
 

1 

 

International Mechanical Engineering Congress & Exposition 
IMECE15 

November 13-19, 2015, Houston, Texas, USA 

IMECE2015-53052 

NUMERICAL CFD SIMULATION AND TEST CORRELATION IN A FLIGHT PROJECT 
ENVIRONMENT 

 

 

K. K. Gupta 
NASA Armstrong Flight Research Center 

Edwards, CA, USA 

S. F. Lung 
Jacobs Technology 
Edwards, CA, USA 

 

 

A. H. Ibrahim 
Norfolk State University 

Norfolk, VA, USA 
 

 

ABSTRACT 
 

This paper presents detailed description of a novel CFD 

procedure and comparison of its solution results to that 

obtained by other available CFD codes as well as actual flight 

and wind tunnel test data pertaining to the GIII aircraft, 

currently undergoing flight testing at AFRC. 

 
INTRODUCTION 

 

 Two in-house1 software as well as a number of 

commercially2-6 available CFD codes were used to analyze the 

problem, for comparison purposes. In this process both finite 

volume and finite element discretization were used for Euler 

and Navier-Stokes simulations. Both unstructured and 

structured grids were employed, as appropriate and solutions 

were derived for Mach 0.701 and angle of attack  = 3.92 

degree. 

Extensive flight tests were performed for validation purposes. 

Also these tests were complimented with detailed wind tunnel 

simulations. All such test results are compared with the 

numerical solution data obtained by the various CFD codes. 

Associated finite difference7 and finite volume8,9 techniques are 

well described in the literature10,11. The finite element 

technique12 for the discretization of fluid flow employs 

unstructured mesh and is based on a Taylor-Galerkin 

procedure13-15. 

A description of the finite element fluids solver is 

presented in some detail. It pertains to the solution of viscous 

flow represented by the Navier-Stokes formulation. An 

unstructured grid is used for domain decomposition. 

The one equation model (Ref. 16) has been adapted for 

turbulence modelling. In this process both the viscous stresses 

pertaining to the linear viscous flow and the flux in the energy 

equation, are duly modified. 

It is then followed by detailed results of analyses which are 

next compared with actual flight test and wind tunnel 

simulation results. These results indicate that most CFD 

solutions compare reasonably well with the test data. The FE 

solutions in particular prove to be efficient and accurate and the 

related software are available for public use. 

Finally, some summarizations and discussions of the 

current effort is given in the ‘Concluding Remarks’ section. 
 

NOMENCLATURE 
 

AFRC = Armstrong Flight Research Center  

CFD = Computational Fluid Dynamics 

FE = Finite Element 

t = time step 

 = Density 

 = Dynamic viscosity 

 = Viscous stress tensor 

u = free stream velocity 

E = Total energy 

a = Shape function 

 = Conservation variable 

f = Convection 

𝒈 = Diffusion 
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k = Thermal conductivity 

p = Pressure 

M = Mass matrix 

K = Convection matrix 

Re = Reynolds number 

Pr = Prandtl number 

 

PROCEDURE 
 

The Navier-Stokes equation can be written as 
𝜕𝒗

𝜕𝑡
+

𝜕𝒇𝒊

𝜕𝑥𝑖
+

𝜕𝒈𝒊

𝜕𝑥𝑖
= 0           𝑖 = 1, 2, 3                             (1)  

in which the conservation variables, flux, and body force 

column vectors, as well as the viscous stress are defined as  

𝒗 = [𝜌 𝜌𝑢𝑗 𝜌𝐸]𝑇 , 𝑗 = 1,2,3                                      (2)  

𝑓𝑗 = [𝜌𝑢𝑗 (𝜌𝑢𝑖𝑢𝑗 + 𝑝𝛿𝑖𝑗) 𝑢𝑗(𝑝 + 𝜌𝐸)]𝑇 , 𝑗 = 1,2,3    (3)  

𝐸𝑗 = [0 𝜎𝑖𝑗 (𝑢𝑖𝜎𝑖𝑗 + 𝑘
𝜕𝑇

𝜕𝑥𝑗
)]

𝑇

                                       (4)  

𝑓𝑏 = [0 𝑓𝑏𝑖
𝑢𝑖𝑓𝑏𝑖]

𝑇                                                    (5) 

𝜎𝑖𝑗 = 𝜇 [
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
−

2

3

𝜕𝑢𝑙

𝜕𝑥𝑙
𝛿𝑖𝑗]               𝑙 = 1,2,3           (6)  

where 𝑢𝑖 are velocity components in the 𝑥𝑖 coordinate system; 

, p, and E are the density, pressure, and total energy 

respectively;  is the dynamic viscosity; k is the thermal 

conductivity, the heat flux 𝑞𝑗 being−𝑘𝜕𝑇/𝜕𝑥𝑗; T is the 

temperature;  𝒇𝑏 represents the body forces. 

The preceding equations are nondimensionalised for 

numerical calculations. In this process the governing equations 

remain in the same form excepting 𝑔𝑗, which becomes 

𝑔𝑗 = [0 𝜎𝑖𝑗 (𝑢𝑖𝜎𝑖𝑗 − 𝑞𝑗)]
𝑇

                                         (7)  

and also the viscous stress tensor and heat flux take the 

following form: 

𝜎𝑖𝑗 =
𝜇

𝑅𝑒
[
𝜕𝑢𝑖

𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

−
2

3

𝜕𝑢𝑙

𝜕𝑥𝑙

𝛿𝑖𝑗] 

𝑞𝑗 =
1

𝑅𝑒𝑃𝑟

𝜕𝑇

𝜕𝑥𝑗

                                                      (8) 

in which the Reynolds number is defined as 𝑅𝑒 = 𝑢∞𝐿/𝜐∞; 

𝜐∞ = 𝜇∞/𝜌∞ is termed the kinematic viscosity; Pr is the 

Prandtl number, 𝑃𝑟 = 𝜐∞/𝛼∞, with 𝛼∞ = 𝑘/(𝜌∞𝑐𝑝) is the 

thermal diffusivity.  

The Taylor’s expansion of the solution 𝒗(𝑥, 𝑡) in the time 

domain, neglecting second order term and body forces, yields 

∆𝒗 = −∆𝑡 [
𝜕𝒇𝒊

𝜕𝑥𝑖
+

𝜕𝒈𝒊

𝜕𝑥𝑖
]

(𝑡)
                                       (9)  

in which ∆𝒗 = 𝒗(𝑡 + ∆𝑡) − 𝒗(𝑡). Applying Galerkin’s spatial 

idealization 𝒗 = 𝒂�̃�,  �̃� being the nodal values and 𝒂 the shape 

functions vector, the flow equation can be expressed as7 

𝑴∆�̃� = −∆𝑡 [
𝜕𝑢𝑖

𝜕𝑥𝑖
𝑴 + 𝑲] �̃� − ∆𝑡(�̂�1 + �̂�2) + ∆𝑡�̂�  +

∆𝑡  [𝑲𝜎 + 𝒇𝜎]                                            (10)  

in which 𝑴 is the consistent mass matrix, 𝑲 the convection 

matrix, �̂�1, �̂�2 the pressure matrices, 𝑲𝜎 the second-order 

matrix that includes viscous and heat flux effects, and 𝒇𝜎 the 

boundary integral matrix from second-order terms. Then, 

𝑴 = ∫ 𝒂𝑇𝒂𝑑𝑉
𝑉

;    𝑲 = ∫ 𝒂𝑇�̅�𝒊

𝜕𝒂

𝜕𝑥𝑖

𝑑𝑉
𝑉

;     

�̂�1 = ∫ 𝒂𝑇�̅�𝑖
𝑉

𝜕𝑒𝑖

𝜕𝑥𝑖

𝑑𝑉;    �̂�2 = ∫ 𝒂𝑇�̅�𝑖
𝑉

𝜕𝑒𝑖

𝜕𝑥𝑖

𝑑𝑉; 

 𝑲𝜎 = − ∫
𝜕𝒂𝑇

𝜕𝑥𝑗

𝑒𝑗𝜎𝑖𝑗𝑑𝑉
𝑉

− ∫
𝜕𝒂𝑇

𝜕𝑥𝑗

𝒎𝑗𝑞𝑗𝑑𝑉
𝑉

;   

  𝒇𝜎 = ∫ 𝒂𝑇𝑒𝑗𝜎𝑖𝑗�̂�𝑑Γ
Γ

+ ∫ 𝒂𝑇𝒎𝑗𝑞𝑗�̂�𝑑Γ
Γ

                 (11)  

In these equations, �̅�𝑖, �̅�𝑖, �̅�𝑖 are the average values; 𝒆1 =
[0 1 0 0 𝑢1]𝑇 , 𝒆2 =  [0 0 1 0 𝑢2]𝑇 , 𝒆3  =  [0 0 0 1 𝑢3]𝑇 , �̂� is the 

artificial dissipation, and 𝒎1 = 𝒎2 = 𝒎3 = [0 0 0 0 1]𝑇. 

Turbulence terms are included by modifying the viscous 

effects. 

A novel two-step solution procedure17 is adopted for the 

flow equation, the inviscid solution being augmented with the 

viscous term and stabilized with artificial dissipation terms. 

Assuming, 

∆�̃� = �̃�𝒏+𝟏 − �̃�𝒏                                       (12) 

then,  

𝑴(�̃�𝑛+1 − �̃�𝑛) =
−∆𝑡

2
[𝑐𝑴 + 𝑲](�̃�𝑛+1 + �̃�𝑛) − ∆𝑡(�̂�1 +

�̂�2)                                               (13)  

which becomes 

[(1 +
∆𝑡

2
𝑐) 𝑴 +

∆𝑡

2
𝑲] �̃�𝑛+1 = [(1 −

∆𝑡

2
𝑐) 𝑴 −

∆𝑡

2
𝑲] �̃�𝑛 +

∆𝑡𝑹                                (14)  

or  

[𝑴+]�̃�𝑛+1 = [𝑴−]�̃�𝑛 + ∆𝑡𝑹                               (15)  
where  

𝑹 = −(�̂�1 + �̂�2)                                                   (16)  

Let 

𝑴+ = 𝑫+ + 𝑴′+                                                   (17)  

the matrix 𝑫+ having diagonal elements. Equation (8) may then 

be solved as follows. 

Step 1: Form 

[𝑫+]�̃�𝑛+1 = [𝑴−]�̃�𝑛 − [𝑴′+]�̃�𝑛+1 + ∆𝑡𝑹           (18)  

Step 2: Solve �̃�𝑛+1 iteratively 

�̃�𝒏+𝟏
(𝒊+𝟏)

= [𝑫+ ](−𝟏) {[𝑴− ]�̃�𝒏 − [𝑴′
+ ]�̃�𝒏+𝟏

(𝒊)
+ ∆𝑡(𝑹 + �̂� +

𝑲𝝈 + 𝒇𝝈 )}                                                             (19)  

Step 3: If ‖�̃�𝑛+1
(𝒊+𝟏)

‖ ≠ EPS1‖�̃�𝑛+1
(𝒊)

‖ go to Step 2. 

Step 4: If ‖�̃�𝑛+1
(𝒊+𝟏)

‖ ≠ EPS2‖�̃�𝑛+1
(𝒊)

‖ go to Step 1. 

Step 5: Repeat Steps 1 to 4 NITER times until desired 

convergence is achieved, that is until �̃�𝑛+1 ≈ �̃�𝑛; EPS1 and 

EPS2 are suitable convergence criteria factors, specified by the 

users. 

The iterative process in Step 2 requires a small number of 

steps, usually 1, and achieves a stable, convergent solution. 

In regions of high pressure gradients, artificial dissipation term 

is applied to prevent oscillations near discontinuities. This is 

implemented by incorporating pressure-switched diffusion 

coefficients as appropriate. Thus, 

�̂� =
𝐶𝑆𝑆𝑒

∆𝑡
𝑀𝐿

−1[𝑀𝑐 − 𝑀𝐿]�̃�𝑛                                               (20) 

in which 𝐶𝑆 is a shock capturing constant, 𝑆𝑒 is the averaged 

element value of the nodal pressure switch defined as 
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𝑆𝑖 =
|∑ 𝑝𝑖 − 𝑝𝑗|

∑(|𝑝𝑖 − 𝑝𝑗|)
                                                             (21) 

and 𝑀𝑐 and 𝑀𝐿 are the consistent and lumped mass matrices 

respectively; l is the node under consideration and j are the 

nodes connected to i. 

To obtain the viscous components, 𝜎𝑖𝑗 in Eq. (4) is written 

as 

𝜎𝑖𝑗 = −
2

3

𝜇

𝑅𝑒

𝜕𝑢𝑙

𝜕𝑥𝑙
𝛿𝑖𝑗 +

𝜇

𝑅𝑒
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)                                (22)  

and the diffusion flux of the Navier-Stokes equation being 

𝑔𝑖 = (0 𝜎𝑖1 𝜎𝑖2 𝜎𝑖3 𝑢𝑗𝜎𝑖𝑗 +
1

𝑅𝑒𝑃𝑟

𝜕𝑇

𝜕𝑥𝑖

)
𝑇

                  

 𝑖 = 1,2,3;     𝑗 = 1,2,3                  (23)  

 is the nondimensional viscosity term, whereas Re and Pr are 

the Reynolds and Prandtl numbers, respectively. Next 

components of 𝜕𝑔𝑖/𝜕𝑥𝑖 are evaluated term by term and then 

discretized by Galerkin approximation. 

This procedure is adopted in the STARS-CFDSOL code1 

that enables effective solution of the Naviar-Stokes equation in 

most flight regimes. 

 
NUMERICAL AND TEST RESULTS 
 
      Accuracy18 of the STARS CFD code was verified pertaining 

to the Hyper-X flight vehicle, carrying the X-43 vehicle for 

subsequent hypersonic flight at Mach 5.0 and 7.0. Table 1 

provides such a comparison of computational results and actual 

flight test data at various sensor locations; these data pertain to 

the ascent state of Hyper-X at Mach 0.9 and an altitude of 

22,500 ft. Figure 1 provides a graphical depiction of 

comparison of the two sets of results, signifying accuracy of the 

relevant procedures. Also Table 1 shows the numerical values 

of flight test and computed aerodynamic pressures; excellent 

correlation is observed for primary data values; the last three 

values in the Table are comparatively small and hence prone to 

measurement inaccuracy. This code was next used, along with a 

variety of existing commercially available programs, to solve a 

practical project problem. The results of which were also 

compared to that obtained by actual flight and wind tunnel 

tests. 

The Gulfstream GIII airplane (Gulfstream Aerospace 

Corporation, Savannah, Georgia), currently undergoing flight 

tests19 at NASA AFRC, was chosen as the example problem for 

verification purposes. The GIII business jet as shown in Figure 

2 is being modified and instrumented by NASA's Armstrong 

Flight Research Center to serve as a test bed for a variety of 

flight research experiments, in support of the Environmentally 

Responsible Aviation (ERA) project. The twin-turbofan aircraft 

provides long-term capability for efficient testing of subsonic 

flight experiments for NASA, the U.S. Air Force, other 

government agencies, academia, and private industry.  

The wing span of the GIII aircraft is 23.7226 meter with 

sweep angle 27.66 degree. The airfoil section is a NACA 0012 

modification. The aerodynamic model of the GIII wing used in 

the CFDSOL and MG solutions is shown in Figure 3; only the 

right wing section was used for CFD analysis. Total number of 

CFD mesh using triangular element on wing surface is 31k for 

coarse mesh and 59k for finer mesh. Total number of 3-D CFD 

mesh using tetrahedron element in aerodynamic domain is 1.2m 

for coarse mesh and 2.8m for finer mesh. 

. The flight condition was for Mach 0.7 and angle of attack  = 

3.92 degrees. Table 2 provides extensive description of relevant 

analyses hardware employed for each of the participative code 

and solution CPU time for a converged solution. The STARS 

has two solution option modules, namely CFDSOL and MG 

and both appear to be competitive in terms of solution time, 

accuracy, grid size and CPU numbers.  

Figures 4 to 6 depict pressure (Cp) distribution around the 

wing airfoil cross section at the wing 368.3 cm, 584.2 cm and 

1003.5 cm span wise locations. Further, the wind tunnel and 

actual flight test results are also shown for comparison and 

validation purpose. Due to the proprietary nature of the wind 

tunnel and fight test data, actual scales on the figures cannot be 

shown. Each of the codes shows reasonable correlation; 

solution of the CFDSOL and MG codes appear to be rather 

close to the two test results.  

Figure 7 depicts the Cp distribution along the airfoil at 

different span locations. 

 

CONCLUDING REMARKS 
 

The paper presents detailed comparison of solutions of the 

GIII aircraft wing obtained by a number of commercially 

available CFD codes as well as two AFRC in-house codes that 

use a finite element fluids discretization employing 

unstructured grids; related formulations of the novel CFDSOL 

code are also presented in detail. Importantly these solutions 

are compared with actual flight and also wind tunnel test data. 

Each of the codes shows reasonable correlation; solution of the 

CFDSOL and MG codes appear to be rather close to the two 

test results, particularly around the leading edge; further, use of 

a single CPU to derive solutions testifies to their cost 

effectiveness. 
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Table 1 Comparison of computed and flight test measured pressure  

data for the Hyper-X/X-43 vehicle 

Sensor 

point 

Pressure, Mpa 

Flight test CFD computed 
Percent 

difference 

001 0.01165 0.01193 2.34 

003 0.01227 0.01164 6.12 

007 -0.00167 -0.00096 42.12 

085 -0.00108 -0.00268 147.99 

090 0.00048 -0.00055 2.56 
 

 

Table 2 CFD Solvers Comparison 

CFD Solver Flow Equation Platform 
No. of 

CPU 
Total CPU time Grid Size Note 

STARCCM+ 

RANS, finite 

volume, K-

omega SST 

turbulence 

Cluster ~80 
6hr, 40min (533 

cpu hours) - 
3000 iterations 

7.2M 
polyhedra/prismatic 

for half model 
without T-tail 

number of 
processers is 
an estimate, 
and the time 
is an estimate 

for that 
number of  
processors 

STARS (MG) 
Euler, finite 

element 

Dell M620 8GB 
Ram, 64 bit 

1 Intel 
Core i7 
@2.67 

GHz 

2.8 hr, (100 
steps, 25 inner 

cycles) 

1.2 M Tetrahedrons 
for wing only 

 

STARS 

(CFDSOL) 

Full N-S, finite 

element 

Dell M620 8GB 
Ram, 64 bit 

1 Intel 
Core i7 
@2.67 

GHz 

13.8 hr (10000 
steps) 

2.8 M Tetrahedrons 
for wing only 

 

USM3D 
Full N-S, finite 

volume 
Mac 64 bit 2 CPUs 16 hr 

1.9 M cells for half 
model without T-tail 

 

TRANAIR Full potential + 
viscosity 

(boundary 
layer) 

Linux 
Workstation 

1 CPU 2h, 28min 1.7M cells for full 
model 
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Fig. 1 Comparison of flight measured and calculated (CFD) pressure on Hyper-X/X-43 vehicle 

 

 
 

 
 

Fig. 2 Grumman Gulfstream III (GIII) business jet. 
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(a) Domain Discretization 

 

 
(b) Surface Mesh 

Fig. 3 Aerodynamic model of the GIII aircraft wing. 
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Fig. 4 Cp plot at span station 145  
 

 
 

Fig. 5 Cp plot at span station 230 
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Fig. 6 Cp plot at span station 385. 
 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Cp distribution on wing surface  (b) Cp at station 145                                          

 

 

 

 

 

 

 

 

 

 (c) Cp at station 230     (d) Cp at station 385 

 

Fig.7 Typical Cp plots at various locations 
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