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Abstract 10 

A detailed understanding of pāhoehoe emplacement is necessary for developing 11 

accurate models of flow field development, assessing hazards, and interpreting the 12 

significance of lava morphology on Earth and other planetary surfaces. Active pāhoehoe 13 

lobes on Kīlauea Volcano, Hawaiʻi, were examined on 21–26 February 2006 using 14 

oblique time-series stereo-photogrammetry and differential global positioning system 15 

(DGPS) measurements. During this time, the local discharge rate for peripheral lava lobes 16 

was generally constant at 0.0061 ± 0.0019 m3/s, but the areal coverage rate of the lobes 17 

exhibited a periodic increase every 4.13 ± 0.64 minutes. This periodicity is attributed to 18 

the time required for the pressure within the liquid lava core to exceed the cooling-19 

induced strength of its margins. The pāhoehoe flow advanced through a series of down-20 

slope and cross-slope breakouts, which began as ~0.2 m-thick units (i.e., toes) that 21 

coalesced and inflated to become approximately meter-thick lobes. The lobes were 22 

thickest above the lowest points of the initial topography and above shallow to reverse-23 
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facing slopes, defined relative to the local flow direction. The flow path was typically 24 

controlled by high-standing topography, with the zone directly adjacent to the final lobe 25 

margin having an average relief that was a few centimeters higher than the lava-26 

inundated region. This suggests that toe-scale topography can, at least temporarily, exert 27 

strong controls on pāhoehoe flow paths by impeding the lateral spreading of the lobe. 28 

Observed cycles of enhanced areal spreading and inflated lobe morphology are also 29 

explored using a model that considers the statistical likelihood of sequential breakouts 30 

from active flow margins and the effects of topographic barriers.  31 

 32 

1. Introduction 33 

Basalt is the most common rock type on the surface of terrestrial bodies 34 

throughout the solar system and—by total volume and areal coverage—pāhoehoe flows 35 

are the most abundant form of basaltic lava in subaerial and submarine environments on 36 

Earth (Self et al., 1994, 1998). Pāhoehoe flow fields are composed of flows, lobes, and 37 

toes, which represent a continuum of lava emplacement scales, with toes being the 38 

smallest elements. Pāhoehoe flows commonly advance as toes break out along lobe 39 

margins (Hon et al., 1994; Crown and Baloga, 1999; Hoblitt et al., 2012). These new toes 40 

quickly cool and develop a rheological gradient that includes an inferred three-part 41 

structure composed of a brittle outer crust, underlying viscoelastic layer, and inner molten 42 

core (Hon et al., 1994). As toes develop sufficient strength to retain incoming lava, they 43 

can pressurize, coalesce, and inflate to form lobes that are interconnected with other 44 

portions of the flow through internal fluid pathways (Walker, 1991, 2009). The evolution 45 

of these pathways can vary considerably (Kauahikaua et al., 1998), but the initial 46 
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emplacement of pāhoehoe flow fronts can influence the subsequent development of the 47 

flow. Consequently, a detailed understanding of processes operating on the scale of toes 48 

and lobes can provide important information for modeling aspects of flow field 49 

development, assessing hazards, and interpreting the significance of lava flow 50 

morphology on Earth and other planetary bodies (Peitersen and Crown, 2000; Byrnes and 51 

Crown, 2001).  52 

 Hon et al. (1994) suggest that “microtopography” (i.e., tens of centimeters relief), 53 

herein termed “toe-scale topography”, can strongly affect the emplacement of pāhoehoe 54 

lava flows that reach a final inflated thickness of several meters. Previous studies have 55 

attempted to determine the relationship between topography and pāhoehoe emplacement 56 

(Crown and Balgoa, 1999; Peitersen and Crown, 2000; Byrnes and Crown, 2001), but 57 

these studies have been unable to quantify the effects of toe-scale topography at the flow 58 

front due to data resolution limitations. Here, oblique digital photogrammetry and 59 

Differential Global Positioning System (DGPS) measurements are combined to quantify 60 

key physical parameters involved in pāhoehoe flow advance through development of toes 61 

and lobes, which constitute the fundamental building blocks of all pāhoehoe flows 62 

(Walker, 1991; Self et al., 1996, 1998; Thordarson and Self, 1998). These field 63 

observations are also used to inform and constrain a new stochastic model that describes 64 

pāhoehoe lobe emplacement in terms of a balance between random and non-random 65 

processes. 66 

 67 

2. Background 68 
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Pāhoehoe flow fields exhibit a multitude of branching events at several scales 69 

(Crown and Baloga, 1999) and include self-similar morphologies (Bruno et al., 1994) that 70 

enable local observations to be used to understand larger aspects of flow fields and their 71 

emplacement. However, these patterns are complicated and irregular because of the 72 

influence of stochastic processes operating on multiple scales (Kilburn, 1996). This 73 

makes it important to identify the scales over which recurring processes and structures 74 

combine to form the overall pattern of a pāhoehoe flow field. Understanding how 75 

eruption parameters, deterministic factors, and random influences affect the emplacement 76 

and modification of pāhoehoe flows, also makes it possible to develop improved 77 

probabilistic models to describe likely patterns of flow growth (Glaze and Baloga, 2013). 78 

This study examines active pāhoehoe lava lobes on Kīlauea Volcano, Hawaiʻi, to 79 

characterize the effects of toe-scale topography on flow emplacement and identify key 80 

parameters needed to model statistical aspects of the process. 81 

Pāhoehoe flows grow through a combination of areal spreading and inflation, with 82 

new toes breaking out along lobe margins and quickly cooling by radiation (Hon et al., 83 

1994; Keszthelyi and Denlinger, 1996; Harris et al., 2007a, 2013). Once a thin skin 84 

develops on the surface of the new toes, cooling becomes increasingly dominated by 85 

conduction (Castruccio et al., 2013). The crust also helps to retain incoming lava, which 86 

slows the advance of the new toes as their internal pressure decreases relative to the 87 

increasing confining strength of the growing crust (Hon et al., 1994). Given a constant 88 

influx of lava, this leads to a reduction in the areal coverage rate of the toes and an 89 

increase in the rate of inflation. Inflation will then continue to dominate the emplacement 90 

process until the internal pressurization of the lobe reaches a threshold required to rupture 91 
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the flow margins and initiate a new cycle of enhanced areal spreading (Hoblitt et al., 92 

2012).  93 

Within an active pāhoehoe flow, internal connections between numerous lobes 94 

can form extensive lava pathways (Kauahikaua et al., 1998). Preferred pathways within 95 

these lava networks tend to concentrate in existing topographic lows and may develop 96 

into a tube-system as the surrounding flow cools and stagnates. This allows pāhoehoe 97 

flows to advance great distances by transporting lava to the flow front through thermally 98 

insulated pathways that can reduce cooling rates to only 0.5–1.0°C/km (Helz at al., 99 

1991). As lava is distributed from a master pathway into peripheral lobes and toes, the 100 

local discharge rates will progressively decrease with each branch in the system. Local 101 

discharge rates may therefore be constant over short periods of time (Hon et al., 1994), 102 

but are expected to evolve as the lobes at the former flow front are incorporated into the 103 

growing body of the lava transport system. In this study, lobes along the periphery of a 104 

low discharge pāhoehoe flow are examined to explore flow front emplacement processes 105 

and inflation.  106 

 107 

3. Study Area 108 

The Prince Kūhiō Kalanianaʻole (PKK) flow was erupted from Puʻu ʻŌʻō on 109 

Kīlauea Volcano, Hawaiʻi, from March 2004 to June 2007 (Fig. 1). Active margins along 110 

the flow were examined in the field between 21–26 February 2006. During this time, lava 111 

from Puʻu ʻŌʻō was primarily transferred though an established tube system that reached 112 

the ocean (Koeppen et al., 2013). However, during February 2006, the master tube-113 

system also fed a series of small surface flows located ~7 km south of Puʻu ʻŌʻō. Harris 114 
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et al. (2007a) referred to this portion of the PKK flow as the “Hook flow”. Field 115 

observations and thermal imagery were used to establish that this flow exhibited 116 

breakouts of S-type pāhoehoe (Wilmoth and Walker, 1993) from three small flows on 21 117 

February. However, by 23 February, the activity had dwindled to the distal margin of just 118 

one flow. Waning activity was also evidenced by a decrease in maximum core 119 

temperature from 1141°C on 21 February, to 1131°C on 23 February, and a decrease in 120 

areal coverage rate from ~0.22 m2/s on February 22 to ~0.03 m2/s on 23 February (Harris 121 

et al., 2007a). Additionally, there was a corresponding decrease in discharge rate feeding 122 

small surface flows, from ~0.14 m3/s on February 22 to ~0.03 m3/s on 23 February 123 

(Harris et al., 2007a). These surface flows stagnated on February 24. Measurements 124 

reported in this study were made contemporaneously with the observations of Harris et al. 125 

(2007a), who used thermal-image chronometry to establish broad relations among 126 

cooling, discharge rate, and areal coverage rates for the whole flow.  127 

To place the local discharge rates discussed within this study into a broader 128 

context, the Puʻu ʻŌʻō-Kupaianaha eruption began erupting in Kīlauea Volcano’s East 129 

Rift Zone (ERZ) in January 3, 1983, and between 1983 and 2002 its time-averaged 130 

discharge rate (Harris et al., 2007b) was ~3.81 m3/s dense-rock-equivalent lava (Heliker 131 

and Mattox, 2003). However, the Puʻu ʻŌʻō-Kupaianaha eruption has undergone 132 

numerous changes throughout its history (Heliker and Mattox, 2003) and in 2003‒2007 133 

the magma supply rate to the ERZ increased significantly during a mantle-derived surge 134 

to Kīlauea Volcano (Poland et al., 2012). During this time, the magma supply to Kīlauea 135 

Volcano increased by a factor of two (Poland et al., 2012). By 2005 the supply rate to the 136 

ERZ increased to ~5.11 m3/s (Poland et al., 2012) and so at the time of the field campaign 137 
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in February 2006, effusion rates from Puʻu ʻŌʻō were probably higher than the long-term 138 

average. Tilt meter records from the Hawaiian Volcano Observatory’s Puʻu ʻŌʻō cone 139 

station also show that there was an oscillatory pattern of inflation and deflation between 140 

21‒26 February 2006 (Orr, 2011). This pattern began with an inflation event on 21 141 

February, which was followed by gradual deflation over the next five days through a 142 

series of smaller tilt cycles (Tim Orr, personal communication, 2013). Orr (2011) showed 143 

that these tilt cycles were associated with fluctuations in lava discharge through the tube 144 

system and may have contributed to the observed breakouts from the master tube. 145 

Discharge rates associated with the small surface flows examined within this study were 146 

therefore much lower than for the concurrently active PKK tube and the eruption as a 147 

whole.     148 

 149 

4. Methods of Digital Terrain Modeling 150 

To quantify aspects of the pāhoehoe emplacement processes, two complementary 151 

methods were employed. First, time-series oblique stereo-imaging and photogrammetry 152 

(Robson and James, 2007) were used to determine the changing geometric properties of 153 

an active lava lobe, herein referred to as Lobe A. Second, Differential Global Positioning 154 

System (DGPS) measurements of topography before and after the emplacement of a 155 

second pāhoehoe lobe (Lobe B) were used to assess the relationship between initial 156 

topography and final lobe morphology. Lobes A and B were located along the same lava 157 

pathway system, with Lobe B located ~10 m directly down-flow of Lobe A.    158 

Time series stereo-image pairs of Lobe A were acquired on 23 February using 159 

two synchronized tripod-mounted digital Single Lens Reflex cameras (6 mega-pixel 160 
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Canon EOS 300D), which collected image pairs every minute over a duration of 35 161 

minutes (Robson and James, 2007). The cameras were mounted approximately one meter 162 

apart and had pre-calibrated, fixed-focus 28 mm lenses. Photogrammetric control was 163 

provided using spherical targets (0.25 mm in diameter) with positions determined by 164 

DGPS measurements. The analysis was carried out using Vision Measurement System 165 

(Robson and Shortis, http://www.geomsoft.com) with image matching by the GOTCHA 166 

dense matching algorithm (Gruen, 1985; Day and Muller, 1989; Otto and Chau, 1989). A 167 

typical stereopair provided topographic point cloud data with positional precisions of 25, 168 

65 and 20 mm in easting (x), northing (y), and elevation (z), respectively. To quantify 169 

surface changes, these point cloud data were gridded in Surfer using a Kriging algorithm 170 

over a 0.1 m/pixel x-y grid. The data were then imported into ArcGIS.  171 

For Lobe B, x, y, and z coordinates for topographic surfaces were acquired before 172 

(23 February) and after lava emplacement. Post-emplacement surveys were performed on 173 

24–26 February; however, no changes were observed after 24 February and so data from 174 

these three surveys were combined together. Data were collected at a sampling rate of 0.5 175 

seconds using two Ashtech Z-Xtreme DGPS receivers—one operating in kinematic mode 176 

and the other as a static base-station. These data were post-processed using Ashtech 177 

Solutions 2.60 with differential, L1/L2 (1575.42 MHz/1227.60 MHz) frequency 178 

correction for ionospheric delay error, and International Global Navigation Satellite 179 

System Service Standard Product 3 precise orbit file corrections. Resulting data points 180 

were filtered to remove measurements with more than 0.05 m residual accuracy error. On 181 

volcanic terrains, Hamilton et al. (2010) estimate the vertical precision of single traverse 182 

kinematic DGPS surveys to be ±0.08 m, and double traverses being ±0.06 m, with 183 
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horizontal precision being better than the vertical measurements. Most gridded cells in 184 

this dataset contain multiple DGPS observations and should have a vertical precision of 185 

±0.06 m. The resulting datasets for the initial and final topography include 14,618 and 186 

20,585 records, respectively. To avoid spatial aliasing and to eliminate redundant data, 187 

the BLOCKMODE function in Generic Mapping Tools (GMT; Wessel and Smith, 1991) 188 

was used to average z within each pixel. Filtered x, y, and z, data were then interpolated 189 

using NEARNEIGHBOR in GMT to form a 0.1 m/pixel x-y grid.  190 

 191 

5. Time Series Observations of Pāhoehoe Lobe Emplacement 192 

Stereogrammetric point clouds and interpolated Digital Terrain Models (DTMs) 193 

were used to identify and digitize the active margins of Lobe A at 1-minute intervals (Fig. 194 

2). These areal spreading maps show that the lava lobe grew by a series of breakouts that 195 

broadly fit into two categories: narrow (0.2–0.6 m-wide) toes that grew preferentially 196 

down-slope and broad (1.4–3.5 m-wide) breakouts that formed along the sides of the 197 

lobe, nearly perpendicular to the down flow axis (Figs. 3 and 4). Initial toe thicknesses 198 

were typically ~0.2 m and, during the 35 minute period of observation, they inflated to a 199 

maximum thickness of ~1.1 m, with most toes inflating to half their final thickness within 200 

10 minutes. Within the first minute of emplacement toes generally extended ~0.2 m, with 201 

a range of 0.05 to 0.55 m. After 28 minutes, the active flow margin began to exit the field 202 

of view of the stereo cameras and toe lengths could not be accurately constrained.  203 

The mean local discharge rate measured at Lobe A over the first 19 minutes was 204 

0.0061 ± 0.0019 m3/s (N = 19, Fig. 5a). Note that all uncertainties in this study are 205 

reported at 1 standard deviation, σ, unless otherwise noted. Standard deviation describes 206 
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how much variation there is from the mean, whereas standard error on the mean, , 207 

provides a measure of how well the mean is known based on the number of data points, 208 

N, used in the calculation. We therefore provide N as well as σ to enable the calculation 209 

of /√ . After 35 minutes, the lobe covered a new area of 11.7 m2 and achieved a 210 

cumulative volume of 10.4 m3. 211 

This local discharge rate was remarkably constant during the observation period, 212 

except for the interval between 19 and 24 minutes, when it decreased by nearly a factor 213 

of four. During this interval, the lobe experienced little inflation and generally lower than 214 

average areal spreading rates (Fig. 5a), which may have been due to breakouts occurring 215 

outside the field of view. At 24 minutes, the local discharge rate of 0.0061 m3/s resumed, 216 

but after 28 minutes, the measured rate of volume change gradually decreased as the 217 

active flow front began to exit the field of view of the stereo-cameras. The mean areal 218 

coverage rate was 0.0055 ± 0.0038 m2/s (N = 35). The areal coverage exhibits a 219 

periodicity with peaks ~3 times greater than the mean (Fig. 5b) and a period of 4.13 ± 220 

0.64 minutes (N = 8). During each cycle of areal growth (measured from trough to trough 221 

in areal coverage rates shown in Fig. 5b), the lobe covers a new area of 1.59 ± 0.28 m2 (N 222 

= 7).   223 

Excess volume refers to the portion of a lava lobe that is not directly associated 224 

with its initial areal expansion. In this case, excess volume is defined as the volume 225 

change in the field of view per minute minus the change in area during that minute 226 

multiplied by the typical initial thickness of the new breakouts. The typical thickness of 227 

new breakouts from Lobe A was ~0.2 m, but may vary for other flows—generally scaling 228 

with local discharge rate (Self et al., 1998). Excess volume changes for Lobe A appears 229 
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to be weakly anti-correlated with its areal spreading rate. However, to quantify the degree 230 

of anti-correlation, the cross-correlation coefficient was calculated between the areal 231 

growth and excess volume. The correlation analysis was restricted to the first 19 minutes 232 

of observation when the volume flow rate feeding the lobe was relatively constant. The 233 

areal growth rate during this 19 minute period exhibits a slight overall increase over time 234 

(slope = 0.013 m2/minute and intercept = 0.206 m2/minute), and therefore the trend was 235 

removed prior to analysis. After trend removal, the cross correlation coefficient, at lag = 236 

0 (the measure of direct anti-correlation) is -0.22. The negative sign of this statistic 237 

indicates anti-correlation; however, the magnitude is well within the 90% confidence 238 

interval (±0.34) indicating that the anti-correlation is very weak and not statistically 239 

significant at this level. This suggests that there may be a trade-off between areal 240 

spreading and inflation given an approximately constant lava supply, but that the 241 

relationship may be complicated by other factors. See Section 7.2 for further discussion. 242 

  243 

6. Lava Thickness, Inflation, and the Effects of Topographic Relief on Pāhoehoe 244 

Lobe Emplacement 245 

Topographic maps of the terrain before and after the emplacement of Lobe B are 246 

shown in Figure 6. Lava covered 111.83 m2 within the DGPS survey region, with a total 247 

lobe volume of 59.45 m3. Forward Looking Infrared Radiometer (FLIR) measurements of 248 

the flow at 06:00 on 24 February 2006, revealed no anomalously hot pixels within the 249 

study region, which indicates that the flow terminated at least 5 hours before (Harris et 250 

al., 2007). Based on the time of the last field observations on 23 February, this constrains 251 

the emplacement duration to <8 hours. If the mean areal coverage and discharge rates 252 
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were similar for Lobes A and B, then the emplacement duration of Lobe B was likely 253 

between 2.6 and 5.2 hours.   254 

Using the before and after DTMs (Figs. 6a and b), topographic profiles have been 255 

extracted down-slope (Fig. 7a) and cross-slope (Fig. 7b). The lava entered the study 256 

region from the north and the lobe grew to a length of ~18 m and a maximum width of 257 

9.1 m. However, the distal part of the flow focused into a 4.3 m-wide topographic 258 

constriction before being bifurcated by a 1.0 m-high topographic obstacle into two 259 

smaller lobes that were 2.4 m and 4.0 m-wide. The profiles show that inflation of the lava 260 

tended to topographically invert the landscape, with the thickest portions of the lobe 261 

developing above topographic depressions and shallow to reverse-facing slopes, defined 262 

relative to the local flow direction. Thus, apparent barriers to the spreading of the flow 263 

are typically much smaller than the maximum height of the lobe and the thicker portions 264 

of the lobe appear confined by the thinner peripheral parts of the flow. 265 

The thickness distribution of Lobe B (Fig. 6c) above the existing surface was 266 

calculated by taking the simple difference between the final and initial topography. This 267 

yields a mean lobe thickness of 0.57 ± 0.24 m, with a maximum of 1.21 m. However, 268 

simple topographic difference overestimates inflation because lobes are initially 269 

emplaced as toes with an initial thickness. Additionally, lava had to fill small closed 270 

depressions before thickening above the surrounding topography.   271 

To account for the infilling of small topographic depressions, a new initial surface 272 

was created by smoothing the initial topography in a process that is analogous to tightly 273 

stretching a rubber sheet through the data. The smoothed surface was created using the 274 

GMT function SURFACE, which interpolates a grid using continuous curvature splines 275 
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in tension (Smith and Wessel, 1990). Specifically, SURFACE applies the Laplace 276 

transform (L) to the initial topography (z): 277 

                  (1–T) L × (L (z)) + T × L(z) = 0.      [1] 278 

Varying the tension factor T between 1 (i.e., the harmonic surface solution) and 0 279 

(i.e., the minimum curvature solution) enables this data interpolation method to smooth 280 

the initial surface to different degrees. For instance, a grid produced with high tension (T 281 

→ 1) will suppress local maxima and minima by fitting an increasingly taut surface 282 

between the data constraints, whereas applying a looser tension factor (T → 0) will 283 

produce a smooth polynomial function analogous to a flexed elastic plate that is anchored 284 

by the data (Smith and Wessel, 1990).  285 

To constrain the inflated thickness of Lobe B, a smoothed local datum was fit to 286 

the initial topography using a T-value of 1. This removes high frequency oscillations in 287 

the topography, while preserving the overall shape of the terrain. Subtracting this surface 288 

from the final topography isolates the thickness of lava above the local datum and 289 

provides a better proxy for inflation than the simple difference map because it reduces the 290 

thickness contributions due to small basin infilling. Using this method, the mean 291 

thickness due to inflation was 0.34 ± 0.21 m (N = 9614), with a maximum of 1.00 m (Fig. 292 

6d).   293 

To isolate local relief within the initial topography, a second interpolated surface 294 

was created using Eq. (1) with T = 0.25. A loose tension factor of T = 0.25 is 295 

recommended for low-tension interpolations to suppress extraneous oscillations (i.e., 296 

minima and maxima) that can otherwise be generated within the T = 0 (i.e., end-member 297 

minimum curvature) solution (Wessel and Smith, http://gmt.soest.hawaii.edu/). The new 298 



14 
 

surface preserves more variations in the initial topography than the harmonic surface 299 

solution (T = 1) and was subtracted from the original initial topography to isolate high 300 

frequency changes in elevation (i.e., relief) above and below a new local datum centered 301 

on 0 m.  302 

In the lava inundated region, the distribution of initial relief is unimodal with a 303 

mean of -0.02 ± 0.07 m (N = 9614 pixels; Fig. 8). For comparison, a 1-pixel buffer region 304 

was also defined around the outer extent of the lobe and, in this buffer region, the 305 

frequency distribution of relief had a mean of 0.00 ± 0.07 m (N = 499 pixels). However, 306 

relative to the lava inundated region, there are more pixels with a relief of 0.03 to 0.09 m 307 

and fewer pixels with a relief of -0.09 to -0.03 m (Fig. 8). This implies that there are 308 

systematically more high relief pixels bounding the pāhoehoe lava lobe than in the region 309 

that was inundated. Consequently, positive relief on the order of only a few centimeters 310 

may exert an important influence on bounding the extent of low-effusion-rate pāhoehoe 311 

flows. 312 

Toe-scale topography (i.e., on the order of centimeters in this case) appears to 313 

influence the areal spreading of pāhoehoe lobes by blocking peripheral toes, which may 314 

then stagnate and help confine the interior portions of the flow. If the interior of the flow 315 

continues to be supplied by lava it may then inflate above the height of the surrounding 316 

barriers, thereby topographically inverting the landscape. Barriers to flow may therefore 317 

be much less than the final inflated thickness of a lobe. Based on observations of Lobe B, 318 

relief that is at least 15% of a toe’s initial thickness may be significant in terms of 319 

affecting the path of low-discharge pāhoehoe lava lobes, but given sample-size-320 

dependent restrictions on the optimum bin-size for the data (Stuges, 1926; Doane, 1976), 321 
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influences of even smaller variations in topography cannot be precluded.  Obstacle 322 

heights affecting the path of higher local discharge rate flows may similarly scale with 323 

initial toe height.   324 

 325 

7. Stochastic Modeling of Pāhoehoe Lobe Emplacement  326 

7.1. Overview of the Model 327 

Random effects strongly influence processes of pāhoehoe flow growth and pose a 328 

fundamental difficulty in developing models for their emplacement (Hon et al. 1994; 329 

Thordarson and Self, 1998; Keszthelyi et al., 1999; Crown and Baloga, 1999). Glaze and 330 

Baloga (2013) have recently developed a new simulation approach for modeling 331 

pāhoehoe emplacement that builds on the ideas presented in Baloga and Glaze (2003). 332 

This model is based on (1) conservation of lava volume and (2) prescribed stochastic 333 

rules for lava movements within a pāhoehoe lobe. This approach differs significantly 334 

from other models that treat lava emplacement as a gravity-driven viscous fluid flow on 335 

an inclined plane (e.g., Danes, 1972; Hulme, 1974; Baloga and Pieri, 1986; Baloga, 1987; 336 

Crisp and Baloga, 1990; Harris and Rowland, 2001; Rowland et al., 2004; Baloga and 337 

Glaze, 2008). The Glaze and Baloga (2013) model simulates the 3-Dimensional shape for 338 

pāhoehoe lobes as they evolve in time, subject to a wide variety of ambient and internal 339 

conditions and processes. Here, the new model is used to explore the effects of inflation 340 

on pāhoehoe lobes analogous to Lobes A and B.  341 

The fundamental building block of the Glaze and Baloga (2013) model is the lava 342 

“parcel”. A “parcel” of lava is defined here as a volumetric unit sampled from a 343 

probability distribution of lava volumes that typically construct a pāhoehoe lobe. Thus 344 
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the smallest toe observed on the surface or along the margins of a pāhoehoe lobe 345 

represents a lava parcel volume from the small end of the distribution. However, larger 346 

toes may either represent a larger parcel volume, or may be comprised of multiple 347 

parcels.   348 

A parcel is observable as a “toe” when it is permanently affixed at the surface or 349 

margin of a lobe. In the Glaze and Baloga (2013) model, lava parcels originate from a 350 

source region and are transported through fluid internal pathways. For the purposes of 351 

discussion here, the model assumes a constant parcel size for all parcels. Crown and 352 

Baloga (1999) measured dimensions of hundreds of toes and their mean thickness is very 353 

well constrained at ~0.20 cm, (0.19 ± 0.08 m, N = 448). Based on the geometric mean toe 354 

sizes measured by Crown and Baloga (1999), the parcel volume is assumed to be 0.09 m3 355 

(Glaze and Baloga, 2013). Assuming a square x-y grid and a typical parcel thickness of 356 

0.2 m—comparable to the observed initial thickness of toes in our study area—the 357 

corresponding cell spacing is 0.67 m, with a parcel area of 0.45 m2. 358 

The Glaze and Baloga (2013) random simulation model begins with an initial 359 

source region (a single point, linear source, etc.), a constant supply of lava (i.e., one 360 

parcel per time step), and probabilistic rules governing where each parcel will be 361 

transferred and allocated. For example, in the most basic scenario of complete 362 

randomness, two random choices are made for each breakout. First, a parcel is randomly 363 

selected to be the source for the next parcel transfer. Second, a random selection is made 364 

to determine the orientation of the new parcel transfer relative to its source (i.e., North, 365 

South, East, or West). In the purely random case, every face of every parcel has an equal 366 

probability of being the source for the next parcel transfer. As various factors that 367 
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influence emplacement are examined (e.g., barriers, slope, etc.), different probabilistic 368 

rules are applied that determine where and when each parcel will be transferred.  369 

 370 

7.2. Model Simulations of Areal Growth 371 

Figure 9a shows a typical example of a completely random simulation involving 372 

500 parcels. In this simulation, each transfer location and direction is chosen at random. 373 

Figure 10a (solid line) shows the corresponding cumulative area as a function of time 374 

step. However, Glaze and Baloga (2013) showed that topographic profiles of pahoehoe 375 

lobes are more consistent with simulations that include sequential breakouts at the 376 

margin. In this case, the momentum of new parcels breaking out from a lobe margin 377 

results in an increased probability that the next parcel will be transferred from the most 378 

recent parcel in the same direction. Figure 9b shows the influence of allowing sequential 379 

breakouts at the lobe margin on lobe morphology. Specifically, every time a new parcel is 380 

transferred to the margin (increasing the lobe area) probabilistic rules are used to 381 

determine whether 0, 1, or 2 extra parcels will be added at that location. For the 382 

simulation shown in Figure 9b, the probability of 0 additional parcels is P(0) = 0.25, of 1 383 

additional parcel being added is P(1) = 0.25, and of 2 additional parcels is P(2) = 0.5. As 384 

expected, the cumulative area of the simulation that includes sequential breakouts at the 385 

margin rapidly diverges from the purely random simulation (Fig. 10a), exhibiting a 386 

steeper gradient and overall greater cumulative area. Although a general trend in the areal 387 

growth (m2 per time step) is evident in both simulations shown in Figure 10a, the curves 388 

are irregular with periods where the area increases rapidly and periods where the area 389 

does not change at all. Also as expected, the rate of overall areal growth tapers off over 390 
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time as the number of available lava transfer locations along the margins decreases 391 

relative to the total area of the lobe.  392 

The Glaze and Baloga (2013) simulation approach explicitly requires that lava 393 

parcels will either expand the area of the flow or contribute to inflation if they are 394 

allocated to the flow interior. This naturally results in a trade-off between areal growth 395 

and interior lobe inflation similar to the pattern observed during the emplacement of Lobe 396 

A. The natural periodicity of the areal growth rate in the simulated lobes is illustrated by 397 

the solid line in Figure 10b. Also shown in Figure 10b is the excess volume, which was 398 

defined in Section 5 as the volume in addition to what is directly associated with the 399 

change in lobe area because all breakouts will be emplaced with some initial thickness. 400 

For the simulated data, the definition of excess volume results in a periodic behavior that 401 

exactly mirrors the areal growth (i.e., perfect anti-correlation). This suggests that the 402 

weak anti-correlation shown in Figure 5b may be relevant, but also indicates that other 403 

processes are present in the field that have not yet been accounted for by the model. Also 404 

in the field example, there was a period of anomalously low average lava flux between 405 

20–23 minutes, which coincided with a period of negative excess volume change. This 406 

indicates that areal spreading can also be accommodated by the depletion of lava stored 407 

within the parent lobe, rather than always being related to a simple balance between 408 

pressurization and confining strength under conditions of constant lava supply. Future 409 

studies would therefore benefit from longer time-series observations of multiple active 410 

lava lobes to further explore the statistical significance of the relationship between areal 411 

spreading and inflation.  412 

 413 
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7.3. Comparisons Between Model Simulations and Observations 414 

Given the measured volume of Lobe A and typical parcel volume of 0.09 m3, 415 

Lobe A would include ~117 parcels. The simulation of a lobe composed of 117 parcels 416 

begins with a 1 × 7 cell linear source region trending East-West (depicted as the gray 417 

shaded region in Figure 11a crossing through the mid-point of the array). This source 418 

region, with one parcel in each of the seven cells, is approximately equivalent to the 419 

initial length of Lobe A (i.e., ~4.69 m; see Fig. 4a). The model also includes two parallel 420 

barriers located at ±3 cells along the North-South axis. The barriers are considered 421 

transitional zones in which the advancing lava enters, but becomes blocked, thereby 422 

reflecting the lava parcel back toward the interior of the flow. The distance between these 423 

barriers is 4.69 m (including the barrier cells as well), which corresponds to the 424 

topographically-bounded maximum width of Lobe A. The probabilities of sequentially 425 

adding 0, 1, or 2 extra parcels from an existing flow margin are P(0) = P(1) = 0.25, and 426 

P(2) = 0.5. 427 

One cannot expect any specific realization of the stochastic model to exactly 428 

reproduce the morphology of an observed lava lobe, but characteristics of the simulated 429 

lobes are broadly consistent with the morphology of Lobe A. Figure 11b shows examples 430 

of topographic profiles taken perpendicular to the flow direction through the simulated 431 

lobes averaged over 10, 20, 30, and 60 realizations. These examples demonstrate that 432 

there are stochastic variations between simulations, but also persistent morphological 433 

characteristics. For example, the simulated lobes are thickest in the middle (i.e., along the 434 

axis of the linear source region) with maximum heights that are consistent with those 435 

observed for Lobe A. The models also exhibit the effects of lava confinement along lobe 436 
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margins due to lava parcels being reflected back toward the interior of the flow. Plan 437 

views of the simulated lobes (e.g., Figs. 9a and 9b) also show irregular margins and 438 

thickness variations that are typical of inflated pāhoehoe lobes.  439 

 440 

8. Discussion  441 

8.1. Relationships between Pāhoehoe Breakouts and Inflation 442 

Pāhoehoe breakouts will be emplaced with some initial thickness and then grow 443 

through a process of inflation. This inflation process includes two dominant components: 444 

thickening of the molten core and thickening of the crust (Hon et al., 1994), with the crust 445 

consisting of both a brittle outer layer and underlying viscoelastic layer. After an initial 446 

chilled margin forms around a new toe, it will retain incoming lava and inflate as its 447 

molten core thickens to equalize the pressure with other connected portions of the fluid 448 

lava pathway. During the early stages of emplacement, the rate of core thickening will 449 

greatly exceed the rate of crustal thickening (Hon et al., 1994), but as the fluid interior 450 

achieves its equilibrium thickness, inflation will be increasingly dominated by the process 451 

of crustal growth (Cashman and Kauahikaua, 1997).  452 

Two conditions must be met for the upper crust to continue to accrete new 453 

material and contribute to inflation. First, there must be a continuous influx of new lava 454 

through the molten core and, second, there must be physical coupling of the molten core 455 

to the upper crust (Kauahikaua et al., 1998). If the flow of lava through the core stagnates 456 

then the lava will cool in situ and will not increase the flow’s total thickness. 457 

Additionally, if the molten core partially drains and decouples from the upper crust then 458 

new material will not be added to the base of the surface layer and the crust may even 459 
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subside and “deflate” (Kauahikaua et al., 1998). Cooling histories inferred from the 460 

thicknesses of the upper brittle and viscoelastic layers (Hon et al., 1994) therefore 461 

provide an estimate of the time that a lava pathway flowed at full capacity, but not 462 

necessarily the total duration of emplacement if the core of the flow and the upper crust 463 

were decoupled. In some cases, the molten core of a flow can also undergo cycles of 464 

pressurization related to changes in the local discharge rate (Orr, 2011). This can lead to 465 

variations in molten core pressure that induce cycles of surface disruption and 466 

subsidence, thereby producing a range of surface textures that include slabbly pāhoehoe, 467 

rubbly pāhoehoe, and shatter rings.  468 

Initial cooling can strengthen the margins of a lava flow (Castruccio et al., 2013), 469 

but the process is complicated by the development of numerous cooling fractures. These 470 

fractures will mechanically weaken the outer brittle crust and make the underlying 471 

viscoelastic layer more important in terms of governing the overall confining strength of 472 

the flow. The frequency of breakouts will therefore depend on the balance between the 473 

combined strength of the brittle and viscoelastic layers relative to the pressure within the 474 

molten core (Hoblitt et al., 2012). If the internal pressure exceeds the confining strength 475 

of the flow’s outer layers, then the periphery of the flow will rupture and generate new 476 

breakouts that promote increased areal growth. In contrast, if the exterior of the flow does 477 

not rupture, it will pressurize and inflate through gradual deformation of the viscoelastic 478 

layer and opening of fractures in the overlying brittle crust. 479 

In this study, peripheral lobes along the margins of the PKK flow on the flanks of 480 

Kīleaua Volcano, exhibited a generally constant local discharge rate (0.0061 ± 0.0019 481 

m2/s). However, approximately every four minutes there was a significant increase in the 482 
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areal spreading rate. The observed periodicity in areal coverage may relate to the 483 

changing balance between the confining strength of the lava as it cools and strengthens, 484 

and the internal pressure within the core of the flow. This balance would give rise to an 485 

increased frequency of new breakouts when the core pressure exceeds the confining 486 

strength of the exterior. Enhanced areal spreading rates would then persist until the core 487 

pressure decreases below a critical threshold required to continuously rupture the active 488 

flow margin. As the rate of areal spreading deceases, continued influx of lava into the 489 

lobe would begin to re-pressurize its fluid core and perpetuate a new cycle. This process, 490 

operating on the scale of an individual lobe, is similar to what Hoblitt et al. (2012) have 491 

observed on the scale of an entire pāhoehoe flow, which demonstrates the self-similarity 492 

of the inflation mechanism over a range of scales.   493 

 494 

8.2. Static and Dynamic Pressure Considerations 495 

During early stages of pāhoehoe emplacement, the inflation process will be 496 

dominated by molten core thickening as the liquid interior of the flow moves toward an 497 

equilibrium thickness. However, there are multiple factors that can contribute to this 498 

equilibrium. Calculations generally assume a Bingham liquid rheology, with lava 499 

descending a slope as an unconfined laminar flow under the influence of gravity (Hulme, 500 

1974; Dragoni et al., 1986; Castruccio et al., 2013). Within this scenario, the critical 501 

depth hs required to induce down-slope flow will be 502 

hs = σ0/ρgsin(β),      [2] 503 

where σ0 is the flow’s yield stress, ρ the flow’s density, g is gravitational acceleration, 504 

and β is the underlying slope (see Eq. [14] in Hulme, 1974). However, such calculations 505 
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of a lava flow’s equilibrium thickness will be complicated by cooling-induced changes in 506 

rheology and other factors that influence its internal pressure once the molten core is 507 

confined by a coherent crust. Several studies (e.g., Rossi and Gudmundsson, 1996; 508 

Anderson et al., 1999, 2012) have considered the “magmastatic” pressure (herein referred 509 

to as “hydrostatic” pressure) generated by fluid elevation changes along a hydrostatically 510 

connected pathway, as well as the pressure required to drive lava through pipe-like 511 

pathways and lift the crust. These models generally assume that the pathways (i.e., lava 512 

tubes) are cylindrical pipes with constant cross-sectional area, but the geometry of lava 513 

pathways can vary widely within a pāhoehoe flow (e.g., Guest et al., 1984; Kauahikaua et 514 

al., 1998; Self et al., 1998; Calvari and Pinkerton, 1999). This raises the possibility that 515 

changes in pathway geometry can introduce additional changes in lava core pressure due 516 

to dynamic processes.   517 

These dynamic effects may be understood within the context of Bernoulli’s 518 

principle, which describes the inverse relationship between fluid flow velocity and fluid 519 

pressure within incompressible laminar flows through a pipe (Resnick and Halliday, 520 

1977; Batchelor, 1998). For lava moving within a system of combined pathways, changes 521 

in fluid core pressure could affect inflation rates by changing the magnitude of the 522 

stresses applied to the overlying crust. This may lead to increased inflation rates where 523 

the flow velocity decreases and the core pressure increases. Conversely, inflation rates 524 

would be lower where the flow velocity increases and the core pressure decreases. For 525 

otherwise equivalent lava flows through a pipe-like pathway, the most important controls 526 

on fluid velocity will be the pipe’s cross-sectional area and underlying slope. In general, 527 

lava velocities will be relatively low where the flow pathway is broad and its cross-528 
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sectional area is large and/or where it descends a shallow slope or encounters a reverse-529 

facing slope. Alternatively, flow velocities will be higher when lava enters a narrow 530 

topographic constriction and/or descends a steeper slope. These scenarios are broadly 531 

consistent with the observed relationship between the initial topography and final 532 

morphology for Lobe B. In this case, maximum inflation was observed where the flow 533 

was the broadest and above shallow to reverse-facing slopes, whereas the least inflation 534 

was observed where the flow passed through narrow constrictions and descended steep 535 

slopes (Figs. 6 and 7). These observations support the viability of a conservation of 536 

energy approach to modeling the spatial variability of inflation and its relationship to 537 

emplacement processes. They also highlight the importance of including both fluid static 538 

and dynamic components in understanding core pressure and thickening during the early 539 

stages of pāhoehoe inflation. Early stage inflation processes related to core pressurization 540 

and thickening may also help to establish preferred pathways through the thickest parts of 541 

the flow, which would continue to preferentially inflate through crustal accretion if the 542 

pathways remain full. Continued crustal accretion and uplift must also be coupled with 543 

overpressurization of the molten core, which Cashman and Kauahikaua (1997) inferred 544 

from their observations of pāhoehoe crustal vesicularity profiles that exhibit decreased 545 

vesicle number density with depth.         546 

 547 

9. Conclusions 548 

The confining strength of a lava lobe depends strongly on the age distribution of 549 

its surfaces, with the youngest surfaces (i.e., sites of the most recent breakouts) being the 550 

weakest. Therefore, when new breakouts occur, growth tends to concentrate at these 551 
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localities. Otherwise, the next most likely location for a breakout to occur is from an 552 

older fractured surface overlying a still molten core. This process is treated with a 553 

stochastic model by introducing correlation with a probability distribution describing the 554 

preferential growth of the flow in the direction of new breakouts through sequential 555 

emplacement of lava parcels (i.e., toes) from that locality. Including correlated growth 556 

into the model also recreates observed periods of enhanced areal spreading and lobe 557 

morphologies.   558 

Time-series data for Lobe A shows that periods of enhanced areal spreading 559 

roughly alternate with periods of increased excess volume change. For an approximately 560 

constant local discharge rate, this suggests that the volume of lava not utilized during the 561 

process of areal spreading can contribute to thickening through inflation. Trade-offs 562 

between areal spreading and inflation should be detectable in thermal infrared (e.g., 563 

FLIR) imagery, provided that a single lobe is isolated in the field of view. For instance, 564 

when the flow enters a period of above average areal spreading, newly exposed lava 565 

surfaces will radiate more thermal energy and will contribute to an increased frequency 566 

distribution of high temperature pixels within the field of view. As the flow shifts toward 567 

an inflation-dominated mode, older lava surfaces will cool dominantly by conduction 568 

rather than radiation (Hon et al., 1994), and this would shift the frequency distribution of 569 

temperatures toward lower values. Temperature distributions in FLIR data may therefore 570 

be used to identify patterns of pāhoehoe flow emplacement, such as periodicities in areal 571 

spreading rate and the trade-off with inflation. Statistical models of flow emplacement 572 

may be improved by coupling them with a cooling model to estimate the temperature 573 

distribution of the lava based on its emplacement age.   574 
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New toes are highly sensitive to subtle topographic irregularities and for low 575 

discharge rate flows may be deflected or stopped by obstacles measuring only a few 576 

centimeters in height. This process was observed during the emplacement of Lobe B and 577 

demonstrates that the final morphology of a lobe may inherit boundaries influenced by 578 

variations in the initial toe-scale topography that are orders of magnitude smaller than the 579 

flow’s final thickness. Even though toes may be locally deflected or impeded by toe-scale 580 

topography, inflating pāhoehoe lobes may overcome local barriers through a combination 581 

of stochastic breakouts in down-flow and cross-flow directions that allow them to find 582 

and follow the maximum regional slope. These behaviors are described in the model by 583 

considering the sequential emplacement of new lava parcels (i.e., toes) from existing flow 584 

margins, with boundaries that reflect parcels back towards the interior of the flow.  585 

 Combining measurements of initial topography with time-series observations of 586 

active pāhoehoe lobes provides new insights into the growth of pāhoehoe flows. These 587 

observational constraints also help to improve statistical models of lava emplacement 588 

processes and better understand the relationship between areal expansion and inflation. 589 

This information is important for understanding how subtle topographic influences can be 590 

inherited by inflated lobes to develop preferred lava pathways that influence the overall 591 

development of a flow and for interpreting the emplacement history of pāhoehoe lava 592 

flows on Earth and other planetary surfaces.  593 

 594 
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Figures 745 

 746 

Figure 1. Lava flow map showing the study area location (19.336430°N, -747 

155.055235°W) within the Prince Kūhiō Kalanianaʻole (PKK) flow (shown in yellow) on 748 

Kīlauea Volcano, Hawaiʻi. Pāhoehoe lava lobes at this locality were fed lava from Puʻu 749 

ʻŌʻō. Field measurements were acquired on 21–26 February 2006 for two lobes (A and 750 

B) located along the same lava pathway system. Lobe B was located directly down-slope 751 

of Lobe A, with a separation distance of ~10 m. The dashed lines approximately bound 752 

the edifices of Puʻu ʻŌʻō and Kupaianaha. Lava flow data provided by Tim Orr, United 753 

States Geologic Survey (USGS).  754 
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 755 

Figure 2. Orthorectified view of photogrammetric point cloud at time t = 35 minutes for 756 

Lobe A, with overlaid lava flow boundaries shown at 1 minute intervals and the locations 757 

of the down-slope ( ′) and cross-slope ( ′) profiles shown in Figure 4.  758 
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 759 

Figure 3. Time series evolution of Lobe A. Dark lines show the extent of the flow at 5 760 

minute intervals with grey lines showing the flow margins at 1 minute intervals. The flow 761 

begins to move outside the field of view at 28 minutes.  762 
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 763 

Figure 4. (a) Down-slope ( ′) and (b) cross-slope ( ′) profiles for Lobe A showing 764 

the changing topography of the lava lobe shown in Figures 1 and 2.  765 
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 766 

Figure 5. (a) Cumulative volume in the region of interest identified in Figure 2 for Lobe 767 

A. The mean local discharge rate (0.0061 ± 0.0019 m3s-1, calculated for the first 19 768 

minutes) is generally constant during the observation period, except for the interval 769 

between 19 and 24 minutes where the mean local discharge rate decreases by nearly a 770 

factor of four and the lobe experiences little inflation and generally lower than average 771 

areal spreading rates. At 28 minutes, the rate of volume change gradually decreases as the 772 

active flow front begins to exit the field of view of the stereo-cameras. (b) Areal coverage 773 
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rate (mean 0.33 ± 0.23 m2/minute, filled black circles with solid black line) and mean 774 

excess volume change (0.23 ± 0.12 m3/minute, open circles with broken line), where 775 

excess volume change is defined in the text. Excess volume changes less than zero, 776 

between 20–23 minutes, implies that areal growth was accommodated by depletion of 777 

stored lava during this time interval. The areal coverage rate shows a periodicity with 778 

peaks at intervals of 4.13 ± 0.64 minutes. All uncertainties are reported at 1 σ.  779 
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 780 

Figure 6. (a) Initial and (b) post-lava lobe emplacement digital terrain models (DTMs) 781 

generated from Differential Global Positioning System (DGPS) measurements for Lobe 782 

B, with cool colors showing low elevation and warm colors showing relatively higher 783 

elevation. (c) Simple difference between the final and initial topography. (d) Difference 784 

between the final topography and a Laplacian harmonic surface solution, which removes 785 

the effects of closed basin filling. Profiles ′ and  ′ are shown in Figures 7a and 7b, 786 

respectively. Elevations in (a) and (b) are reported relative to the WGS84 datum, and lava 787 

thicknesses in (c) and (d) are shown to the same scale.   788 
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 789 

Figure 7. (a) Down-slope and (b) cross-slope profiles showing the initial and final 790 

topography for Lobe B (see ′ and  ′ in Figure 6). The flow has topographically 791 

inverted the landscape, with inflation being greatest above paleo-topographic lows and 792 

anti-facing slopes, and least above forward-facing slopes. Note the pre-eruption 793 

topography and thin confining flow margins that may help to confine the thicker interior 794 

portions of the lobe.  795 
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 796 

Figure 8. Frequency distribution of relief on initial surface within the lava inundated 797 

region (dark grey) and within a 1 pixel buffer region around Lobe B (light grey). The 798 

mean relief within both regions is close to zero (i.e., 0.02 ± 0.07 m in the inundated 799 

region and 0.00 ± 0.07 m in the buffer region), but the buffer region exhibits more +0.03 800 

to +0.09 m relief surfaces and -0.09 to -0.03 m relief surface, which implies that positive 801 

relief on the order of only a few centimeters may act to confine the areal spreading of the 802 

flow. All uncertainties are reported at 1σ.     803 



43 
 

 804 

Figure 9.  (a) Simulation of 500 randomly emplacement lava parcels (without 805 

sequential breakouts from lobe margins). The maximum flow thickness is 3.2 m. (b) 806 

Simulation of 500 lava parcels using the same probability distribution for correlated toe 807 

growth used to model Lobe A (i.e., P(0) = P(1) = 0.25 and P(2) = 0.5). The maximum 808 

flow thickness is 2.6 m. Note that including correlated breakouts in (b) increases the 809 

perimeter:area ratio relative to the random example shown in (a). (c and d) Plan view 810 

examples of two simulations of Lobe A using 117 lava parcels, boundaries (dash lines) at 811 

±3 cells on the North-South axis, and a probability distribution of P(0) = P(1) = 0.25 and 812 
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P(2) = 0.5 for adding 0, 1, and 2 extra parcels in the same direction when a parcel breaks 813 

out from the flow margin. The maximum height of the flows shown in (c) and (d) are 1.2 814 

m. For visualization purposes, the REBIN function in Interactive Data Language (IDL) 815 

was used to magnify the cells by a factor of 10 and perform a default bilinear 816 

interpolation. This process smoothes the model output and provides the exterior toes with 817 

a rounded appearance. This process does not alter the raw model output shown in Figures 818 

10 or 11b.   819 
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 820 

Figure 10. (a) Cumulative lobe area versus time for two stochastic simulation realizations 821 

of pāhoehoe lobe emplacement. The uncorrelated realization (lower solid line) was 822 

generated by considering purely random selection of both the location and direction of 823 

each parcel transfer. The correlated scenario (upper dashed line) modifies this model by 824 

introducing an increased probability of sequential parcel emplacement when new parcels 825 

break out at the periphery of the flow. In this case, the probabilities of adding 0, 1, and 2, 826 

correlated parcels are P(0) = 0.25, P(1) = 0.25, and P(2) = 0.5, respectively. (b) Shows 827 

the periodicities and anti-correlation in areal spreading and excess volume change for a 828 

typical purely random simulation and an interval of 20 time steps.   829 

 830 
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 831 

Figure 9. (a) A schematic example showing how the stochastic model works. A linear 832 

source region (shown in gray) passes through the mid-point of the array and trends East-833 

West. Two parallel barriers are shown ±3 cells from the linear source along the North-834 

South axis. In the simulation, a cell is first chosen at random from within the confines of 835 

the flow (initially corresponding to the extent of the linear source region) and then a 836 

random cardinal direction is chosen. A lava parcel is then transferred to the specified cell 837 

(marked with a filled black circle, e.g., “1”) and to adjacent cell (identified by the 838 

associated arrow). If the parcel would be allocated beyond the confines of the flow, there 839 
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is a 0.25, 0.25, and 0.50 probability that 0, 1, or 2 extra parcels, respectively, will be 840 

allocated to sequential cells in the same direction (e.g., “2” shows 1 extra, 2 total, cells 841 

being added). As the areal extent of the flow increases, new parcel transfer locations 842 

become available (e.g., “3”). If a cell allocation would result in a parcel being extended 843 

beyond the barrier, then the parcel is reflected back towards the cell interior (e.g., “4”). 844 

Each parcel allocated to a given cell increases its thickness by 0.2 m. This process is 845 

repeated until all lava parcels are allocated, which in the case of Lobe A, includes a total 846 

of 117 parcels. (b) Simulated North-South profiles for Lobe A, averaged over 10, 20, 30, 847 

and 40 realizations of the model. The results show that despite the stochastic nature of the 848 

model, the average simulations converge to a stable equilibrium shape over a few tens of 849 

realizations. Also shown is the flow-perpendicular cross-section though Lobe A (Fig. 4b) 850 

with the underlying topographic trend removed. “i”: The maximum width simulated lobes 851 

and Lobe A are determined by the influences of topographic barriers. “ii”: Reflecting of 852 

lava parcels by the barriers produces an excess thickening in the adjacent interior cells. 853 

“iii”: High-standing topography and stagnated peripheral toes helps to confine the interior 854 

of the lobe and promote inflation. “iv”: The thickest portion of the simulated lobe is 855 

located along the medial axis and is generally consistent with the thickness of Lobe A 856 

along the flow axis.  857 


