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ABSTRACT

This paper provides details of developments
pertaining to vibration analysis of gyroscopic systems, that
involves a finite element structural discretization followed
by the solution of the resulting matrix eigenvalue problem
by a progressive, accelerated simultaneous iteration
technique. Thus Coriolis, centrifugal and geometrical
stiffness matrices are derived for shell and line elements,
followed by the eigensolution details as well as solution of
representative problems that demonstrates the efficacy of
the currently developed numerical procedures and tools.

NOMENCLATURE

Coriolis acceleration matrix

9]

elastic damping matrix

[~

elastic stiffness matrix

]

geometric stiffness matrix

~Q

centripetal acceleration matrix
elastic mass or inertia matrix
shape function

initial force vector
aeroelastic or structural damping

TrRTZZIFR AR OO

=1, imaginary number

displacement vector
q.q velocity and acceleration vectors

=

u displacement vector
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¢ damping

A natural frequencies

A structural direction cosine matrix
P structural modes of vibration

Q

a

angular velocity matrix, spin rate
frequencies

Superscripts

T matrix transpose
-1 matrix inverse

e elementwise

INTRODUCTION

Many practical problems, as turbines, helicopters and
others are characterized by rotating components arising
out of functional requirements. Others as spacecraft and
satellites are often spin stabilized. Their natural frequency
analysis [1] is of much importance for subsequent
determination of state of stress as well for stability and
control analyses. To derive the relevant equations of

motion one may consider the elastic deformation u ;ofa
point j in a flexible body rotating at a constant angular
velocity €2 about an arbitrary axis, having components
Qy, £, and £, along the three reference coordinate

system axes (Fig. 1). Thus, the position vector may be
derived as

r=rj+uj

(1
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whereas the velocity and acceleration vectors can be
written as

ot )

a:iﬁ—ﬂxv
ot

o ©
-3—j+nxr+29xf+gx(ﬂxr)
¢

respectively; further

z ¥y x
Qr=| Q, 0 L @)
wa 5.5 0 3

In Eqn. (3), the first term on the right hand side relates
to the effects of in-plane stretching on out-of-plane
deformation; the second term reduces to zero for steady
spin state while the third and fourth terms relate to Coriolis
and centripetal acceleration. The preceding equations
may be conveniently used in formulating strain and kinetic
energies and the governing equation of motion [2] for the
entire flexible body may be derived, for the undamped
case, using Hamilton's principle as

Mg +2MQq + (K, + MQQ)q = -MQQr 55

or

Md+CCq+(KE +K’)q:fc (6)
f. being the centrifugal force vector and r representing
al r;, M, K,, and K’ are respectively the inertia,
elastic and centripetal stiffness matrices, C,. being the

Coriolis matrix.
The related analysis starts by first computing the

steady-state deflection due to constant spin £ by solving

(KE +K )q:fr: (7)

and thereafter calculating the geometrical stiffness matrix
K, from resulting in-plane stresses. The equation of

mation can then be written as below, that also includes
damping®

M+(C. +C,)q+K, (1+i'g)+K'+K_)q=0
(®)

in which C, is viscous damping matrix, g is the structural

damping parameter, i

V-1

To perform relevant dynamic analysis it is essential
first to derive expressions for nodal centrifugal forces for
various finite elements spinning about an arbitrary axis.
Such in-plane forces are used for derivation of k%
matrices, where its out-of-plane components are used for
developing expressian for the element centripetal stiffness
matrix k': examples of some of these matrices are
derived next.

being the imaginary number

NUMBERICAL FORMULATION

Derivation of Nodal Centrifugal Forces

Figure 1 shows a typical triangular flat shell element
undergoing an uniform spin rate €2, along an arbitrary
axis.

Using local coordinate system (LCS) defined by x, y,
and z axes, the shape function matrix N for in-plane
motion of the element having components along global
reference axes X, Y, Z, respectively.

u=Nu ©)

where

_ -1
N=RQ 10

and in which u is the displacement vector of a typical

point P within the element; u® is the element nodal
displacement vector, R is the portion of the shape
function matrix having elements that are functions of the
local coordinates x and y, and Q is the portion of the
shape function matrix with elements expressed in terms
of the element nodal coordinate values. Further defining
the internal force vector at any point within the element in
the LCS as
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Figure 1 Atypical triangular shell element subjected
to arbitrary spin rate

f:[fx fy fz] (11)

, the equivalent concentrated nodal forces of a triangular
element in the LCS may be expressed as

f'fz[fxl Ta Ja fa [ fﬁ]T (12)

which may also be written in the following form:

e __ T
£ _jN fdv i

or

e _ T

£ = [N"Apdv id)
where p represents the forces in the global coordinate
system at any point within an element, having three
components p,, p,,and p, inthe X, Y, and Z

directions, respectively, and A is the element direction
cosine matrix:

A= ly m, n, (15)
JZ mZ F4

in which lx=cos(X,x), and so on. Furthermore,

defining X,, ¥, and Z, as the global coordinates of node

| of the triangular element, such coordinates for any point
within the element may simply be obtained as

X X, x

_ T
Y|=|Y |[+0 |y (16)
V4 Z. 0

1

The in-plane element nodal centrifugal forces may
next be derived for each of the three components of the

spin rate £, which may then be combined to yield the
final desired expressions. Thus, typically, corresponding
the spin component €, , the appropriate forces are
expressed as

0
p=pQ;|Y
Z

(7

where p is the mass density. Upon the employment of

the relationships expressed by Eqns. (15} and (16), Eqn.
(17) takes the following form:

0
nx+n,y+Z,

Expressions for the element nodal forces is then
derived by appropriate substitution of Eqns. (10), {15},
and (18) into Eqn. (14), yielding

£y, )=po2d[ [ J, Riuxdy

where ¢ is the element thickness, y,is the y coordinate

of node k, x,=x,y/y, is the lower bound of the x
coordinate in the integration process,
& :xj—(xj—xk)y/yk is the upper bound of the x
coordinate, and

B mx(mxx+myy+Yi)+nx(nxx+nyy+2‘.)
L= my(mxx+myy+}’j)+ny(nxx+nyy+Z!.) (20)
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In Egn. (19) the vector f; contains the in-plane
element nodal forces in local x and y directions, being

expressed as [fx; lo o dy I fyk]T-

Associate forces due to spin rates inthe ¥ and Z
directions may also be similarly expressed as

6@)=pplQ[ [ [*Riyaxay )

Ye (Fu

r:(Q,)=poQ"][

0 X

T
R &dxdy @2)
where

[Llxly+ X )t o xeny+ 7))
T2 L y+ X,)+n,(nx+n,y+2,)| @)

B lx(lxx+lyy+Xl.)+mx(mxx+myy+zi)
B ly(lxx+lyy+Xf)+my(mxx+myy+Z,.) 24)

The total element in-plane nodal forces are simply
combined as

f; :f;(Q,X )"‘f;(gy)"'f;(gz) (25)

and may next be transformed into the global coordinate
system (GCS) as

e _aTpe
p’=A fp (26)

for subsequent stress analysis and generation of the kg
matrix.

The out-of plane components of an element
centrifugal force vector may be derived similarly. Then,
the element centrifugal force matrices can be readily
formulated as

K,e (QX ) = Qi (né + m; )M . (27)

K'@)=02+2M

K(@)=033+mM

M being the inertia matrix and the complete expression
for the global centrifugal force matrix is obtained simply as
K” =K"(Q, )+K"”(Q,)+K"(Q,). For quadrilateral
elements, such data as derived from four constituent
triangular elements by suitably combining them in an
orderly fashion.

Figure 2 Aline element with an arbitrary spin rate

For a line element (Fig. 2), the coordinate at any point
within the element is obtained as

X X u,

_ T
Y =X+ |u, (30)
Z Z u

in which 1, and u, are deformations at any point on the

element in the local y and z directions respectively.

Proceeding as in the case of shell elements and
assuming nodal lumped masses m, the centrifugal
forces at a typical ith node expressed in global
coordinate system.

Py =mQ X, +mQLX,

(€39)]
i 2 2
Py _mQXYi +m'QZYi (32)
i 2 2
pr; =mQyZ, +mQ,Z, 33)
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The element centripetal and geometric stiffness
matrices may then be derived as before.

Coriolis Acceleration Matrix

For any structural element such a matrix can be
derived as follows

C: =2M‘Q .

in which the element inertia matrix M* in calculated by
employing standard formulation

Free Vibration of Spinning Bodies

The associated matrix equation of undamped motion
of a flexible spinning body, discretized by the finite
element method, can be derived from Eqgn. (8) as

Kq+Cq+Mg=0 (35)
in which K=K, +K'+K, is the stiffness matrix,
C=C, the Coriolis force matrix, and M is the inertia

matrix. For small vibration the matrices K and M are
real, symmetric and positive definite, whereas C. is

skew symmetric, being also a function of the spin Q.
Eqgn. (35) may be resolved into a set of first-order ordinary
differential equation as below resulting in a linear
eigenvalue problem.

Ay+By=0 36)

in which

M 0 0 -M ]
A: s B: 5 y: q
0 K M C q| @D

The matrices A and B are of order (2xN), N

being order of K, M, and C matrices, noting that B is
skew-symmetric. Solution of Eqn. (36) may be assumed

as y =g@e” yielding

(A+aB)op=0 38)

where the eigenvalues @ are pure imaginary, the
eigenvectors occurring in complex conjugate pairs. Eqn.
(38) may be further rearranged [3] as

(A-AF)g=0 s

in which F =i'B and can also be expressed in expanded

form
M 0 i '
) 0 ;*M b 4 0
0 K iM i'C|)|¥ (40)

where F is a pure Hermitian matrix, the roots A=i"@
are real and occur in pairs 4, -4, -, A, —4,,

associated eigenvectors occurring in complex conjugate
pairs. Eigenvalues of the original Eqn. (38) may simply be
obtained as /1/ i, while noting that eigenvectors are the
same for both the cases.

Solution of Eqn. (39) has been achieved earlier by
various solution techniques [3,4,5]. A variant of the multi-
vector progressive iteration technique [6,7,8] is presented
next.

Eigensolution by a Progressive multivector Iteration

Equations (38) and (39) are used for the computation
of the first NR roots and vectors. Associated solution
steps are given next:

Step 1. Perform Cholesky factorization of the real
symmetric and positive definite matrix A of order
2NX2N, taking into account the sparsity of the
constituent matrices, initially only,

_ T
A=LDL @)

L is an unit lower triangular matrix, D being diagonal
matrix.

Step 2. Form a set of randomly generated
2x NRT (NRT > NR) real, trial vectors each of order

2N, NRT being number of trial vectors.

[13( 157, zﬁ‘ 25} . NRTg NRTy] .
where
(43)

Step 3. Initially form
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(44)
Step 4. Using only unconverged roots, solve
AY’HI = BX: (45)
or in individual matrix form
0 _ A ) ()
KY; =MX* +CX: 46)
yielding Y
) _ _pax®
MY:'H - MXr (47)
thatis Y =X,
Similarly solve
AX!‘H = BYi+1 (48)
which can be elaborated as below
KXE-?I = MYi(fl) : CYi(g (49)
yielding X and also
W) _ _ )
MXi+1 - MY:‘H (50)

from which X% =—-Y®

i+1 i+l

In above the superscripts u and [ refer the upper
and lower half of a vector, respectively.

Step 5. Using unconverged vectors only, perform

vector norm check by computing an estimate of the
magnitude of a typical vector as

ig | i
Ao =] 5 ) 5

(5D
and check root convergence if
(j/?,i+l—fﬂ.i)/ ‘2., <EPSN, a prescribed convergence
parameter. Assuming that first NR1 roots have

converged, if NR1= NR , proceed to step 8.

Step 6. Setting 'p='x, p='y, *p="x, ‘p="y, -,
orthonormalize each ’p,,, vector with respect to the A
matrix, only for unconverged (NRl_NR) vectors,
yielding P, as follows:

2xNR1

jﬁi-i—l :jpi+l - Z [(lp)TAjpiH]lp -

=1

.f—l[ - )

Ia Ia

( pi+ ) Ajpﬂ- ] pi

¢:2><Zm+1 ‘ e 52)

— o - T o ],1'2

P = in+1/[(jpi+1) Ajpm]
J=2XNR1+1,2X NRT

4

Then set back '&="p, '§="p, *&="p, *§="p, and

SO on.

Step 7. Go to step 4 to continue iteration till solution
convergence is achieved, in which

v NRI+1 & NR1+2 & NRT &
X£+l =[ v Xi+1 ) xi+l XH-I] (53)

Step 8. The Rayleigh-Ritz method, involving only the
unconverged roots, is employed next to sclve the further
reduced eigenvalue praoblem

AHIQHI = Ai+1Qi+IA (54)
in which
Am = ge?:-lA(i)iH’ Az+1 = gilﬁ‘&)m (55)
with
(i)H—l = [NRHI(T):'H NRHZ(T’M e NS @m] (56)

A being an approximation of A, the diagonal matrix
containing the eigenvalues.

Step 9. A root convergence test is then performed on
each unconverged root under consideration,
Aa-'hf

3| < EPS

(57

in which EPS is the root convergence factor.
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Step 10. Recompute the eigenvectors,
(I)i+1 = (I)i+1Qi+1 (58)

and relabel @M as (i)i+1 for possible use in step 4

involving X, components of @, .

Step 11. Goto step 4 and perform steps 4, 6, 8-10
only if the number of converged roots NRI< NR.
Otherwise go to step 12.

Step 12. End of analysis.

The analysis procedure described herein enables
effective computation of the first few roots and vectors
which are often the requirement for the important
subsequent stability and dynamic response analyses. For
further references, steps 4-7, that involves checking root
norm convergence, will be referred to as phase 1
operation. Subsequent phase 2 operations, involving
Rayleigh-Ritz root convergence calculations consist of
step 4, 6, and 8-11. Thus, progressive saving in solution
time is obtained in the following key areas. (a) back
substitution operation in step 4, (b) vector norm check
process in step 5, (¢) mass orthonomalization calculation
in step 6, (d) Rayleigh Triple matrix multiplication in step
8, (e) Rayleigh vector computation in step 9. It may be
noted that all major computations in steps 1-7 are
performed in real number thereby saving considerable
computational efforts. Solution accuracy factors for
EPSN , EPS , and EPSR are set to 0.05, 0.00001 and
0.0001, respectively.

NUMBERICAL EXAMPLES

Three example problems are presented next that
testifies to the applicability and efficacy of the currently
developed solution algorithms for computation of roots
and modes of rotating bodies. The first example relates
to a spinning cantilever beam subjected to an arbitrary
spin rate. Results are presented for both the undamped
beam as well as solutions in the presence of viscous and
structural damping. The second and third example
problems pertain to a rotating cantilever plate, involving
rather large degrees of freedom. Solution results and
CPU times are compared for the usual and the
accelerated version of the associated code.

1. Spinning Cantilever Beam

Figure 3 shows a cantilever beam spinning about an
arbitrary axis. Associated data parameters, in consistent
British units, are as follows:

Young’s modulus, E = 30x10°
Cross-sectional area, A = 1.0
Moment of inertia,
about y axis = 112
about z axis = 1/24
Mass density, o = 1/6
Length, L = 60.0
Scalar nodal viscous damping = 0.6283
(in x, y, z translations)
Structural damping coefficient = 0.01
Spin rate along ¥ axis (£2,) = 0.1 Hz

A1 2 3 4 5 6 7 8 9 10 11
+——t 1— X

Figure 3 Spinning cantilever beam

Figure 4 depicts the first few mode shapes.

Figure 4 First few mode shapes for a cantilever beam
( QY =0)

Table 1 lists the natural frequencies of the cantilever
beam with various forms of damping.

7 Copyright © 2012 by ASME



Table 1 Natural frequencies of a spinning cantilever

beam

Natural frequencies, A4 (rad/sec)

D
e}
S 0,=0 Q, =0.6283 (rad/sec)
undamped yndamped  Viscous damping
1 26631  +2.7626  —0.3799 +/2.7365
2 3.7660  +3.7932  —0.3800 +/3.7742
3 165039 +16.8409 —0.3872+/16.6360
4 233387 +237476 —0.3870 +/23.7441
5 457488 +47.0130 -0.3937 +/47.0110
6 646946 +66.3958 - 0.3933+i66.3944
7 887152 +920851 —0.4012+i92.0840
8 1254547 +130.0557 - 0.4005 + i130.0550
9 1450221 +152.3365 - 0.4105 +152.3357
10 205.0799 +215.0823 - 0.4093 +/215.0817
Natural frequencies, A4 (rad/sec)
3 Q, =0.6283 (rad/sec)
= =
. Viscous and
Structural damping Structural damping
4 0.0138 + /27626  —0.3659 + /2.7365
-0.0138-i2.7626  —0.3938 — i2.7365
5 0.0189 +i3.7932  —0.3608 + i 3.7742
~0.0189-/3.7932  —0.3990 — /3.7742
5 0.0842 + /16.8411  —0.3030 + /16.6361
~0.0842 - 16.8411 —0.4714 —16.6361
3 0.1187 + i23.7479  —0.2682 + /23.7444
—0.1187 —i23.7479  —0.5057 — /23.7444
5 0.2351 +i47.0135 —0.1585 + (47.0115
—0.2351-747.0135 —0.6287 - i47.0115
g 0.3320 + /66.3966 —0.6130 + /66.3952
-0.3320-/66.3966 —0.7252 — /66.3952
. 0.4604 + /92.0862 - 0.5922 + /92.0850
—0.4604 - i92.0862 —0.8616 — /92.0850
8 0.6502 + {130.0574 - 0.2497 + /130.0565
—0.6502 - i130.0574 —1.0508 — i'130.0565
" 0.7617 +/152.3384 —0.3512 + {152.3375
~0.7617 - i152.3384 —1.1721 - 152.3375
10 1.0754 + /215.0850 —0.3799 + /215.0843

—1.0754 - i215.0850

—1.4847 - i215.0843

It may be noted that for the undamped spinning cases
as well as in the presence of structural damping the roots

occur in pairs as A,-A4,4,,—-4,,--, 4,,—1,, the

latter being also complex in nature. For the viscous
damping case the roots are in complex conjugate form

(—a+i' ), whereas when the viscous and structural

damping are combined, the real part tends to be
somewhat different corresponding to identical imaginary
parts, while also noting that the roofs of the original set of

Eqn. (30) are defined as @ = /?,/i* :

Note: lump mass option for non-spinning cases,
consistent mass option for spinning cases.

2. Spinning Plate 1

A square plate (Fig. 5), cantilevered at the base is
discretized by a 20x20 mesh, and analyses are conducted

for spin rates along four sets of local axes (€2, , Q,,
Q,,and Q,). The spin rate along an arbitrary axis, Q,
(at 45° of each axis) = 100 rad/sec, with an input of £, =
Q.= Q,= 57735 rad/sec; also 100 rad/sec for

individual axis spin rates along x, y, and z local axes. .

Associated data parameters, in consistent British units,
are as follows:

Young's modulus, E = 10x10°
Side length, L = 10.0
Thickness, t = 0.1
Poisson’s ratio, 1 = 0.3
Mass density, 0 = 0.259x10°
Y
I
a2 441
A
L
PV oo
. /:c 21 5

Figure 5 Spinning cantilever plate
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Results of these analyses are summarized in Table 2.
The first 12 frequencies are given in the table; first few
mode shapes are also shown in Fig. 6.

(e) Mode 5

(f) Mode 6

Figure 6 First 6 mode shapes for a cantilever
plate (Q=0)

Table 2 Natural frequencies (A in rad/sec) of a
spinning cantilever plate (20 x 20)
(consistent mass option)

Nan _ _ - _
spinning Q, =100 Q,=100 Q, =100 Q, =100

(2=0)

Mode

216.80 24520 162.02 126.19 51.73

529.15 549.78 51509 497.29 496.24
132591 1350.84 1331.52 1333.44 1309.70
1689.95 1703.87 1690.48 1681.95 1685.67
1922.04 1943.08 1928.36 1928.88 1913.21
3352.53 336797 3358.46 3357.42 3350.10
3810.79 3835.60 3823.53 3830.02 3804.62
3970.11 3981.71 3974.04 3968.21 3972.17
4401.49 4422.87 441228 441573 4398.49
5732.01 574432 5737.70 5735.50 5732.96
11 5993.17 6012.35 6003.40 6006.02 5992.21
12 737574 7397.47 7388.79 7393.43 7374.15

-

Ol | N |~ [N

—_
o

3. Spinning Plate 2

In an effort to compare the efficacy of the accelerated
progressive, process over the original simultaneous
iterative technique, another plate (Fig. 7) that results in a
rather larger order problem is analyzed next. Associate
details of the plate, expressed in British units, are as
follows:

Side length, L = 30.0
FE mesh 30x 30

Spin rate, (Q,) 100 rad/sec

Y
4, L =
_ ea " 981
I
£
‘)7
77!;7? . »% 31777' — X
Z Z &

Figure 7 Cantilever plate (30x30) spinning along Z-
axis

Other details are as in the previous plate example
problem. The results in a 5400 degrees of freedom
problem and the relevant eigensolutions are effected
using the current progressive simultaneous iterative
solution method as well as the original simultaneous
iterative solution; this affords a quantitative comparison of
the two analysis procedures. Each eigensolution is
derived to compute the first 100 modes and roots using
110 randomly generated trial vectors. For both solutions,
8 steps were needed to achieve convergence in phase 1
and another 10 steps were needed in phase 2 to achieve
a final solution convergence. Table 3 provides a list of
first few frequencies, for both spinning and non-spinning
cases.
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Table 3 First 20 natural frequencies (A in rad/sec) of a
30x30 spinning plate (consistent mass option)

Mode Q=0 Q, =100
1 24.1007 109.2439
2 58.9329 131.7314
3 147.6217 210.4748
4 188.3865 310.7209
5 214.3126 347.9099
6 374.5417 414.7329
7 424.7105 519.2821
8 4435959 573.6855
9 491.2739 647.7871
10 641.6125 734.3848
11 670.5685 816.0489
12 824.2067 902.8594
13 858.9417 961.7461
14 890.9186 997.2900
15 962.1829  1145.9511
16 1033.7367  1180.3106
17 1089.4643  1276.6296
18 1358.6855  1387.4848
19 1377.8232  1440.7086

20 1381.0980  1476.7978

Analyses were conducted for two combinations of
progressive features; Table 4 presents relevant details.
These data indicates that the progressive method is more
efficient than the usual simultaneous iteration technique.

Table 4 Solution details for a 30x30 spinning plate (T:
true, F: false for progressive feature)

Computation Phase PSI' sr?

Phase 1 T F

Phase 2 T F

lteration Steps in Phase 1 7 8

Iteration Steps in Phase 2 11 11
CPU time (sec) 7817  141.79

CONCLUDING REMARKS

The paper presents the novel derivations of
constituent Coriolis, centrifugal and geometrical stiffness
matrices for various finite elements undergoing rotation
along arbitrary axes. This is followed by the matrix
formulation of the associated equation of motion, which
proves to be convenient for subsequent natural frequency
analysis. An accelerated simultaneous iteration solution
method is also presented in some details. Finally, a
number of example problems are presented for a beam
and plates rotating along a set of arbitrary axes, that
testifies to the efficacy and broad applicability of the
currently developed techniques. A comparison of CPU
time is also provided for the current accelerated solution
against the original simultaneous iterative method, noting
the marked improvement. These techniques were
incorporated in a multidisciplinary finite element analysis
code [2], capable of solving a large array of practical
problems.
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