Flight Software for the LADEE Mission
Aerospace Control and Guidance Systems Committee Meeting #116
Howard Cannon
NASA Ames Research Center
Howard.N.Cannon@nasa.gov
October 13, 2015

Objective
• Measure Lunar Dust
• Examine the Lunar atmosphere

Key parameters
• Launched in September 2013
• Science Data Acquisition: 146 days
• Lunar Impact April 18, 2014

Spacecraft
• Type: Small Orbiter - Category II, Enhanced Class D
• Provider: ARC/GSFC

Instruments
• Science Instruments: NMS, UVS, and LDEX
• Technology Payload: Lunar Laser Communications Demo

Launch Vehicle: Minotaur V
Launch Site: Wallops Flight Facility
Spacecraft Components - External

- LDEX
- Star Tracker Cameras
- Omni Antenna
- UVS
- MG Antenna
- LLCD Optical Module
- CSS Mounted on Solar Panels
- OCS (Main Thruster)

Spacecraft Components - Internal

- Star Tracker Cameras
- SEPIA
- Top of Radiator
- UVS
- MG Antenna
- IAU
- IMU
- Battery
- Bottom of Radiator
- VDU
- Propulsion Module
LADEE Launch – 9/7/2013

- Launched from Wallops Flight Facility
- First launch on Minotaur V
- Spectacular night launch visible along Eastern Seaboard

LADEE’s Journey to the Moon

- Earth “Phasing Loop” trajectory approach used to account for uncertainty in launch vehicle performance
- Three and a half loops performed over the course of 29 days (9/6/13 – 10/6/13)
Lunar Orbit Insertion Burn #1: 10/6/2013

- LOI-1 Burn was critical – if unsuccessful or delayed, could have resulted in not meeting science objectives
- Final approach out of view from earth
- Start burn within 5 minutes of coming into view
- Burn duration approximately 3 minutes

<table>
<thead>
<tr>
<th>Delay</th>
<th>Impact to Mission</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min</td>
<td>Mission still meets most science objectives.</td>
</tr>
<tr>
<td>10 min</td>
<td>Mission meets many science objectives, but doesn’t achieve full success.</td>
</tr>
<tr>
<td>15 min</td>
<td>Mission meets only minimum science objectives.</td>
</tr>
<tr>
<td>20+ min</td>
<td>Mission doesn’t meet science objectives.</td>
</tr>
</tbody>
</table>

Delay Impact to Mission

- 5 min: Mission still meets most science objectives.
- 10 min: Mission meets many science objectives, but doesn’t achieve full success.
- 15 min: Mission meets only minimum science objectives.
- 20+ min: Mission doesn’t meet science objectives.
Lunar LaserCom Demonstration

LADEE L1 Science Requirements

- LDEX: Min. mission and Nominal mission
- NMS: Actual (RAMmother), Actual (SR RAM only), SR minimum
- UVS: Actual, Minimum
LADEE Flight Software Overview

- **Scope**
 - Onboard Flight Software (Class B)
 - Support Software and Simulators (Class C)
 - Non-Safety Critical (launch powered off)

- **Key Features**
 - Attitude Control (RW & Thrusters)
 - Power & Battery Management
 - Thermal Management
 - Safe Mode Control
 - Command & Data Handling

Low Cost Approach:

- Leverage Heritage Software
 - GSFC OSAL, cFE, cFS, ITOS
 - Broad Reach Drivers, VxWorks
 - Mathworks Matlab/Simulink & associated toolboxes

- Development Approach
 - Model Based Development Paradigm (prototyped process using a “Hover Test Vehicle”)
 - 5 Incremental Software Builds, 2 Major Releases before launch, 1 Minor Release after launch.

Use of Core Flight System

- **Low Cost Mission** and fixed schedule demanded low cost flight software development leveraging COTS/GOTS/MOTS.

- The Core Flight System (cFS) is a platform-independent, mission-independent, reusable Flight Software environment (Product Line)
 - core Flight Executive (cFE)
 - Operating System Abstraction Layer (OSAL)
 - CFS Applications (cFE-compliant)

 - All of the above were developed and managed by Flight Software Branch GSFC Div. 582
cFS Key Features

- Layered architecture
 - Reusable components
 - Platform Independent
 - Supports advances in technology without changes to the framework

cFS Core Services

Executive Services
- Manages the software system

Software Bus Services
- Provides publish/subscribe software bus messaging interface

Time Services
- Provides spacecraft time

Event Services
- Provides interface for sending, filtering, and logging event messages

Table Services
- Provides interface to manage table images

The cFS core layer is the system glue. It provides the common software functions that are needed by all missions.
cFS Applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF/CFDP</td>
<td>Transfers/receives file data to/from the ground</td>
</tr>
<tr>
<td>Checksum</td>
<td>Performs data integrity checking of memory, tables and files</td>
</tr>
<tr>
<td>Command Ingest Lab</td>
<td>Accepts CCSDS telecommand packets over a UDP/IP port</td>
</tr>
<tr>
<td>Data Storage</td>
<td>Records housekeeping, engineering and science data onboard for downlink</td>
</tr>
<tr>
<td>File Manager</td>
<td>Interfaces to the ground for managing files</td>
</tr>
<tr>
<td>Housekeeping</td>
<td>Collects and re-packages telemetry from other applications.</td>
</tr>
<tr>
<td>Health and Safety</td>
<td>Ensures that critical tasks check-in, services watchdog, detects CPU hogging, and calculates CPU utilization</td>
</tr>
<tr>
<td>Limit Checker</td>
<td>Provides the capability to monitor values and take action when exceed threshold</td>
</tr>
<tr>
<td>Memory Dwell</td>
<td>Allows ground to telemeter the contents of memory locations. Useful for debugging</td>
</tr>
<tr>
<td>Memory Manager</td>
<td>Provides the ability to load and dump memory.</td>
</tr>
<tr>
<td>Software Bus Network</td>
<td>Passes Software Bus messages over Ethernet</td>
</tr>
<tr>
<td>Scheduler</td>
<td>Schedules onboard activities via (e.g. HK requests)</td>
</tr>
<tr>
<td>Scheduler Lab</td>
<td>Simple activity scheduler with a one second resolution</td>
</tr>
<tr>
<td>Stored Command</td>
<td>Onboard Commands Sequencer (absolute and relative).</td>
</tr>
<tr>
<td>Telemetry Output Lab</td>
<td>Sends CCSDS telemetry packets over a UDP/IP port</td>
</tr>
</tbody>
</table>

cFS Open Source

- cFE open Internet access at http://sourceforge.net/projects/coreflightexec/
 - Source code
 - Requirements and user guides
 - Tools

- OSAL open Internet access at http://sourceforge.net/projects/osal/
 - Source code
 - Requirements and user guides
 - Tools

- cFS application suite is also available on sourceforge

- For more information, contact:
 Dave McComas
 NASA GSFC/Code 582 Flight Software Branch
 Dave.C.McComas@nasa.gov
Simulink Application Summary

<table>
<thead>
<tr>
<th>Application</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command & Mode Processor (CMP)</td>
<td>Decodes and latches commands for other Simulink modules, and handles mode transitions.</td>
</tr>
<tr>
<td>Actuator Manager (ACT)</td>
<td>Manages which module talks to the thruster & reaction wheel hardware.</td>
</tr>
<tr>
<td>State Estimator (EST)</td>
<td>Estimates the attitude and rates of the spacecraft.</td>
</tr>
<tr>
<td>Safe Mode Control (SMC)</td>
<td>Controls the spacecraft orientation and rates while in Safe Mode and Rate Reduction Modes.</td>
</tr>
<tr>
<td>Attitude Control System (ACS)</td>
<td>Controls the spacecraft orientation and rates while in DeltaV, FinePoint, or DeltaH Modes.</td>
</tr>
<tr>
<td>Thermal Control System (TCS)</td>
<td>Turns heaters on and off based on set points.</td>
</tr>
<tr>
<td>Power Control System (PCS)</td>
<td>Turns electrical switches on and off as commanded. Provides current limit protection and load shedding.</td>
</tr>
<tr>
<td>Battery Charge System (BCS)</td>
<td>Monitors and Controls battery voltage.</td>
</tr>
</tbody>
</table>

GSFC OSAL, cFE, cFS, ITOS (GOTS)
Broad Reach Drivers (MOTS)
Simulink/Matlab, VxWorks (COTS)
Model Based Development

• Issues:
 – Low Cost Mission and fixed schedule demanded rapid, low cost flight software development process
 – Simulations needed for FSW Verification and Mission Operations development, training, and command verification.

• Solution:
 – Use model based development approach
 • Automatic conversion of Models to FSW allows development and testing of algorithms which then becomes Software. Avoids “throwing it over the fence to be coded”.
 – Developed multiple simulators of varying degrees of fidelity (WSIM, PIL, HIL)
 – Developed Simulink Interface Layer
 • Allows immediate translation from models to Code allowing rapid turnaround
 – Developed an automated test harness for rapid turnaround of verification results

• Result:
 – Model Based Development coupled with “push button” code generation and testing was highly effective for rapid software development.
 – Models and Simulations used extensively in Mission Operations.
 • WSIM provided faster than real time capability for rapid command verification.
 • Processor in the Loop and Hardware in the Loop simulations provided high fidelity simulations for critical maneuver verification, Ops training, and debugging anomalies
 • Fully Coupled Simulations (Power, Thermal, Propulsion, Attitude Control) provided better insight for coupled problems.

Iterative Development

• Develop Models of FSW, Vehicle, and Environment
• Automatically generate High-Level Control Software
• Integrate with hand-written and heritage software.
• Iterate while increasing fidelity of tests – Workstation Sim (WSIM), Processor-in-The-Loop (PIL), Hardware-in-the-Loop (HIL)
• Automated self-documenting tests providing traceability to requirements
Simulink Interface Layer (SIL)

- Higher level Flight Software Modules modeled in Simulink
- C-Software generated from Models using Real Time Workshop Embedded Coder
 - Template for Target Language Compiler (TLC) developed with Mathworks
 - Turns Specified Simulink Input/Output ports into cFE Message structures
 - I/O ports must be Simulink non-virtual buses
 - Creates C Header file that defines message interfaces and entry points
 - Specific Data Structures
 - Macros that identify key functions
- Simulink Interface Layer (SIL) provides CFE compatible app functionality:
 - Uses message and entry point definitions from generated .h file
 - Input Messages – Subscribed to and recv’d from Software Bus
 - Output Messages – Registered and Published to Software Bus
 - Event Output – Custom Block with Trigger and Format String
 - Table Management – Mapped from tunable params
 - Housekeeping – General Meta-Data about App
- Simulink Interface being made available in the CFS Community repository

Hardware Test Systems

<table>
<thead>
<tr>
<th>WSIM Workstation Simulations</th>
<th>Simulink on Windows, Mac, or Linux computers</th>
<th>- Models of GN&C, Prop, Power, & Thermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIL Processor-in-the-Loop</td>
<td>PPC750 Processor(s) in Standalone chassis</td>
<td>- Faster than Real Time</td>
</tr>
<tr>
<td>HIL Hardware-in-the-Loop</td>
<td>Avionics EDU with simulated vehicle hardware.</td>
<td>- Used by FSW to generate and test algorithms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Used by MOS for standard command uplink verification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Includes all flight software functionality. Runs on 1 or 2 processors.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Run in real time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Multiple copies maintained by FSW as inexpensive system for real time software & fault management development.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Used by MOS for maneuver simulations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Highest fidelity simulators includes hardware interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Run in real time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Travelling Road Show used to test payload interfaces early in development cycle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Authoritative environment for verification of FSW requirements</td>
</tr>
</tbody>
</table>
Automated Testing

• Need to verify the integrated flight software, not just the models.
 – 144 top level requirements to assess
• Test as we fly!
 – Telemetry is the normal indicator of the software health during flight so verify L4 requirements on the telemetry stream using same tool-chain as in flight.
 – Scenarios developed exercising each flight phase. Software response to identified fault conditions tested in Fault Management scenarios.
 – Assertions applied to telemetry stream and software artifacts to verify level 4s.
• Regression test cycle within one week.
 – Scenarios themselves take a “long weekend” to compute (in real time).
 – Reduction of 70 Gb of scenario data takes an additional day.
 – Automated test report for analysis

Automated Test Report

Summary Statistics.

There are 144 requirements to verify in this build out of a total of 144 level 4 requirements.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSW–3: The FSW should be predictable in its operation.</td>
<td>PASS</td>
</tr>
<tr>
<td>FSW–5: The FSW implementations shall use standard metric units (kilogram [kg], meter [m], second [sec.], degrees centigrade [deg C], etc.) as the standard unit convention. Controlled use of hybrid units will be allowed per LADEE Systems Engineering Management Plan (Doc # C03_LADEE_SEMP).</td>
<td>PASS</td>
</tr>
<tr>
<td>FSW–6: The FSW shall define quaternions as vectors where the fourth element is the scalar value with a range >0 and <=1.</td>
<td>PASS</td>
</tr>
<tr>
<td>FSW–10: The OFSW shall be designed for a minimum mission duration of 200 days.</td>
<td>PARTIAL</td>
</tr>
</tbody>
</table>
Conclusions

LADEE Mission Highly Successful
• Lowest science operations conducted under 2 Km over the moon’s surface
• Successful Laser Communications demonstration: 622Mbs downlink rate. Very useful to be able to download a SDRAM partition in less than 2 minutes.
• Survived an eclipse!
• 188 days of lunar orbit, with approximately 200% of planned science data returned to the earth. All science goals met.

LADEE Flight Software
• Delivered on time and within budget.
 • Use of Heritage Software
 • Model Based Development
 • Automated Testing
• Software performed well throughout mission
 • Flexibility in design allowed unanticipated use cases
 • 2 software patches to account for emergent star tracker behavior
 • 1 unanticipated reboot (Interrupt Handling)

Final Resting Place
April 18, 04:31 UTC
Orbit #2292
11.8407° latitude, -93.2521° longitude – visible from Earth between 5 and 9 days each lunar cycle
Mission Ops in communication and retrieving science data at impact