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Goals

Soil Moisture Data Assimilation

Forecast Challenge

Sensible HF Diff (LISMOD - CNTL) walid 080609/1600V013 2-m Dewp Diff (LISMOD - CNTL) valid 080602/1600V013
T TR T . R

o e T = ICIE: =
— Available moisture affects humidity, . [ i
sensible/latent heating, diurnal > oL
heating rate, and convection s ;5. L T
° ° Z;u - - 3:3 b{‘-&'li“" : -“‘I"l“; 'F“ o "'
200 - 0 o so| K oW R N R
ObjECtlve Sensible HF #.20rDewpaint
G N M - \ |

CAPE Diff (LISMOD - CNTL) valid 080609/1600V013

* Improve soil moisture estimates = semwnmor o summanns
for regional NWP applicationsand , |{* | -

situational awareness e |-
— Improve LIS soil moisture by ol ’
assimilating satellite retrievals i

— Use LIS output to initialize NWP

Impact of using high-resolution LIS boundary
conditions in WRF (rather than NAM fields).
From Case et al. 2008
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Other Applications

— Drought/Heat Wave Monitoring
— Flood Forecasting

— Streamflow prediction

— Public health

Temperature
anomalies

Soil moisture
anomalies
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Operational SPoRT Land Informatlon System (LIS)

Land Information System
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= NASA LIS used to perform long-term integration of Noah Land Surface
Model (LSM) updated in real-time
» Precipitation forcing: NLDAS-2, Multi-Sensor, Multi-Radar (MRMS), and GFS forecast
» Vegetation coverage/health: Green Vegetation Fraction (GVF) from MODIS (VIIRS 2014)

= Forecast data allows use of latent observations while retaining their impact on later cycles

» Assimilation of soil moisture should give even more accurate LSM soil
moisture fields

= Used for situational awareness and local modelingyissi



SPoRT-LIS Real-time Configurations

Column—Integrated Relative Soil Moisture (available water; %) valid 00z 21 Aug 2014

* Running Noah LSM at ~3-km resolution
with real-time MODIS GVF

|II

» “Operational” Southeast U.S. domain
—Driven by NLDAS-2/Stage IV precip
—Data used for both local modeling in

WRF/EMS and display in AWIPS Il
—Used in current LIS assessment

* Experimental CONUS domain

—Interest from SPoRT western partners
—Driven by NLDAS-2/MRMS* precip
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Soil Moisture Instruments

Agency
Launch
Orbit

Sensor
Type

Frequency

Resolution

Accuracy
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NASA/JAXA

Polar

Passive

6.9 GHz
(C-band)

56 km

6 cm3/cm3

SMOS
Soil Moisture
and Ocean
Salinity

ESA
2009
Polar

Passive

1.4 GHz
(L-band)

35-50 km

4 cm3/cm?3

SMAP

Soil Moisture Active/Passive

NASA
Nov. 2014
Polar

Passive

1.41 GHz

36 km

4 cm3/cm?3

Active Combined
1.2 GHz
3 km 9 km

6 cm3/cm3 4 cm3/cm3
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Data Assimilation with EnKF

e Use E.nsem.ble K.alman Flltgr W|th|n LIS to assimilate T —
satellite soil moisture retrievals into the Noah 3.2 Assimilating an Observation
LSM Posterior PDF Obs. Likelihood

* EnKF combines the model background and 0.4} Prior PDF
observations to make analyses
— Relative weighting is controlled by the specified 0.2}
observation error and by the ensemble spread

* Implemented EnKF assimilation of SMOS L2 data 94 > 0 > 4
— QC based on model state and data flags for '
precipitation, RFl, data quality, frozen soil, snow
cover, and high vegetation
— Empirically tuned run-time settings including
perturbations, number of ensemble members
— Bias correction by CDF Matching
— Capability of implementing landcover-
dependent correction.

* Assimilation is 1-D (each grid cell independent). Observations can be spread over several
grid cells for high-resolution model runs.

* Planned for use in near-real-time SPoRT LIS




Bias Correction

* Initial tests had large dry bias in observations, so that only
extreme rain events had correct sign.

* Discussions with other researchers confirmed need for bias
correction

Innovations

. * Implemented CDF matching
ncrements
giopcortected) - o . correction for SMOS
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Uncorrected innovations (observations minus model) and

increments. Red=dry bias in retrievals.
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* LIS can apply point-by-point correction curves. To increase the background dataset
size, we are aggregating points by landcover type. We will also explore correction

at each point and aggregating by soil type.

* In general, observations are drier than the model but have a higher dynamic range.
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Irrigation Case Study
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Map of Irrigation Areas

Model soil moisture
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by precipitation and
misses magnitude of
irrigation-saturated MS w-J
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From U. of Frankfurt-FAO (Ozdogan 2001)

__ SMOS observes
irrigated fields * Test Impact on NWP
using coupled LIS-WRF
* Implications for regional
i Blended analysis of model climate mOdeling

.Moisture Analysis

: and observations better | f ch . land
=g represent irrigated area —Impacts or changing land-
__— and should result in use, precipitation patterns
improved weather and

hydrologic modeling




Case Study: Irrigation Impact

Soil Moisture
(Control)

Forecast
Fields

Forecast
Fields

* |rrigation scenario makes a good case study
— Forcing data is inaccurate due to irrigation
— Demonstrate benefit of satellite DA

— DA impact should also be enhanced in areas with
with sparse observation networks (mountainous
terrain, underpopulated areas, developing
countries, etc.)

* Test impact on NWP using coupled LIS-WRF
— Validate soil moisture values
— Examine impact on NWP
— Verify NWP forecasts
— Impact on boundary layer for a quiescent day
— Active convection case
— Validation over a longer time period
* Implications for regional climate modeling
— Impacts of changing land-use, precipitation patterns




Current and future plans

* Validate analyses
—TAMU North American Soil Moisture Database

* Test Impact of assimilating SMOS retrievals on NWP using
coupled runs in NU-WRF
—Impact on boundary layer for a quiescent day
— Active convection case
—Validation over a longer time period

—Look at both sensitivity and forecast accuracy
= Assimilate active/passive blended product from SMAP; higher
spatial resolution (9 km) should improve local-scale processes

Questions?
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