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Event Rainfall Evolution
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systems have a duration < 24 hours, these systems are the focus of this work.
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Figure 1. Cold pools must achieve spatial scales several factors larger than the size of a sensor
FOV (i.e. 1-pixel footprint) to be resolvable in observations. In the top/left panels, the spatial extent
of cold pools associated with convective outflow in a WRF simulation is shown (Del Genio et al. 2012;
Fig. 6). Depressions in T are simulated over large spatial scales (~100 km by simulation end). In the
top right panel (MISR image, courtesy of NASA/JPL MISR Team), the red boxes denote current
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