing

Develop, maintain, and operate adaptable test environments for NASA’s IV&V Program that enable the dynamic analysis of software behaviors for multiple NASA missions.

Simulation
- Functional Software-only Simulators
- NASA Operational Middleware (NOS)
 - Common emulation software
 - Middleware
- Spacecraft Simulators
 - Ground systems, instruments, spacecraft dynamics
- Small Sat
- Integrate many technologies to create solutions

Testing
- Provide evidence-based assurance to customer
- Risk-focused independent testing
- Focused on testing adverse conditions
 - Fault injection, back-to-back scenarios, etc.

Automation
- Simulation Verification
- Increase Testing
 - Unit Testing
 - System Testing
- Automated Installations and Simulator Deployments

Virtualization
- Heavy reliance on virtualization technologies
 - Development
 - Simulator Releases
 - Rapid Deployment
 - Evaluation Environments
Summary
Benefits of IV&V

• Yields higher confidence that delivered products are error free and meet the user needs.
• Increases likelihood of uncovering high-risk errors early in the development lifecycle.
 – Allows time for the design team to evolve a comprehensive solution rather than forcing them into a makeshift fix to accommodate deadlines
• Delivers ongoing status indicators and performance reporting to decision makers (e.g. program managers).
 – The customer is provided an incremental preview of system performance with the chance to make early adjustments.
• Reduces the need for rework from the developing contractor thereby reducing total costs to programs and projects.
• Facilitates the transfer of system and software engineering best practices.

IV&V leads to higher quality products, reduced risk, greater insight, reduced cost, and knowledge transfer.
QUESTIONS?
IV&V plays a key role in a number of high-profile NASA and non-NASA missions.
Generic Look at IV&V

Needs Analysis & Concept Phase

Requirements Analysis
{ensure the requirements are high quality (correct, consistent, complete, accurate, unambiguous, and verifiable) and adequately meet the needs of the system and user}

Design

Requirements Analysis
{ensure the design is a correct, accurate, and complete transformation of the requirements that will meet the operational need under nominal and off-nominal conditions and that no unintended features are introduced}

Implementation

Design Analysis
{ensure the design is a correct, accurate, and complete transformation of the requirements that will meet the operational need under nominal and off-nominal conditions and that no unintended features are introduced}

Code Analysis
{ensure the implementation is correct, accurate, and complete, relative to requirements, operational need under nominal and off-nominal conditions, and introduces no unintended features}

Integration & Test

Test Analysis
{ensure testing will serve as a sufficient means to verify and validate that the implementation meets the requirements and operational need under nominal and off-nominal conditions}

Ops & Maintenance

Operational & Maintenance Analysis
{ensure operating procedures are correct and usable, new constraints & changes are understood and appropriately addressed, and ensure anomalies are understood and appropriately addressed}

Criticality Analysis (identify most critical areas of the system)