Using Satellite Observations to Evaluate the AeroCOM Volcanic Emissions Inventory and the Dispersal of Volcanic \(\text{SO}_2 \) Clouds in MERRA
Eric J Hughes1, Nickolay Krotkov2, Arlindo da Silva2 and Peter Colarco2

(1)University of Maryland College Park, College Park, MD, United States
(2)NASA Goddard Space Flight Center, Greenbelt, MD, United States
Overview

AeroCom Volcanic Emissions Inventory is used as a volcanic input to climate models by describing the:

- Daily SO₂ Emission for a given volcano
- Estimate of the Cloud Top Altitude

Extends back to 1930s, but most of the detailed information extends to the satellite remote sensing period, back to 1979.

In select case studies, large differences have been observed between the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and SO₂ observations from the Ozone Monitoring Instrument (OMI)

Shown to better understand the nature of these differences:

- Comparison of AeroCom Inventory vs. MERRA input
- Aerocom Cloud Top Estimates vs. Back Trajectory Height Estimates
- MERRA Simulated SO₂ dispersal vs. OMI Observed SO₂ dispersal
Emission altitude and timing can be estimated from **back trajectories from observations**

The Trajectory Transport Test:
A trajectory has successfully described the transport of an SO$_2$ measurement if it arrives within a minimum distance of the volcano.

The **Distance of Closest Approach**

\[r^{*}(\theta, t^{*}) \]

\(\theta \) - the theta height of that trajectory
\(t^{*} \) - is the time of closest approach

Derive Emission Probability Distribution Functions (PDFs) from those trajectories that arrive within a minimum distance of the volcano
SO$_2$ Explosive Eruption Case Studies:

Kasatochi 2008

Okmok 2008

Soufriere Hills 2006

Sierra Negra 2005
AeroCom Volcanic Emission Inventory: Select Cases

- **Soufriere Hills 2006**
 - SO2 Emissions [Kg/day]
 - Days: 5/20/06, 5/21/06, 5/22/06, 5/23/06, 5/24/06, 5/25/06

- **Kasatochi 2008**
 - SO2 Emissions [Kg/day]
 - Day: 8/8/08

- **Sierra Negra 2005**
 - SO2 Emissions [Kg/day]
 - Days: 10/24/05, 10/25/05, 10/26/05, 10/27/05, 10/28/05, 10/29/05, 10/30/05

- **Okmok 2008**
 - SO2 Emissions [Kg/day]
 - Days: 7/12/08, 7/13/08, 7/14/08, 7/15/08, 7/16/08, 7/17/08, 7/19/08, 7/20/08
How well do the derived height profiles compare to those assumed in the GEOS-5/GOCART MERRA Run?
SO$_2$ Emission Height-Time PDF
Soufriere Hills

GOCART SO₂ Emissions

Cloud Top

Assumed Profile

Pressure Level (mb)

Altitude (km)

2006-05-19
2006-05-20
2006-05-21

Time/Date
Kasatochi

GOCART SO$_2$ Emissions

Pressure Level (mb)

2008-08-08

Time/Date

Altitude (km)
SO$_2$ Emission Height-Time PDF
GOCART SO$_2$ Emissions

Okmok
How do satellite observations compare to the simulated SO$_2$ dispersal?

Soufriere Hills

- OMI SO2
- GEOS-5/GOCART

Sierra Negra

- OMI SO2
- GEOS-5/GOCART
Model vs. Satellite: There is a large disagreement seen in Sierra Negra and Soufriere Hills and better agreement with Kasatochi and Okmok.
Concluding Remarks

• The assumed profile of 1/3 the column between cloud top and volcano summit
 – Appears incorrect for several eruptions
 – May be pushing SO2 into the lower trop creating incorrect dispersal/loss rates in MERRA (Soufriere Hills)

• Comparing dispersal rates of MERRA vs. OMI can be misleading as continuous emission can give the appearance of longer dispersal rates (Sierra Negra)

• Need to more directly compare OMI and MERRA.