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Over-Production of Cloud Ice in GISS ModelE

CMIP3 and CMIP5 Model Output compared with A-Train Observations
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Decrease in IWP in ModelE from CMIP3 to CMIP5, but still near high end of uncertainty
limit.
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Decrease in IWP in ModelE from CMIP3 to CMIP5, but still near high end of uncertainty
limit.

Decreases mostly driven by improvement in higher latitude clouds. It is likely that
simulated tropical IWPs are still high.




Cloud Ice Simulation in the Tropics

Two recent changes to the GISS convective parameterization.
1. Simple cold pool parameterization (Del Genio et al. 2015).
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Cloud Ice Simulation in the Tropics

Two recent changes to the GISS convective parameterization.
2. Improvements to Convective Ice Microphysics (Elsaesser et al. 2016)

(c) Target classification
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Previously:

> Exponential PSD Distribution, Fixed NO and ice density.
> Fixed terminal velocity formulation from Locatelli and Hobbs (1974).



Cloud Ice Simulation in the Tropics

Two recent changes to the GISS convective parameterization.
2. Improvements to Convective Ice Microphysics (Elsaesser et al. 2016)

(c) Target classification
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Aircraft sampling of entire region (deep convective cores and outflow) not possible.
What do ice particle size distributions (PSDs) and fall speeds look like in outflow
regions?



Field Campaign Data for Cloud Ice PSDs

> Data sources: mass and number concentration distributions from TC4,
SPARTICUS, MC3E near convective outflow.
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Field Campaign Data for Cloud Ice PSDs

> Data sources: mass and number concentration distributions from TC4,
SPARTICUS, MC3E near convective outflow.

> Convert D,,,, to melted-sphere equivalent (Dggy,)-

max

> Compute moments of the PSDs.
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Field Campaign Data for Cloud Ice PSDs

> Data sources: mass and number concentration distributions from TC4,
SPARTICUS, MC3E near convective outflow.

> Convert D

max 0 Melted-sphere equivalent (Dggy;,)-

> Compute moments of the PSDs.

> Assume a Gamma function fit, and use normalization technique of Testud et
al. (2002).

Gamma_Mu (= -Dm/(De-Dm)-4)
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Field Campaign Data for Cloud Ice PSDs

Key point: Dm, De, Temp, and IWC in convective plume are used to diagnose
the mass distribution. Example fits below:
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Field Campaign Data for Cloud Ice V, Formulations

> Before conversion of Dy, to Dy, , W& compute ice mass sedimentation
velocities (using Heymsfield et al. 2013 formulations).

o: ARM T=-39C Ht= 8.2km (a) Vtm_new
270

IWC(gm~)
(b) Vtm_new-Vim_old
0

—Al v,
+ Peok IWC
X==X 70% IWC

e: AIRS T= —1C Ht= 1.0km

IWC (gm*)




Field Campaign Data for Cloud Ice V, Formulations

> Tricky part: Given the mass distribution, convective plume updraft velocity
and ice sedimentation velocity, go back to find D threshold that serves to
partition snow from detrained or lofted ice.

equiv

o: ARM T=-39C Ht= 8.2km (a) Vtm_new
270

e
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c: TC4 T=-30C Ht= 9.1km

IWC(gm~)
(b) Vtm_new-Vim_old
0

—Al v,
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e: AIRS T= —1C Ht= 1.0km
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Impacts on Simulated Cloud Ice: Conditional Sampling
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Impacts on Simulated Cloud Ice: Mean State
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Conclusions

 We now inform our convective ice microphysics routine with field
campaign data. Work will continue to incorporate new observational
datasets as they become available.

« Both the cold pool parameterization and ice microphysics reduce
IWC (global IWP goes from ~100 g/m2 in post-AR5 runs, to ~70-80
g/m2 in cold pool runs, to ~50-60 g/m2 when convective ice
microphysics changes).

* Our dense ice/graupel species is unconstrained. What we assume
affects how much ice is lofted to higher levels where we then make
the snow/cloud ice partition. Future work may include addressing
this.



