Introducing GFWED:
The Global Fire Weather Database

Robert Field

PETUNJUK API
(Fire Indicator)

- Risiko Rendah (Low Risk)
- Risiko Sederhana (Medium Risk)
- Risiko Tinggi (High Risk)
- Risiko Berbahaya (Extreme Risk)
The Fire Weather Index System is most widely used fire danger rating system in the world.

<table>
<thead>
<tr>
<th>Index or system</th>
<th>Country or region of application</th>
<th>Weather parameters</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian Forest Fire Weather Index System</td>
<td>Argentina, Canada, China, Chile, Fiji, Indonesia, Malaysia, Mexico, New Zealand, Portugal, South Africa, Spain, Sweden, Thailand, United Kingdom, USA (Alaska, some northern states), Venezuela; Europe and North Africa, Eurasia, global, Southeast Asia, Southern Africa</td>
<td>Temperature, rainfall amount, relative humidity, wind speed</td>
<td>Van Wagner (1987)</td>
</tr>
</tbody>
</table>
GFWED

• Daily FWI database at 1/2° x 2/3° resolution beginning in 1980
• Weather inputs from MERRA & 2 global, gridded rain-gauge datasets
• Intended for:
 – A baseline for operational FWI use in new regions
 – Understanding drivers of fire activity anywhere in the world
 – Analysis of large-scale controls of fire weather
Data freely available
http://data.giss.nasa.gov/impacts/gfwed
3 versions using different precipitation estimates

Mean FWI, 1981-2010

JAN

MERRA

SHEFF

CPC

JUL
High MERRA DC bias due to low precipitation bias
DC climatology over Mato Grosso, Brazil

High MERRA DC bias due to low precipitation bias
DC climatology over Southern Kalimantan, Indonesia

Low MERRA DC bias due to high precipitation bias.
Peak of the 1988 Yellowstone fires
150,000 acres burned

August 20, 1988 Fire Weather Index departure from long term average
FWI on February 7 2009 in SE Australia, Black Saturday
Generated from Columbia IRI Data Library

More details on stratospheric plume:
A54E-01
16:00 - 16:15, 3002 Moscone West
ENSO influences on fire weather

Global seasonal FWI correlation with Nino 3.4, 1980-2012 (Andrew Dowdy, Australian BoM)
Example: 1983 fires in Borneo

The first (?) large-scale fires in Indonesia and Malaysia to be described quantitatively in the literature.

Malingreau et al. (1985, Ambio)

Fishman et al. (1990, JGR)

A prelude to later disasters.
DC > 300 threshold based on 1994 and 1997 events (de Groot et al., 2007, MITI)

GFWED captures isolated 1983 drought in Sabah and East Kalimantan.

April is normally too wet for severe burning.
2015 fire in Indonesia the worst since 1997

October 2015 Terra MODIS active fires (Thierry Fanin & Guido van der Werf)
Future development

• In 2016, we will begin calculations using GPM, TRMM and GPCP precipitation data as part of the NASA PMM Science Team.

• We would like to add:
 – Other reanalyses
 – SMAP for DMC and DC calculations
 – Other simple indices: Nesterov, McArthur, NFDRS, Haines.

http://data.giss.nasa.gov/impacts/gfwed
2015 fire in Indonesia the worst since 1997

CO in the upper troposphere from Aura MLS (Nathaniel Livesey, JPL)
Fire season startup using snow cover and winter precipitation
Global Wildfire Water Risk Index

(François-Nicolas Robinne, Univ. Alberta)