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Abstract 21	  

We examine satellite-based measurements of chlorophyll solar-induced 22	  

fluorescence (SIF) over the region impacted by the Russian drought and heat wave of 23	  
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2010. Like the popular Normalized Difference Vegetation Index (NDVI) that has been 24	  

used for decades to measure photosynthetic capacity, SIF measurements are sensitive to 25	  

the fraction of absorbed photosynthetically-active radiation (fPAR). However, in 26	  

addition, SIF is sensitive to the fluorescence yield that is related to the photosynthetic 27	  

yield. Both SIF and NDVI from satellite data show drought-related declines early in the 28	  

growing season in 2010 as compared to other years between 2007 and 2013 for areas 29	  

dominated by crops and grasslands. This suggests an early manifestation of the dry 30	  

conditions on fPAR. We also simulated SIF using a global land surface model driven by 31	  

observation-based meteorological fields. The model provides a reasonable simulation of 32	  

the drought and heat impacts on SIF in terms of the timing and spatial extents of 33	  

anomalies, but there are some differences between modeled and observed SIF. The model 34	  

may potentially be improved through data assimilation or parameter estimation using 35	  

satellite observations of SIF (as well as NDVI). The model simulations also offer the 36	  

opportunity to examine separately the different components of the SIF signal and 37	  

relationships with Gross Primary Productivity (GPP). 38	  

1. Introduction 39	  

For over 30 years, the primary tool for monitoring vegetation globally from space 40	  

has been reflectance measurements at visible and near-infrared wavelengths  (e.g., 41	  

Tucker, 1979; Myneni et al., 1997). Since 1981, there is a continuous record of the 42	  

Normalized Difference Vegetation Index (NDVI) from the Advanced Very High 43	  

Resolution Radiometer (AVHRR) series of instruments on meteorological satellites 44	  

(Tucker et al., 2005). The NDVI and similar indices utilize visible and near-infrared 45	  

reflectances on both sides of the so-called red-edge (their difference normalized by their 46	  
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sum) and are sensitive to the amount of green biomass within a satellite pixel. These 47	  

indices and related parameters have been widely used to examine spatial and inter-annual 48	  

variations in vegetation and for many other applications including estimation of gross 49	  

primary productivity (GPP) (e.g., Tucker & Sellers, 1986; Randerson et al., 1997; 50	  

Running et al., 2004).  51	  

Satellite measurement of solar-induced fluorescence (SIF) from chlorophyll has 52	  

emerged over the last few years as a different method to monitor vegetation globally from 53	  

space (e.g., Guanter et al., 2007, 2012; Joiner et al., 2011, 2012; Frankenberg et al., 54	  

2011). SIF measurements are based on the fact that a small fraction of the energy 55	  

absorbed by vegetation (of the order of a percent) is emitted as fluorescence. The 56	  

fluorescent emission has two peaks near 685 and 740 nm, known as the red and far-red 57	  

emission features. All of the satellite measurements reported thus far have been in the far-58	  

red spectral region, where reabsorption of the fluorescence within the leaves and canopy 59	  

is relatively small.  60	  

Relationships between SIF, NDVI, GPP and other parameters can be understood 61	  

within the context of the light-use efficiency (LUE) model (Monteith, 1972), i.e., 62	  

GPP = LUE * fPAR * PAR = LUE * APAR,   (1) 63	  

where fPAR is the fraction of absorbed Photosynthetically-Active Radiation, and 64	  

APAR=fPAR*PAR is the total amount of absorbed PAR. The amount of SIF at the top-65	  

of-canopy can be approximated in a similar form, i.e., 66	  

 SIF = Θf * fPAR * PAR * Ωc = Θf * APAR * Ωc,   (2) 67	  

where Θf is the fluorescence yield at the membrane scale, and Ωc is a radiative transfer 68	  

function linking the escape of fluorescence from the top of canopy to the emission of 69	  
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fluorescence at the scale of the chloroplast membranes. It is reasonable to assume that Ωc 70	  

remains fairly constant for repeat observations of a vegetated area made from a satellite 71	  

over a limited period of time when vegetation structure is not changing.  72	  

 The NDVI is an indicator of potential photosynthesis or photosynthetic capacity as 73	  

it is a measure of chlorophyll abundance and energy absorption that varies with abiotic 74	  

conditions (Myneni et al., 1995). SIF responds linearly to changes in APAR, but this will 75	  

be convolved with changes in Θf that may also be related to stress.  NDVI also responds 76	  

to stress by a reduction of energy absorption, and this occurs on the order of a few days 77	  

(Tucker et al., 1981).  78	  

 If Ωc is assumed constant, and the ratio LUE to Θf also remains constant, then it can 79	  

be seen from Eqs. (1) and (2) that SIF will be linearly related to GPP.  Theory and 80	  

measurements suggest that under strong illumination, such as natural illumination present 81	  

during daytime satellite overpasses, the ratio of LUE to Θf remains relatively constant, at 82	  

least for fluorescence from photosystem II (e.g., Berry et al., 2013; Porcar-Castell et al., 83	  

2014). Previous studies have focused on relationships between GPP estimated from flux 84	  

tower measurements and satellite-based SIF in terms of both in terms of magnitude 85	  

(Guanter et al., 2014) and seasonal variations (Joiner et al., 2014). These studies have 86	  

demonstrated that on a weekly to monthly time-scale, there is a high correlation between 87	  

GPP and SIF. 88	  

Other studies have examined relationships between remotely-sensed SIF and LUE 89	  

including stress. These studies have utilized ground-based measurements (e.g., Louis et 90	  

al., 2005; Meroni et al., 2008; Middleton et al., 2009, 2011; Damm et al., 2010; Daumard 91	  

et al., 2010) as well as satellite-based SIF (e.g., Lee et al., 2013; Parazoo et al., 2013; 92	  
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Zhang et al., 2014). The latter studies with satellite data have focused primarily on the 93	  

Amazonia basin and maize and soybean croplands in the midwest US. Some of these 94	  

studies show that stress, including heat and moisture stress, can manifest itself earlier or 95	  

be more pronounced in SIF as compared with vegetation indices (e.g., Daumard et al., 96	  

2010). This can occur when there is a decrease in the Θf component of SIF rather than, or 97	  

in addition to, a decrease in fPAR that would be reflected in both SIF and NDVI.  98	  

In this work, we examine the relative importance of Θf and fPAR to the SIF signal 99	  

in a situation of high stress: the regional drought and heat wave that occurred in western 100	  

Russia due to a persistent blocking ridge over central Europe during the months June 101	  

through August 2010 (e.g., Grumm, 2011). Societal impacts of this event included 102	  

massive peat and forest fires, a decrease in wheat production of 20-30% relative to 2009, 103	  

and an increase in death rates in nearby cities including Moscow. Because this drought 104	  

and heat wave occurred over an extensive region, we can examine its effects on SIF and 105	  

NDVI over areas covered with predominantly different vegetation types. This allows for 106	  

an assessment of whether certain vegetation types are more or less prone to stress and 107	  

damage and whether stress is observed earlier in the SIF data for different vegetation 108	  

types.  109	  

In addition to examining satellite data, we simulate SIF and other parameters 110	  

using a global land surface model forced by observation-based meteorological fields. 111	  

Within this simulation, we are able to examine the effects of the drought and heat wave 112	  

on fPAR and photosynthesis. This provides further insight into the relative effects of the 113	  

drought on LUE, Θf, PAR, and fPAR and demonstrates the skill of the model in 114	  

predicting drought-induced anomalies. To our knowledge, this region has not yet been 115	  
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examined in detail in the literature with respect to satellite-based SIF observations. 116	  

 117	  

2. Data and methods 118	  

We examine data within six regions of size 2° longitude by 1° latitude over 119	  

western Russia in areas impacted by the drought and heat wave in 2010. Because the SIF 120	  

signal has a lower signal to noise ratio as compared with the NDVI, we need to compute 121	  

averages over spatial domains approximately this size. The individual regions were 122	  

chosen because they contain various fractions of different vegetation types as shown in 123	  

Figure 1. The location of each box and dominant International Geosphere Biosphere 124	  

Programme (IGBP) vegetation type from the MODIS Land Cover Type Climate 125	  

Modeling Grid (CMG) product for 2010 are listed in Table 1 (Friedl et al., 2010). We 126	  

compute 8-day averages of various meteorological and satellite vegetation parameters 127	  

throughout the growing season separately for 2010 (the drought year) and for all other 128	  

years with available satellite GOME-2 SIF data (2007 to 2013 excluding 2010, hereafter 129	  

referred to as the climatology).  130	  

 131	  

2.1 GOME-2 SIF  132	  

The approach to retrieve the SIF signal from space was first demonstrated by 133	  

observing the filling-in of the strong oxygen A-band absorption feature (Guanter et al., 134	  

2007). As this approach is difficult to implement globally, subsequent satellite retrievals 135	  

utilized the filling-in of solar Fraunhofer lines surrounding the oxygen A-band (near 758 136	  

and 770 nm) using high spectral resolution measurements from a Fourier transform 137	  

spectrometer on the Japanese Greenhouse gases Observing SATellite (GOSAT) (Joiner et 138	  

al., 2011, 2012; Frankenberg et al., 2011; Guanter et al., 2012). Later it was shown that 139	  



7	  

SIF could be retrieved at 866 nm using hyperspectral measurements from the SCanning 140	  

Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) on 141	  

board the European Space Agency’s ENVIronmental SATellite (ENVISAT) (Joiner et 142	  

al., 2012) and near 740 nm with the Global Ozone Monitoring Instrument 2 (GOME-2) 143	  

on MetOp satellites (Joiner et al., 2013, 2014). While spatial and temporal variations in 144	  

SIF from GOSAT and GOME-2 are comparable, GOME-2 SIF has better temporal and 145	  

spatial coverage than GOSAT owing to greater sampling. We therefore use GOME-2 SIF 146	  

exclusively for this study. The MetOp satellites, like ENVISAT and GOSAT, are in sun-147	  

synchronous orbits. The MetOp local overpass times are ~09:30. 148	  

 GOME-2 is a grating spectrometer that measures backscattered sunlight in a 149	  

scanning nadir-viewing geometry at wavelengths between 270 and 800 nm (Munro et al., 150	  

2006). GOME-2 instruments have been launched on the European Meteorological 151	  

Satellites (EUMETSAT) MetOp A and B platforms on 19 October 2006 and 17 152	  

September 2012, respectively. Here, we use data from MetOp A covering the period 153	  

2007-2013. The nominal ground pixel lengths near nadir are approximately 40 km and 80 154	  

km in the along- and across-track directions, respectively, with a swath of width 1920 155	  

km. GOME-2 achieves global coverage in this configuration within about 1.5 days. Since 156	  

15 July 2013, the GOME-2 instruments onboard MetOp A and B operate in a tandem 157	  

mode. In this mode, GOME-2 onboard MetOp B makes measurements with the nominal 158	  

swath width and pixel size, while GOME-2 onboard MetOp A measures in a reduced 159	  

swath of 960 km and pixel size of ~40 km by 40 km. 160	  

GOME-2 SIF retrievals are derived for a particular viewing geometry in radiance 161	  

units (mW/m2/nm/sr) from the filling-in of solar Fraunhofer lines in the vicinity of the 162	  
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740 nm far-red chlorophyll fluorescence emission peak similar to Joiner et al. (2013, 163	  

2014). The retrieval uses a principal component analysis approach with a simplified 164	  

radiative transfer model to estimate atmospheric absorption, surface reflectance (varying 165	  

with wavelength), and fluorescence emission. We have made several adjustments in the 166	  

version 2.6 (v2.6) data set used here as compared with the approaches described Joiner et 167	  

al. (2013, 2014); this reduces small biases that were present in previous versions. In v2.6 168	  

we use a reduced spectral fitting window between 734 and 758 nm with a single set of 169	  

principal components (PCs) derived from cloudy data over ocean, desert, and ice/snow 170	  

cover to estimate the spectral structure of atmospheric water vapor absorption and 171	  

instrumental artifacts. We correct for drift in the absolute instrument calibration using 172	  

GOME-2 solar spectra. Finally, we apply an a posteriori correction for small biases 173	  

caused presumably by straylight and dark current as discussed in Köhler et al. (2014) 174	  

using data over ocean. The GOME-2 v2.6 SIF data are publicly available from 175	  

http://avdc.gsfc.nasa.gov. 176	  

We use v2.6 level 2 SIF retrievals in this study (pixel data as opposed to level 3 177	  

gridded data sets). For the time-series analysis, we average the GOME-2 data over a 178	  

particular area in 8-day bins. Uncertainties are estimated in each 8-day bin as the root 179	  

sum square of the standard error of the mean. A nominal constant error of 0.15 180	  

mW/m2/nm/sr was used to account for additional errors following Joiner et al. (2014). 181	  

Unlike the NDVI, SIF is sensitive to the amount of solar irradiance at the surface 182	  

(equation 2). When comparing directly with NDVI, we therefore normalize SIF by cosine 183	  

of solar zenith angle, a proxy for the seasonal cycle of potential surface solar irradiance, 184	  

and for the Sun-Earth distance. 185	  

 186	  
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2.2 MODIS NDVI 187	  

 We examine three different NDVI data sets from the MODerate-resolution 188	  

Imaging Spectroradiometer (MODIS) on the NASA Earth Observing System (EOS) 189	  

Aqua satellite: 1) the standard MYD13Q1 vegetation indices data set (Huete et al., 2002); 190	  

2) the Global Inventory Modeling and Mapping Studies GIMMS NDVI data applied to 191	  

Aqua MODIS (Tucker et al., 2005); 3) MODIS NDVI computed from surface 192	  

reflectances from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) 193	  

algorithm (Lyapustin et al., 2011a,b). We focus on the Aqua GIMMS NDVI in the main 194	  

text and show comparable results with the other NDVI data sets in the appendix. The 195	  

Aqua satellite has an ascending node equator crossing near 13:30 LT. We estimate errors 196	  

as sum of the standard error of the mean and a nominal empirically estimated constant 197	  

error of 0.03. 198	  

 199	  

2.3 MERRA reanalysis data  200	  

We examine several meteorological fields from the NASA Global Modeling and 201	  

Assimilation Office (GMAO) Goddard Earth Observing System Data Assimilation 202	  

System version 5 (GEOS-5) Modern-Era Retrospective Analysis for Research and 203	  

Applications (MERRA) data set (Rienecker et al., 2011). These include surface skin 204	  

temperatures (Tskin) and total profile soil wetness (soil moisture), which are from the 205	  

Incremental Analysis Updates 2D simulated land surface diagnostics product. We also 206	  

use temperature at 2 m above the displacement height and 2 m specific humidity from the 207	  

IAU 2D atmospheric single-level diagnostics product to calculate vapor pressure deficit 208	  

(VPD, the difference between the actual and saturation-vapor pressure). Here, we use 209	  

daily-averaged fields generated at 2/3° longitude by 1/2° latitude resolution. Near-surface 210	  
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specific humidity anomalies (Fig. 2a) in July show significantly drier than average 211	  

conditions (13-32%) over a large part of the area examined. The Tskin anomalies show 212	  

that the heat wave (up to ~7K above normal for the monthly average) was confined to a 213	  

smaller area in the western part of the region (Fig. 2b). Figure 2c indicates that VPD 214	  

anomalies are heavily controlled by temperature; the VPD anomalies in August are 215	  

smaller than those in July. Soil moisture for both months shows negative anomalies for 216	  

all six boxes (Fig. 2d). 217	  

  218	  

2.4 Catchment-CN land surface model simulations	 219	  

We examine several variables obtained from an off-line run of the Catchment-CN 220	  

land surface model (Koster et al., 2014). The Catchment-CN land surface model is 221	  

essentially a merger of the energy and water budget framework of the NASA Global 222	  

Modeling and Assimilation Office’s Catchment model (Koster et al., 2000) with the 223	  

prognostic carbon elements (and thus prognostic phenology elements) of the National 224	  

Center for Atmospheric Research/Department of Energy (NCAR/DOE) Community Land 225	  

Model 4 (CLM4) dynamic vegetation model (Thornton et al., 2009; Oleson et al., 2010). 226	  

The merged Catchment-CN model has some unique features, including the ability to 227	  

represent multiple vegetation regimes within a surface element, each static vegetation 228	  

regime associated with a different dynamic hydrological regime. The fractional areas 229	  

occupied by individual plant functional types in the merged system do not change, but 230	  

vegetation growth, soil heterotrophic activity, carbon stocks, and other ecosystem states 231	  

(such as those associated with leaf area index) vary prognostically.  Comparison of 232	  

simulated fPAR with satellite-based estimates from the GIMMS AVHRR dataset (Tucker 233	  
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et al., 2005) demonstrate that the model, while biased, captures well the controls imposed 234	  

by water supply on the global distributions of phenological variables (Koster et al. 2014); 235	  

overall, Catchment-CN is found to be a useful tool for the analysis of the connections 236	  

between climate and vegetation. 237	  

Fluorescence was added to the model by including the approach detailed for a 238	  

similar implementation within the CLM4 (Lee et al., 2014). The fluorescence code uses 239	  

as inputs the photosynthesis rate, the intracellular leaf CO2, and the CO2 compensation 240	  

point; it produces as an output SIF, as a daily mean for both the sunlit and shaded 241	  

portions of the canopy. We used a model calibrated to leaf scale measurements of 242	  

chlorophyll fluorescence from pulse amplitude modulated (PAM) fluorometry to simulate 243	  

Θf as a function of the rate of photosynthesis simulated within the model. Key model 244	  

variables are the flux of absorbed PAR, the rate of photosynthetic electron transport 245	  

provided by the photosynthesis parameterization, and the level of non-photochemical 246	  

quenching that can be measured with PAM fluorometry.  247	  

The offline Catchment-CN simulations are driven with atmospheric forcing from 248	  

the MERRA-Land reanalysis product (Reichle et al., 2011), which is identical to that of 249	  

MERRA except that surface precipitation is corrected to a global, daily, 0.5o gauge 250	  

product.  Full Catchment-CN model spin-up was ensured by cycling over a 35 year 251	  

period several times prior to producing the simulation data examined here. The 252	  

Catchment-CN model was run on 64,770 irregularly shaped tiles (or computational 253	  

elements) based on watershed delineations with a mean area of 2,010 km2 and median 254	  

area of 1,186 km2. We use monthly mean output generated at 2.5° longitude by 2.0° 255	  

latitude resolution from 2007 to 2013 for all parameters examined including surface skin 256	  
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temperature, fPAR (calculated as APAR/PAR), PAR, SIF, and GPP.  257	  

 258	  

3. Results 259	  

3.1 Seasonal anomalies 260	  

The top half of each of the six panels of Figure 3 (one panel for each of the box 261	  

regions in Fig.1) shows the climatological seasonal cycles of GOME-2 SIF and GIMMS 262	  

NDVI as well as the values of 2010 for April to September. The bottom half of each 263	  

panel shows the 2010 anomalies of VPD and soil moisture from MERRA.  We next 264	  

discuss results for boxes grouped by dominant vegetation types.  265	  

  266	  

3.1.1. Croplands 267	  

For the boxes dominated by croplands (1, 2, and 5), climatological SIF and NDVI 268	  

reach their maxima in middle June to late July depending on location; croplands towards 269	  

the east generally peak later. As has been shown in other studies for croplands (as well as 270	  

mixed forest), SIF starts to decline earlier in autumn as compared with reflectance-based 271	  

indices such as the NDVI; the earlier decline of SIF is in better agreement with GPP from 272	  

flux tower measurements (Joiner et al., 2014). Soil moisture anomalies indicate 273	  

substantially drier than normal conditions starting around the middle of May for these 274	  

boxes. VPD anomalies are large for box 1 that is within the area impacted by the heat 275	  

wave. Similar to the surface temperatures, VPD anomalies peak in late July. The SIF and 276	  

NDVI 2010 negative anomalies in these boxes are significant. For box 1, within the heat 277	  

wave region, there is a somewhat later and smaller 2010 anomaly as compared with the 278	  

other two cropland-dominated boxes. This could be because box 1 is in the basin of the 279	  

Volga river that supplies ground water. Both SIF and NDVI indicate a slight partial 280	  
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recovery in August in boxes 1 and 2 only. There is a very strong correspondence between 281	  

the GIMMS NDVI and SIF for all areas. 282	  

 283	  

3.1.2. Grasslands and mixed forest 284	  

Boxes 3, 4, and 6 are primarily covered by grasslands and mixed forest. Box 3, 285	  

composed primarily of mixed forest, appears to be less affected by drought than the other 286	  

regions examined; the differences between the climatology and 2010 for SIF and NDVI 287	  

are not statistically significant. Box 4, which is primarily grasslands, shows negative 288	  

2010 anomalies for both NDVI and SIF starting in early June. In contrast, box 6, which 289	  

contains a mixture of grasslands and mixed forests, shows only small negative 2010 290	  

anomalies starting in late June.  291	  

 292	  

3.2 Land surface modeling results 293	  

Figure 4 shows monthly means of the Catchment-CN land surface model output 294	  

for the climatology and for 2010 in the six boxes. Parameters examined are fPAR, PAR 295	  

APAR, and LUE. In Figure 5, SIF and GPP as well as SIF and GPP normalized with 296	  

respect to incoming PAR are shown. Surface skin temperature and soil moisture (root 297	  

zone) are shown in Figure 6. There are significant negative 2010 anomalies in GPP for all 298	  

boxes starting mostly in June, which are influenced by negative anomalies in LUE. The 299	  

surface skin temperatures are generally higher in 2010 for all regions as may be expected 300	  

in conjunction with lower GPP. Soil moisture shows clear negative 2010 anomalies after 301	  

May-April in the most of boxes except boxes 1 and 3, where there are negative anomalies 302	  

for the 2010 growing season. 303	  

In contrast, the model’s fPAR does not show a 2010 anomaly for box 3 dominated 304	  
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by mixed forest. In addition, the model’s fPAR negative anomalies for the other boxes 305	  

generally begin in July or August, about one month later than the GPP anomalies. PAR 306	  

2010 anomalies, on the other hand, are generally insignificant to positive, owing to 307	  

decreases in cloudiness during the peak drought months. Because the model’s 2010 PAR 308	  

and fPAR anomalies are of opposite sign, this leads to smaller negative or insignificant 309	  

2010 APAR anomalies as compared with fPAR anomalies.  310	  

The model’s 2010 SIF anomalies are somewhat smaller (in a percentage sense) 311	  

than those of GPP. For example, when GPP drops to near zero starting in August for box 312	  

5, while the simulated SIF remains slightly above zero for August 2010. The model’s 313	  

2010 SIF anomalies in most boxes are significant starting in July, while GPP negative 314	  

anomalies begin in June for all boxes. However, when normalized with respect to 315	  

incoming PAR, SIF shows earlier negative anomalies (starting in June) for most boxes 316	  

and significant anomalies for all boxes, which is similar to the GOME-2 SIF anomalies. 317	  

However, the model’s 2010 negative fPAR anomalies start later (July), while the GIMMS 318	  

NDVI anomalies begin earlier similar to the SIF anomalies. This indicates that the 319	  

model’s fPAR response to drought/heat stress may have occurred somewhat late. 320	  

In our analysis of GOME-2 SIF in Fig. 3, we partially filtered for clouds; we 321	  

removed pixels with effective cloud fractions > 0.15. We also normalize SIF with respect 322	  

to the incoming clear-sky PAR. It should be noted that the spectral signature of SIF is not 323	  

affected by clouds. The main effect of clouds on satellite-observed SIF is a shielding 324	  

effect that reduces the amount of canopy-level SIF that is observed by the satellite 325	  

instrument. The cloud-shielding effect is relatively small for thin and broken clouds with 326	  

low cloud fractions. For example, Frankenberg et al. (2013) showed with simulated data 327	  
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that 20% or less of the canopy-level SIF signal is lost from satellite observation for cloud 328	  

optical thicknesses up to 5. To be consistent, because the PAR-normalized, cloud-filtered 329	  

GOME-2 SIF is biased toward clear skies, it should be compared with the PAR-330	  

normalized SIF from the model.   331	  

The model produces similar (PAR-normalized) SIF anomalies as compared with 332	  

the GOME-2 data, although the overall phenology is somewhat different. One difference 333	  

between model and GOME-2 SIF is for the mixed forest dominated box 3. For this box, 334	  

GOME-2 SIF does not show a significant 2010 SIF negative anomaly, while the model 335	  

simulates a significant (normalized) anomaly. The fact that NDVI does not show a 336	  

significant 2010 anomaly for this box is consistent with the absence of an fPAR anomaly 337	  

in the model. Therefore, the model’s negative 2010 photosynthesis anomaly may be 338	  

overestimated for this box.  339	  

 To provide an overall regional context, Figure 7 shows maps of 2010 anomalies 340	  

of fPAR, PAR, APAR, and LUE from the land-surface model for July and August. fPAR 341	  

anomalies are smaller in July as compared with August. The higher positive 2010 PAR 342	  

anomalies in July are reflected in the APAR anomalies and lead to some positive 343	  

anomalies in APAR. LUE anomalies are negative over most of the domain and more 344	  

significant in August. 345	  

 Figure 8 also shows maps of 2010 anomalies from the land-surface model for SIF, 346	  

GPP, and both quantities normalized with respect to PAR. As noted above, the positive 347	  

anomalies in GPP and SIF in the northwestern portion of the study area result from PAR 348	  

anomalies, while the negative anomalies towards the south in the PAR-adjusted quantities 349	  

are shown with contributions from fPAR; the increase in magnitude of the negative 350	  
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anomalies from July to August results primarily from the decline in fPAR over that 351	  

period.   352	  

 Figure 9 compares the model’s SIF with that from GOME-2 for both the 353	  

climatology and 2010 anomalies. Here, the model SIF is normalized with respect to PAR 354	  

and GOME-2 SIF is scaled as before by cosine of the solar zenith angle. The satellite SIF 355	  

data are shown at both the model resolution and a higher spatial resolution. To provide 356	  

more samples per gridbox, we retain all data with effective cloud fractions up to 0.3. This 357	  

did not substantially change the spatial or temporal SIF distributions as compared with a 358	  

lower cloud fraction threshold. The satellite and model SIF (climatology and anomalies) 359	  

are generally comparable, although there are some differences in the spatio-temporal 360	  

distributions. Overall, the model is shown to produce a reasonable response of SIF to the 361	  

drought/heat wave. At the same time, it provides insight into how the different 362	  

components of SIF and SIF itself may respond to heat and water stress. Note that the 363	  

model data are output as monthly means (averages of daily means) and so cannot be 364	  

directly compared with instantaneous satellite SIF measurements taken at a specific time 365	  

of day. 366	  

 367	  

3.3 Inter-annual variations in SIF and NDVI 368	  

Figure 10 compares interannual variability (2007-2013) of the GOME-2 SIF and 369	  

the GIMMS NDVI integrated over April-September for the six boxes examined above. 370	  

Note that the axes are normalized to the maximum values. For all boxes except box 3, 371	  

SIF and NDVI are correlated (r2 values of 0.75−0.91). This relatively high correlation 372	  

confirms that fPAR is a major contributor to the interannual variability of SIF in this 373	  

region.  374	  
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An interesting feature is the deviation of the fitted slopes (solid lines) from the 375	  

one-to-one (1:1) lines (dashed). For example, for box 4 (primarily grasslands), the 376	  

minimum value of SIF in 2010 is > 60% less than the maximum, while that of NDVI is  377	  

~35% less than maximum. While fPAR impacts both SIF and NDVI, SIF is additionally 378	  

affected by fluorescence efficiency, related to photosynthesis and light-use efficiency. 379	  

This may explain the larger percentage drought impact on SIF as compared with NDVI 380	  

for these boxes. It should also be noted that fPAR is somewhat non-linear with respect to 381	  

NDVI (e.g., Los et al., 2000). 382	  

	 383	  

4. Conclusions 384	  

We have examined the response of canopy-level SIF to heat and drought stress in 385	  

2010 over a portion of Russia that includes both agricultural areas and forested regions 386	  

using satellite SIF and NDVI observations as well as model simulations. SIF and NDVI 387	  

satellite data show similar signs of drought stress early in the growing season well before 388	  

the onset of the heat wave both inside and outside the main area of the heat wave. Large 389	  

declines in 2010 are seen in both quantities throughout much of the drought-affected area. 390	  

Areas dominated by crops and grasslands showed significant drops in SIF and NDVI, 391	  

while regions of predominantly mixed forest showed small to insignificant reductions.   392	  

 We simulated SIF using a global land surface model forced by observations-based 393	  

meteorological fields. The model simulated large negative anomalies in 2010 SIF similar 394	  

to those seen in the GOME-2 satellite SIF data. The model also produced spatial and 395	  

temporal patterns of the SIF anomalies similar to those derived from GOME-2, although 396	  

with some exceptions. There exists potential to improve the model’s response by using 397	  
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the satellite SIF observations for data assimilation (modification of the model’s 398	  

prognostic variables) and/or parameter estimation; this could be a topic of a future study. 399	  

Although the model simulated earlier drought-related declines in photosynthesis as 400	  

compared with fPAR, the NDVI data suggest that there were significant declines in fPAR 401	  

early in the growing season for areas dominated by crops and grasslands. 402	  

 New satellite sensors, such as the recently launched Orbiting Carbon Observatory 403	  

2 (OCO-2) (Frankenberg et al., 2014) and the TROPOspheric Monitoring Instrument 404	  

(TROPOMI) (Veefkind et al., 2012) to be launched in 2016 will offer higher spatial 405	  

resolution measurements as compared with GOME-2. In addition, these satellites will 406	  

make measurements from sun-synchronous polar orbits with local overpass times in the 407	  

early afternoon, when stress effects should be peaking and may be larger during the 408	  

morning overpass of GOME-2. We plan to utilize these new data sets for further 409	  

examination of the manifestation of stress effects on observed SIF. We also plan further 410	  

comparisons between satellite and modeled SIF with an aim towards using the satellite 411	  

SIF data to improve models as demonstrated by the pioneering study of Zhang et al. 412	  

(2014). 413	  

  414	  

Appendix 415	  

 Here, we compare seasonal cycle of NDVI from GIMMS, MAIAC, and the 416	  

standard Aqua MODIS product MYD13Q1, 16-day L3 global 250m SIN grid collection 5 417	  

(MYD13) for the climatology and 2010. The products differ mainly in how the cloud 418	  

detection is applied. The MYD13 data have been additionally filtered for cloud and 419	  

aerosol contamination following the methodology of Xu et al. (2011). All three NDVI 420	  
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data sets look similar, although there are a few exceptions. For example, in box 1, the 421	  

climatologies from GIMMS and MAIAC are similar, but MYD13 shows a significantly 422	  

lower peak than the other two. Also, climatological MYD13 in box 4 does not show a dip 423	  

in middle June as the GIMMS and MAIAC do. For other boxes, the seasonal cycles for 424	  

all three products are more similar. 425	  

 	 426	  

	 427	  

Figure A1: Seasonal cycles of NDVI from GIMMS (blue), MAIAC (green) and standard product 428	  

of MYD13Q1 (red); solid lines (broken lines with symbols) are for the climatology, (2010). 429	  

Averages are computed using data only where all three data sets provided successful retrievals. 430	  

MYD13 data are interpolated to match 8-day intervals of the other data sets. 431	  

 432	  
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Table 1: Location of the twelve box regions (center of 2° longitude × 1° latitude box) and 661	  

major IGBP vegetation types; CRO: croplands, GRA: grasslands, MF: mixed forest. The 662	  

percentage of the coverage is also shown (not shown if the coverage < 5%). 663	  

Box number Latitude Longitude Vegetation cover (%) 

1 54.5° N 48.0° E CRO: 62  

GRA + MF: 14 

MF: 11 

2 52.5° N 55.0° E CRO: 97 

3 54.5° N 57.7° E MF: 95 

GRA + MF: 5 

4 51.0° N 67.5° E GRA: 100 

5 54.0° N 67.5° E CRO: 81 

GRA: 10 

GRA + MF: 8 

6 56.5° N 70.5° E GRA + MF: 86 

MF: 8 

CRO: 4 

 664	  

665	  
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	  665	  

Figure 1: Map of land cover type for 2010. The six box regions used for further analysis 666	  

are also shown. 667	  

 668	  

	  669	  
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 670	  

Figure 2: Maps of July (left column) and August (right) 2010 anomalies of MERRA 671	  

meteorological fields (differences between July (August) 2010 and average of all other 672	  

July’s (August’s) from 2007-2013 not including 2010): a) specific humidity (anomalies 673	  

in terms of %), b) surface skin temperature (anomalies in K), and c) vapor pressure 674	  

deficit (anomalies in terms of kPa).  675	  

 676	  

 677	  

 678	  

 679	  
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 680	  

Figure 3: Top panels: Seasonal cycle (8-day means) of GOME-2 fluorescence 681	  

[mW/m2/nm/sr] (black lines), Aqua MODIS GIMMS NDVI [unitless] (magenta lines); 682	  

solid lines (broken lines with symbols) are for climatology (2010).  Error ranges are 683	  

indicated as shading or vertical bars where for clarity only a few representative error bars 684	  

are shown (in July) for the 2010 data.  Bottom panels: Vapor pressure deficit anomaly  685	  

[hPa] (black line) and soil moisture (SM) anomaly [fraction] (blue line) for the six boxes 686	  

shown in Fig. 1. Anomalies are calculated as 2010 - climatology. 687	  

 688	  
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	 689	  

Figure 4: Monthly mean Catchment-CN land surface model results with MERRA forcing 690	  

for selected boxes shown in Fig. 1. Black (red) lines represent climatological mean values 691	  

(2010 values). From left column, fPAR [unitless], PAR [W/m2], APAR [W/m2] and d) 692	  

LUE [µg C/J]. LUE is calculated as GPP/APAR. The black vertical bars indicate standard 693	  

deviations. The blue vertical dotted lines indicate June. Note: different y-scales are used 694	  

for the different boxes. 695	  

 696	  
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 697	  

Figure 5: The same as Fig.4 but for (from left) SIF [µmol photons/m2/s], SIF normalized 698	  

with respect to PAR [× 10-3], GPP [µg C/m2/s] and GPP normalized with respect to PAR 699	  

[µg C⋅W/s].700	  
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 701	  

Figure 6: Same as Fig. 4 but for surface skin temperature [K] (left) and root-zone soil 702	  

moisture [fraction] (right). 703	  

 704	  
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 705	  

Figure 7: Maps of 2010 anomalies for July (right column) and August (left), computed as 706	  

differences between July (August) 2010 and average of all other July’s (August’s) from 707	  

2007-2013 not including 2010 calculated using MERRA-forced land surface model 708	  

simulations: a) fPAR [unitless], b) PAR [W/m2], c) APAR [W/m2] and d) LUE [µg C/J]. 709	  

710	  
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 710	  

Figure 8: Same as Fig.7 but for: a) SIF [µmol photons/m2/s], b) SIF normalized with 711	  

respect to PAR [× 10-3], c) GPP [µg C/m2/s], and d) GPP normalized with respect to PAR 712	  

[µg C/s/W]. 713	  

 714	  
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 715	  

Figure 9: Maps of the SIF monthly climatology (a, b and c) and anomaly (d, e and f) for 716	  

July (left column) and August (right) from MERRA-forced land surface model 717	  

simulations (a and d), GOME-2 with 2.0°×2.5° resolutions (b and e), and GOME-2 with 718	  

0.5°×0.5° resolutions (c and f). Anomalies are computed as in Fig. 3. Model SIF is 719	  

normalized with respect to model PAR.720	  
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	 721	  

Figure 10: Scatter diagram of April-September integrated GOME-2 SIF and Aqua 722	  

MODIS GIMMS NDVI for each year in the range 2007 to 2013 for the six boxes shown 723	  

in Fig. 1; red numbers indicate years (i.e., 07=2007). Values are scaled (divided by the 724	  

maximum for each box). Solid line: linear fit; dashed: 1:1 line. The dominant vegetation 725	  

type, correlation (r2), and slope values are provided for each box. 726	  

 727	  

 728	  


