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Streamline-Traced External-Compression (STEX) Inlets

o A supersonic, external-compression inlet involves the spilling of

subsonic flow past a terminal shock located about the cowl lip.

o Streamline tracing involves defining a compressive, supersonic parent

flowfield and tracing streamlines through that flowfield to obtain an

external supersonic diffuser.

o Techland Research, Boeing, and NASA explored the streamline-traced

external-compression Parametric Inlet for Mach 2.35 (2005).

o The Aerion Corporation has explored the use of streamline-traced

external-compression inlets for their Mach 1.6 supersonic business jet.

o Slater (AIAA-2014-3593) provided a methodology designing

streamline-traced external-compression (STEX) inlets and compared

their performance to traditional two-dimensional and axisymmetric

inlets (further details on the next slide).

o NASA is exploring the use of STEX inlets for efficient, low-boom

supersonic cruise about Mach 1.6. Potential benefits of STEX inlets:

• 3D inward isentropic turning reduces cowl drag.

• No centerbody or struts with wakes.

• No corner flows.

• Subsonic spillage and exterior shocks can be “directed” to reduce 

external disturbances and sonic boom.

• Flexibility of capture shape may improve integration with the aircraft.

Parametric Inlet

Aerion

STEX-Circular

(AIAA-2014-3593) 
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Streamline-Traced Inlet Design Study (AIAA-2014-3593)

o Inlet design conditions are consistent with current interest

for commercial supersonic transport aircraft.

o Used SUPIN to design and size the streamline-traced inlets

and generate 3D grids for CFD analysis.

o An axisymmetric spike inlet was also designed and

analyzed to provide a reference inlet performance.

o Summary of 2014 Study:

• The STEX inlet was 45% longer and had 25% greater surface

area than axisymmetric spike inlet (with no struts), which

correlates to inlet weight. Added length and area could be

beneficial for acoustic treatment.

• The STEX inlet had a total pressure recovery of 0.95 with

2.4% spillage at critical condition compared to 0.98 and 0.5%

spillage for the axisymmetric spike.

• The STEX inlet formed a low-momentum region at the top of

engine face resulting in higher distortion.

• The cowl wave drag of the STEX inlet was 16% of that of the

axisymmetric spike inlet.

• External sound pressures of the STEX inlet were “directed”

with RMS values 38% of those of spike inlet.

Inlet Design Conditions

Inflow Mach number, ML 1.6

Altitude, h0 40,000 ft

Engine-Face Diameter, D2 3.0 ft

Engine-Face Mach Number, M2 0.52

STEX-Circular 

Axisymmetric 

Spike 

Mach Recovery
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Enhancements for the Current Design Study

o The current design study explores four enhancements for STEX inlets with the goal

of increasing total pressure recovery and reducing total pressure distortion.

o The four enhancements are:

1) Switch to a parent flowfield that naturally contains a leading edge oblique shock

and a strong oblique terminal shock that results in subsonic outflow.

2) Explore the design space of varying lengths of subsonic cowl lip displacement

“cut-out” and subsonic cowl lip incidence angles.

3) Explore off-setting the engine face axis with respect to the inlet axis.

4) Explore the use of porous bleed.

Streamtube Stations

0: Freestream

L: Local inflow to the inlet

1: Cowl lip

SD: Start of subsonic diffuser

2: Engine face
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Otto-ICFA-Busemann Parent Flowfield (AIAA-2015-3700)

o An improved parent flow field was used that combined an internal conical flow (ICFA) that created a

leading-edge oblique shock with an axisymmetric Busemann flowfield that has a strong conical exit shock.

o Specifications are the inflow (M0), leading edge angle (stle), and outflow (Mstex) Mach numbers. Inflow is

supersonic. Outflow can be subsonic or supersonic.

o A tracing cross-section shape is established using super-ellipses, which allow circular, elliptical, and

rectangular shapes through the values of its parameters.

o The tracing cross-section is placed within the outflow of the Busemann flowfield.

o Points on the tracing cross-section are traced upstream along streamlines of the Busemann flowfield.

o Imposing an off-set of the tracing cross-section from the axis of the Busemann flowfield created a leading

edge for the inlet that was swept back.

o We use M0 = 1.6, stle = -5.0 degrees, and Mstex = 0.90 (for Mach ahead of terminal shock of 1.27).

STEX Inlet 
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Subsonic Cowl Lip Factors

o The subsonic cowl lip is that portion of the leading edge that encounters the

subsonic flow downstream of the terminal shock.

o The subsonic cowl lip is formed by blending a profile at the symmetry plane with the

profile of the supersonic leading edge at the bounds of a circumferential span.

o stcl is the circumferential span (stcl = 120 deg).

o xstcl is the axial displacement and allows for increased

subsonic spillage. (xstcl = 0.0, 0.12, 0.15, 0.18 normalized

by the engine-face diameter).

o stcl is the angle-of-incidence. (stcl = 0, 5, 10, and 15 deg).
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SUPIN Supersonic Inlet Design and Analysis Tool

• SUPIN (SUPersonic INlet design and analysis code) is being developed as a

computational tool for supersonic inlet design and analysis.

• Modes of SUPIN usage:

1) Generate the inlet geometry from explicit input factors.

2) Perform design operations to size the inlet and compute performance.

3) Perform aerodynamic analysis of a specified inlet geometry (TBD).

• Guiding ideas for SUPIN:

o Construct the inlet geometry using design factors (parameters) and simple

planar constructs to facilitate inlet design and optimization studies.

o Ability to estimate inlet performance (flow rates, total pressure recovery, and

inlet drag) in a matter of second for propulsion system studies.

o Consider traditional inlet types (pitot, axisymmetric, 2D), as well as, more

advanced inlet concepts (streamline-traced).

o Create surfaces for visualization and prototyping (Plot3D and STL).

o Generate CFD surface and volume grids (Plot3D).

o Keep coding and interfaces simple (Fortran 90).

SUPIN is a research code under development, but it is available for Beta testing.

Axisymmetric, Outward-

Turning Spike Inlet

Two-Dimensional, 

Single-Duct Inlet

Axisymmetric Pitot Inlet
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STEX Inlet CFD Analysis

o Wind-US, steady-state RANS solver.

o Multi-block, structured grid.

o SST turbulence model.

o 2-6 million grid points.

o y+
1  1 to 2.

o Outflow is modeled with an outflow

converging-diverging nozzle.

o Porous bleed is modeled as a

boundary condition over a specified

bleed region.
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Baseline Inlet

o (xstcl, stcl, y2) = (0.15, 10, 1.05).

o Engine face was moved downward until the top of the

subsonic diffuser had no streamwise turning.

o Characteristic “cane” curves show total pressure

recovery (pt2/ptL) with respect to inlet flow ratio (W2/Wcap).

o Baseline inlet reduces spillage, but recovery is similar to

previous STEX-Circular inlet.

Busemann 
outflow 
shock
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Effects of Cowl Lip Displacement

Near Critical Inlet Flow Rate Subcritical Inlet Flow Rate

Recovery
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Effects of Cowl Lip Displacement (xstcl)

o Greater cowl lip displacement leads to greater

supersonic and subsonic spillage.

o Some spillage is acceptable to provide for a

smoother characteristic “cane” curve.

o A hysteresis was observed for the case with no

cowl lip displacement.

o Cowl lip displacement provides an important

spillage mechanism.

supercritical 
to subcritical

subcritical to 
supercritical
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Effects of Cowl Lip Angle (stcl )

o The guiding idea is that cowl lip should be

oriented to be inline with local flow angle.

o Higher angles produced a more pronounced

“peak” in the characteristic curve.

o Cowl wave drag increased slightly for higher

angles due to higher cowl exterior angle.

o Generally, the cowl lip angle did not have a

large effect.

stcl

stcl (deg) WC2/WC2
* pt2/pt0 CDwave DIST

0.0 1.0158 0.9497 0.0404 0.2191

5.0 1.0152 0.9506 0.0401 0.2092

10.0 1.0138 0.9527 0.0408 0.1952

15.0 1.0124 0.9536 0.0429 0.1787
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Effects of Engine Face Offset and Porous Bleed

o “Best” configuration used:

• xstcl = 0.15

• stcl = 15 deg

• y2 = 1.05 ft

o Placing the engine-face axis collinear with the inlet

axis (y2 = yinlet = 1.262 ft) resulted in an increased

growth of lower momentum flow at top of the

subsonic diffuser.

o A porous bleed region placed on the top half of the

inlet just downstream of the shoulder removed

mostly lower-momentum flow.
yinlet = 1.26 ft

yEF = 1.05 ft

Recovery
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Summary of Inlet Performance

o The characteristic “cane” curves.

o Total pressure distortion descriptors (GE) at the

engine face compared to F404-GE-F400 limits.

o ARP 1420 40-probe rake used with probes at

centroids of equal areas (white circles on the

recovery contour plot).

Recovery Mach
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Summary and Future Plans

Summary:

o The performance of the STEX inlets was enhanced through 1) the use of the ICFA-Otto-

Busemann parent flowfield, 2) the proper choices of subsonic cowl lip displacement and engine-

face placement, and 3) the use of porous bleed.

o The total pressure recovery was enhanced, but still below that of the axisymmetric spike inlet.

However, reduced cowl drag could more than make up the deficit in total pressure recovery.

o The total pressure distortion was demonstrated to be within limits.

Future Plans:

o Continue to explore the influence of various design factors using design-of-experiments (DOE)

and optimization methods.

o Perform steady-state and unsteady (DES) CFD analyses of the STEX inlets for on and off-design

conditions, including subsonic conditions.

o Explore the integration of STEX inlets onto aircraft configurations. This would include top-

mounted inlet configurations.

o Explore sonic boom properties of the installed inlets.

o Explore the use of flow control (bleed, vortex generators, micro-devices) within the inlet to further

increase total pressure recovery and decrease distortion.

o Design a wind-tunnel model and perform tests to validate the inlet design.


