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Acceleration and Velocity Sensing from Measured Strain 

Chan-gi Pak1 and Roger Truax2 
NASA Armstrong Flight Research Center, Edwards, CA 93523-0273 

A simple approach for computing acceleration and velocity of a structure from the strain 
is proposed in this study. First, deflection and slope of the structure are computed from the 
strain using a two-step theory. Frequencies of the structure are computed from the time 
histories of strain using a parameter estimation technique together with an autoregressive 
moving average model. From deflection, slope, and frequencies of the structure, acceleration 
and velocity of the structure can be obtained using the proposed approach. Simple harmonic 
motion is assumed for the acceleration computations, and the central difference equation with 
a linear autoregressive model is used for the computations of velocity. A cantilevered 
rectangular wing model is used to validate the simple approach. Quality of the computed 
deflection, acceleration, and velocity values are independent of the number of fibers. The 
central difference equation with a linear autoregressive model proposed in this study follows 
the target response with reasonable accuracy. Therefore, the handicap of the backward 
difference equation, phase shift, is successfully overcome.  

Nomenclature 
AR = autoregressive  
ARMA = autoregressive moving average 
DOF = degrees of freedom 
FBG = fiber Bragg grating 
FE = finite element 
FOSS = fiber optic strain sensor 
NASA = National Aeronautics and Space Administration 
SEREP = System Equivalent Reduction and Expansion Process 
ܽଵ௜, ܽଶ௜ = autoregressive coefficients for the i-th orthonormalized coordinate ߟ௜ 
k = discrete time 
 time step = ݐ߂
 ௜ሺ݇ሻ = i-th orthonormalized coordinate at discrete time kߟ
߱௜ = i-th frequency from measured strain time histories 
ሼࢇࡽሽ࢑ = generalized aerodynamic load vector at discrete time k 
ሼࢗሽ࢑ = generalized coordinates vector at discrete time k 
ሼࡹࢗሽ࢑ = master degrees of freedom vector at discrete time k 
ሼࢗ෥ࡹሽ࢑ = measured master degrees of freedom vector at discrete time k 
ሼࡿࢗሽ࢑ = slave degrees of freedom vector at discrete time k 
ሼࣕሽ࢑ = strain vector at discrete time k 
ሼࣁሽ࢑ = orthonormalized coordinates vector at discrete time k 
ሾ۵ሿ = damping matrix 
ሾ۹ሿ = stiffness matrix 
ሾۻሿ = mass matrix 
ሾ઴ሿ = eigen-matrix 
ሾ઴ࡹሿ = eigen-matrix corresponds to master degrees of freedom 
ሾ઴ࡿሿ = eigen-matrix corresponds to slave degrees of freedom 
ሼ∗ሽሶ  = the first time derivative of vector ሼ∗ሽ 
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ሼ∗ሽሷ  = the second time derivative of vector ሼ∗ሽ 
ሾ∗ሿ-1 = inverse of a matrix ሾ∗ሿ 
ሾ∗ሿT = transpose of a matrix ሾ∗ሿ 

I. Introduction 
LEXIBLE and light weight optical fibers not only revolutionize the telecommunications, but also innovate the 
sensing world. Optical fibers can be used as fiber optic sensors to measure strain, temperature, pressure, and other 

quantities. Properties of light, such as intensity, phase, transit time of light, et cetera, that propagate in the fiber can be 
altered by modifying a fiber. Recently, fiber optic sensors have been developed to measure co-located strain 
simultaneously with very high accuracy using fiber Bragg gratings (FBGs). Specifically, a fiber optic strain sensor 
(FOSS) uses a series of FBGs to obtain measurements at intervals as small as every millimeter1 along a fiber and a 
frequencies of several kHz.2 The ability of FBGs to operate at such high frequencies makes them an ideal choice for 
both static and dynamic aerospace applications. 

Obtaining wing deflections during flight are essential measurements for structural health monitoring and active 
flexible motion controls. Calculating wing deflection values from the measured FOSS data is available along the 
singular optical fibers. Ko et al.3 uses closed-form equations to calculate real-time operational loads and deflections 
on complex structures using surface strain data. The Kang et al. 4 calculation method uses a matrix equation based on 
the displacement and strain mode shape matrices. The method described by Moore5 includes the steps of deducing 
curvature and bend radius data for the optical fiber from the strain data: curve-fitting to obtain curvature and bending 
direction functions pertaining to the optical fiber, calculating a torsion function using the bending direction function, 
and calculating the three-dimensional shape of the optical fiber from the combination of the curvature, and bending 
and torsion functions. These three methods are suitable for calculating deflection and load values in cross-sectional 
lumps based on the location of the sensors used to measure strain on the surface. 

The availability of wing deformation at all element grid points across the structural finite element (FE) model will 
improve the ability to monitor the health and behavior of a complex three dimensional structure such as an aircraft in 
flight. Several studies have been performed which evaluated using an inverse finite element method.6,7,8 This method 
is based on the minimization of a weighted-least-squares functional that uses the complete set of strain measurements. 
The two-step approach developed by Pak9 computes wing deflection values along the location of all the FOSS first, 
and then these deflection values are expanded to the entire structure using the System Equivalent Reduction and 
Expansion Process (SEREP)10 technique. 

Acceleration and velocity of structural motion are also needed to compute internal and external loads during flight 
through the use of the structural governing equations of motion. This paper focuses on a computation of acceleration 
and velocity over the entire three dimensional structure based on measured strain information. First, unsteady 
structural deformation of the entire three dimensional structure is obtained using the two-step approach introduced by 
Pak9. Next, accelerations and velocities are computed using a simple harmonic motion assumption and a central 
difference equation, respectively. 

II. Mathematical Background 
A long term objective of the current study is the computation of external aerodynamic loads and internal structural 

loads from strains which are measured from a FOSS. This objective can be accomplished through the use of the 
structural dynamic governing equations of motion. Mass, damping, and stiffness matrices in Eq. (1) are from a finite 
element model. From Eq. (1), deflection, acceleration, and velocity values are needed to compute elastic, inertia, and 
damping loads. Therefore, computing deflection, acceleration, and velocity information from the measured strain are 
the critical quantities for the long term objectives. In the first section, deflections and slopes of an entire structure are 
calculated from measured strain through the use of a recently developed two-step theory.9 Acceleration and velocities 
are computed in the second and third sections using a harmonic motion assumption and the central difference equation, 
respectively. 

A. Computation of Wing Deflection from Measured Strain 
Consider the following structural dynamic governing equations of motion shown in Eq. (1): 
 

 ሾۻሿሼࢗሷ ሽ࢑ ൅ ሾ۵ሿሼࢗሶ ሽ࢑ ൅ ሾ۹ሿሼࢗሽ࢑ ൌ ሼࢇࡽሽ࢑      (1) 
 
where ሾۻሿ, ሾ۵ሿ, and	ሾ۹ሿ  are mass, damping, and stiffness matrices, respectively, and ሼࢗሽ࢑	and	ሼࢇࡽሽ࢑  are the 
generalized coordinates and the generalized aerodynamic load vectors at discrete time k, respectively. 

F
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Deflections along the location of the FOSS can be computed from the measured strain data ሼࣕሽ࢑ using a piecewise 
least-squares method, an Akima spline, and a linear assumption as described in the two-step approach.9 These 
computed deflections at discrete the FOSS locations are combined with a FE model of the structure in order to 
interpolate and extrapolate the deflection and slope of the entire structure through the use of SEREP. Re-arranging all 
the degrees of freedom (DOF) in the FE model yields Eq. (2): 
 

 ሼࢗሽ࢑ ൌ ቄ
ࡹࢗ
ࡿࢗ
ቅ
࢑
ൌ ሾ઴ሿሼࣁሽ࢑ ൌ ൤

઴ࡹ
઴ࡿ

൨ ሼࣁሽ(2) ࢑ 

 
where ሼࡹࢗሽ࢑ is the master DOF at discrete time k. In this approach, deflections along the fiber locations computed 
from the first step of the two-step approach9 are defined as the master DOF. The rest of the deflections and slopes all 
over the structure are defined as slave DOF at discrete time k, ሼࡿࢗሽ࢑ . In Eq. (2), matrices ሾ઴ࡹሿ  and ሾ઴ࡿሿ  are 
eigen-matrices corresponding to master and slave degrees of freedom, respectively, and ሼࣁሽ࢑ is the orthonormalized 
coordinates vector at discrete time k. Therefore, the following two equations, Eqs. (3) and (4), are derived from Eq. (2). 
 

 ሼࡹࢗሽ࢑ ൌ ሾ઴ࡹሿሼࣁሽ(3) ࢑ 
 

 ሼࡿࢗሽ࢑ ൌ ሾ઴ࡿሿሼࣁሽ(4) ࢑ 
  
In Eq. (3), changing master DOF at discrete time k, ሼࡹࢗሽ࢑ to the corresponding measured values ሼࢗ෥ࡹሽ࢑ gives Eq. (5): 
 

 ሼࢗ෥ࡹሽ࢑ ൌ ሾ઴ࡹሿሼࣁሽ(5) ࢑ 
  

where ሼࢗ෥ࡹሽ࢑ is obtained from the first step of the two-step approach.9 Pre-multiply ሾ઴ࡹሿࢀ to Eq. (5) with matrix 
inversion gives Eq. (6) for computing the orthonormalized coordinates vector at discrete time k, 
 

 ሼࣁሽ࢑ ൌ ሺሾ઴ࡹሿࢀሾ઴ࡹሿሻି૚ሾ઴ࡹሿࢀሼࢗ෥ࡹሽ(6) ,࢑ 
 
and the generalized coordinates vector ሼࢗሽ࢑ is obtained from Eq. (2). 

B. Computation of Acceleration from Computed Wing Deflection and Frequencies 
From Eq. (2), acceleration at discrete time k can be expressed as shown in Eq. (7). 
 

 ሼࢗሷ ሽ࢑ ൌ ൜
ሷࢗ ࡹ
ሷࢗ ࡿ
ൠ
࢑
ൌ ൤

઴ࡹ
઴ࡿ

൨ ሼࣁሷ ሽ(7) ࢑ 

 
By assuming simple harmonic motion for the i-th orthonormalized coordinate, ߟሷ௜ሺ݇ሻ ൌ െ߱௜

ଶߟ௜ሺ݇ሻ		݅ ൌ 1,2, … , ݊, 
acceleration can be obtained from deflections and frequencies as shown in Eq. (8). 
 

 

ሼࣁሷ ሽ࢑ ൌ ൞

ሷଵሺ݇ሻߟ
ሷଶሺ݇ሻߟ
⋮

ሷ௡ሺ݇ሻߟ

ൢ ൌ െ

ۏ
ێ
ێ
ۍ
߱ଵଶ 0 … 0
0 ߱ଶ

ଶ … 0
0
0

0
0

⋱ ⋮
… ߱௡ଶے

ۑ
ۑ
ې
൞

ଵሺ݇ሻߟ
ଶሺ݇ሻߟ
⋮

௡ሺ݇ሻߟ

ൢ ൌ െൣ࣓࢏
૛൧ሼࣁሽ(8) ࢑ 

 
Substituting Eq. (8) into Eq. (7) gives Eq. (9). 
 

 
ሼࢗሷ ሽ࢑ ൌ െ ቈ

઴࢏࣓ൣࡹ
૛൧

઴࢏࣓ൣࡿ
૛൧
቉ ሼࣁሽ(9) ࢑ 

 
Therefore, acceleration is computed using Eqs. (6) and (9). In Eq. (8), frequencies ߱௜	݅ ൌ 1,2, … , ݊, are computed 
from unsteady strain distribution at a selected point using an on-line parameter estimation technique together with an 
autoregressive moving average (ARMA) model.11 
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C. Computation of Velocity from Computed Wing Deflection and Frequencies 
From Eq. (2), velocity at time k can be written as shown in Eq. (10). 
 

 ሼࢗሶ ሽ࢑ ൌ ൜
ሶࢗ ࡹ
ሶࢗ ࡿ
ൠ
࢑
ൌ ൤

઴ࡹ
઴ࡿ

൨ ሼࣁሶ ሽ(10) ࢑ 

 
Consider the following central difference equation, Eq. (11), for the time derivative of orthonormalized coordinates 

vector ሼࣁሶ ሽ࢑. 
 

 
ሼࣁሶ ሽ࢑ ൌ

ሼࣁሽ࢑ା૚ െ ሼࣁሽି࢑૚
ݐ߂2

 (11) 

 
The time derivative of the i-th orthonormalized coordinate can be written in Eq. (12). 
 

 
ሶ௜ሺ݇ሻߟ ൌ

௜ሺ݇ߟ ൅ 1ሻ െ ௜ሺ݇ߟ െ 1ሻ
ݐ߂2

 (12) 

 
It should be noted in Eqs. (11) and (12) that the orthonormalized coordinates vector at future time k+1 is needed to 
have the time derivative of the orthonormalized coordinates vector at time k.  

Consider a linear autoregressive (AR) model11 for the i-th orthonormalized coordinate ߟ௜ሺ݇ሻ given in Eq.(13): 
 

௜ሺ݇ሻߟ  ൌ ܽଵ௜ߟ௜ሺ݇ െ 1ሻ ൅ ܽଶ௜ߟ௜ሺ݇ െ 2ሻ (13) 
 
where AR coefficients for the i-th orthonormalized coordinate, ܽଵ௜ and ܽଶ௜, are computed from the same i-th frequency 
߱௜ in Eq.(8). From Eq. (13), the i-th orthonormalized coordinate at future time k+1 can be expressed as shown in 
Eq.(14). 
 

௜ሺ݇ߟ  ൅ 1ሻ ൌ ܽଵ௜ߟ௜ሺ݇ሻ ൅ ܽଶ௜ߟ௜ሺ݇ െ 1ሻ (14) 
 
Substituting Eq. (14) into Eq. (12) gives Eq.(15). 
 

 
ሶ௜ሺ݇ሻߟ ൌ

ܽଵ௜ߟ௜ሺ݇ሻ ൅ ሺܽଶ௜ െ 1ሻߟ௜ሺ݇ െ 1ሻ
ݐ߂2

 (15) 

 
In summary, velocity of a flexible wing motion is computed as follows: 

 
 Step 1: compute the orthonormalized coordinates vector ሼࣁሽ࢑ from Eq. (6). 
 Step 2: compute the time derivative of the orthonormalized coordinates vector ሼࣁሶ ሽ࢑ from Eqs. (15) and (16). 
 

 

ሼࣁሶ ሽ࢑ ൌ ൞

ሶଵሺ݇ሻߟ
ሶଶሺ݇ሻߟ
⋮

ሶ௜ሺ݇ሻߟ

ൢ (16) 

 
 Step 3: compute the time derivative of the generalized coordinates vector ሼࢗሶ ሽ࢑ from Eq. (10). 
 
Therefore, deflection, acceleration, and velocity based on the generalized coordinates vectors ሼࢗሽ࢑, ሼࢗሷ ሽ࢑, and ሼࢗሶ ሽ࢑, as 
well as the orthonormalized coordinates vectors ሼࣁሽ࢑, ሼࣁሷ ሽ࢑, and ሼࣁሶ ሽ࢑, are computed from the measured strain data 
ሼࣕሽ࢑. 
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III. Results and Discussions 
The theory presented in this study is validated using a cantilevered rectangular wing model as shown in Fig. 1. 

This FE model represents a wind tunnel test article12 that has a 0.065-inch thick aluminum plate with a thin plastic 
foam skin that forms a 6% circular arc cross-sectional shape. A transient load using a half sine short duration pulse is 
applied at the tip leading edge corner. Strain values are output from each zero stiffness beam element segment at 
simulated FOSS fiber locations along the span, a total of 50 beam elements for each fiber and along upper and lower 
plate elements as shown in Fig. 2. The upper and lower elements are offset from the center plate elements to generate 
non-zero strain. Note that these elements have a finer distribution at the root as required to lower the propagation of 
integration errors outwards to the tip. 

For validation and refinement of this theory, a computational validation was performed. This wing model is 
analyzed using the MSC/NASTRAN.13 The computed strain values are assumed to be strain output from a FOSS. The 
computed deflection, acceleration, and velocity values are considered as the targets to be compared with the results 
obtained from the current approach. 

The cantilevered rectangular wing FE model has two versions that differ in material and mass properties to test the 
current approach with a real world variation of model accuracy as compared to measured frequency results. These two 
FE model versions are shown in Table 1 where case 1 has its plastic foam mass equally smeared among the aluminum 
plate density, and case 2 has the plastic foam mass distributed as lumped masses over the 6% circular-arc cross 
sectional shape. Young’s modulus and shear modulus for the case 2 model are tuned using the structural dynamic 
model tuning tool developed at the National Aeronautics and Space Administration (NASA) Armstrong Flight 
Research Center.14 In Table 2, computed modal frequencies for cases 1 and 2 are compared to available measured 
values.12 The case 1 frequencies have up to a 5.6 % error which is typical of such FE models near the limits of the 5% 
frequency NASA FE modeling standard.15 The frequency errors for case 2, at no more than 0.8%, represent an FE 
model that has the best accuracy that can usually be expected. 

Both cases 1 and 2 were run to generate the target responses with NASTRAN modal transient response analysis 
(sol 112) with 1200 time steps. The case 1 mode shapes are used to calculate transformation matrices for both cases. 
The case 1 mode shapes are the eigen and comparison functions for the case 1 and case 2 transient responses, 
respectively. 

Frequency estimations are generated using computed strain values for cases 1 and 2 and are taken at the leading 
edge root as shown in Fig. 2. The computed strain time histories for both cases are shown in Fig. 3. The frequency 
estimation uses Bierman’s U-D factorization algorithm with 20 AR coefficients, a covariance matrix resetting interval 
of 80 steps, and a forgetting factor of 0.98. For cases 1 and 2, sampling times of 0.0006267 s and 0.0006487 s, and 
Nyquist frequencies of 797.9 Hz and 770.8 Hz, respectively, were used. These estimated frequencies are compared to 
the target values generated from the NASTRAN output shown in Table 3. The estimated frequency errors are very 
low, if not at zero, with the highest standing out at -0.09% for case 2, mode 1.  

Using the current approach, deflections and pitch angles are calculated using computed strain along simulated fiber 
locations of the wing model. For case 1, target deflection, acceleration, and velocity values are compared to the current 
approach calculations using 22 fiber locations at the wing model leading edge tip grid 51, shown in Fig. 2. Since grid 
51 is located on the leading edge fiber, its deflections are directly computed from strain values and are master DOF. 
Using wider and close up time histories, the out of plane, or z deflections are shown in Fig. 4, and the pitch angles are 
shown in Fig. 5. The green dot line and the black solid line represent the target and values from the current method, 
respectively. The z deflection comparisons are so close to each other that no discernable differences can be seen in 
the plots between the target and current method values. The pitch angle comparisons are almost as equally 
indiscernible from each other except at several of the areas with large changes in gradient where, in general, the target 
values are a little larger than those for the current method.  

In Fig. 4(a), the period of the large oscillation is approximately 0.065 s, 15.4 Hz. Therefore, the first natural 
frequency is observed in the z deflection response. On the other hand, seven oscillations are observed for 0.09 s in 
Fig. 5(a). Therefore, the period of the large oscillation is approximately 0.0129 s, 77.8 Hz. This frequency corresponds 
to the second mode, 77.4 Hz, and is the first torsion mode. In Fig. 5(b), the small oscillation is also dominant, and 
three oscillations are observed during 0.0041 s, and therefore the corresponding frequency is approximately 730 Hz, 
period is 0.00137 s. 

Out of plane, or z direction, accelerations are compared in Fig. 6, and comparisons for pitch accelerations are 
shown in Fig. 7. Both acceleration plots are showing an initial opposite trend in phase between the target and current 
method values for about a half cycle, but the current method very quickly recovers and begins to match up closely. 
This initial phase difference is mainly due to the simple harmonic assumption for the transient responses. For the z 
accelerations, the comparisons are showing several peak values with slightly larger target values over those for the 
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current method. The pitch acceleration comparisons are showing the same match of trend with more of the target peak 
values showing some larger values over those for the current method. 

Out of plane velocity and pitch rate based on the current method values are compared with the corresponding target 
responses in Figs. 8 and 9, respectively. Both figures show that the current method values are smaller than the target 
values during the transient time period. Slightly larger target values over the corresponding values for the current 
method are also observed in the z velocity and pitch rate responses. 

The case 2 wing model comparisons of the target results to the current method using 22 fiber locations are made 
at a tip 1/3 aft chord location, grid point 2601 as shown in Fig. 2. The z deflections and pitch angle time histories are 
shown in Figs.10 and 11, respectively. The matching and small deviations of the target values to those of the current 
method are essentially the same as they were for case 1, for both the z deflections and the pitch angles. In Fig. 10(a), 
the period of the large oscillation is approximately 0.068 s, 14.7 Hz. Similar to case 1, the first natural frequency 
14.29 Hz is observed in the z deflection response. On the other hand, eight oscillations are observed for 0.10 s in 
Fig. 11(a), at approximately 80 Hz. Therefore, the 80.18 Hz torsion mode is dominant in pitch motion.  

The z and pitch accelerations time history comparisons are shown in Figs. 12 and 13, respectively. The z velocity 
and the pitch rate comparisons are given in Figs. 14 and 15, respectively. And again, these results are essentially 
repeating the same trends as seen with case 1. 

The target to the current approach results for the wing model cases 1 and 2 are summarized in Table 4. An additional 
sensitivity study of a fewer number of fibers for case 2 is also shown in Table 4. The previous number of fibers used 
for case 2 is lowered from 22 to 10 and 6, and is depicted in Fig. 16. Percent errors between the target and current 
method results are calculated using Eq. (17). 
 

ܚܗܚܚ۳	%  ≡
∑ ܜܖ܍ܚܚܝ۱| ሻ࢑ሺܐ܋܉ܗܚܘܘ܉ െ ࢔|ሻ࢑ሺܜ܍܏ܚ܉܂
ୀ૙࢑

∑ ࢔|ሻ࢑ሺܜ܍܏ܚ܉܂|
ୀ૙࢑

 (17) 

 
The target values are those directly computed from the FE wing model. The results at discrete time, k are summed for 
all the time histories. 

Table 4 is showing a very small general increase in error with a reduction of the number of fibers for case 2. This 
minimal increase in error is an indication of the robustness of the least-squares surface fitting procedure from the fiber 
locations out to the rest of the wing model. For case 1, with the z and pitch accelerations at grid 51 and on a fiber 
location, the errors in z acceleration are noticeably lower than those at an off fiber location at grid 2601. It should be 
noted that the z deflection at grid point 51 belongs to the master DOF. However, any DOF at grid point 2601 belong 
to the slave DOF. The z deflection results have the lowest percent error, at no more than 1.79%. The pitch angles, z 
accelerations, pitch accelerations, z velocity, and pitch rate calculated during and after the second step, as slave DOF; 
have higher errors are higher at 6.35%, 17.6%, 10.2%, 19.0%, and 12.0 %, respectively. It should also be emphasized 
that the comparison functions are used for case 2 instead of using eigen functions. However, the quality of the results 
are not degraded too much. 

Finally, instead of using the central difference equation, Eq. (11), the following backward difference equation 
given in Eq. (18) is used for the pitch rate computations with the case 2 model. 
 

 
ሼࣁሶ ሽ࢑ ൌ

ሼࣁሽ࢑ െ ሼࣁሽି࢑૚
ݐ߂

 (18) 

 
Comparisons between the central difference equation with a linear AR model and the backward difference equation 
are shown in Fig. 17. In Fig. 17(b), small phase differences are observed between the target responses and the values 
from the current study. It should be concluded that the current proposed central difference equation with a linear AR 
model closely follows the target response.  

IV. Conclusion 
A simple approach for computing acceleration and velocity of a structure from the time histories of strain is 

proposed in this study. First, deflection and slope of the structure are computed from strain using a two-step theory. 
Next, the simple harmonic motion assumption is used for the acceleration computations. Therefore, accelerations are 
computed from the deflections obtained from the first step of the two-step theory and the estimated frequencies. 
Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique 
together with an autoregressive moving average model. Finally, the central difference equation with a linear AR model 
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is used for the computations of velocity. A cantilevered rectangular wing model is used to validate the simple 
approach. 

Quality of the computed deflection, acceleration, and velocity values are independent of the number of fibers 
(number of master DOF) except using too small of a number. If only a single fiber is used for the whole surface, then 
the torsional motion is not captured properly. 

Velocity values based on the central difference equation with a linear AR model proposed in this study follows the 
target response with reasonable accuracy. Therefore, the phase shift issue associated with the backward difference 
equation is successfully overcome using the central difference equation with a linear AR model proposed in this study. 

A future application of the approach will be performed on the X-56A aeroelastic research aircraft (Lockheed 
Martin, Bethesda, Maryland) in order to generate pre-flight test estimates of aerodynamic forces on the wing surfaces. 
These force estimates will be correlated to those results as derived from onboard FOSS strain flight data. 
  



8 
American Institute of Aeronautics and Astronautics 

 

Tables 
Table 1. Wing finite element model properties. 

 
Properties Case 1 model Case 2 model 

Young’s modulus 9847900 psi 9207766 psi (tuned value) 
Shear modulus 3639672 psi 3836570 psi(tuned value) 

Density 0.11166 lb/inch3 0.1 lb/inch3 
Foam weight Smeared Lumped mass 
Total weight 0.3806 lb 0.3806 lb 

Xcg 2.28 inch 2.28 inch 
Ycg 5.75 inch 5.75 inch 

Thickness 0.065 inch 0.065 inch 
 

Table 2. Measured versus computed frequencies. 
 

Mode Measured12 (Hz) Case 1 (Hz) % Error Case 2 (Hz) % Error 
1 14.29 15.09 5.6 14.29 0.0 
2 80.41 77.40 -3.7 80.17 -0.3 
3 89.80 93.57 4.2 89.04 -0.8 
4 N/A 246.37 N/A 248.76 N/A 
5 N/A 262.02 N/A 252.41 N/A 
6 N/A 455.22 N/A 459.34 N/A 
7 N/A 511.27 N/A 485.61 N/A 
8 N/A 642.72 N/A 606.65 N/A 
9 N/A 722.32 N/A 718.59 N/A 

10 N/A 773.93 N/A 747.65 N/A 
 

Table 3. Estimated system frequencies for cases 1 and 2. 
 

Mode 
Case 1 Case 2 

Target (Hz) Estimated (Hz) % Error Target (Hz) Estimated (Hz) % Error 
1 15.09 15.09 0.00 14.29 14.28 -0.09 
2 77.40 77.40 0.00 80.17 80.18 0.02 
3 93.57 93.57 0.00 89.04 89.05 0.01 
4 246.37 246.37 0.00 248.76 248.77 0.00 
5 262.02 262.02 0.00 252.41 252.41 0.00 
6 455.22 455.22 0.00 459.34 459.34 0.00 
7 511.27 511.27 0.00 485.61 485.61 0.00 
8 642.72 642.72 0.00 606.65 606.65 0.00 
9 722.32 722.32 0.00 718.59 718.60 0.00 

10 773.93 773.93 0.00 747.65 747.66 0.00 
 

Table 4. Target and current method errors for case 1 and 2 simulations. 
 

Model Grid (# of fiber) 
% Error 

Deflection Acceleration Velocity 
Z Pitch Z Pitch Z Pitch 

Case 1 51 (22) 1.55 5.36 6.42 7.96 10.5 12.0 

Case 2 
2601 (22) 1.38 5.76 16.9 9.84 15.0 11.4 
2601 (10) 1.67 5.99 17.0 10.2 15.9 11.7 
2601 (6) 1.79 6.35 17.6 10.2 19.0 11.8 
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Figures 

 
 

Figure 1. Cantilevered rectangular wing model. 
 
 

 
 

Figure 2. Wing model with simulated FOSS locations. 
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 a) Case 1.  b) Case 2. 
 

Figure 3. Strain time history at the leading edge of the wing root section for case 1 and case 2. 
 
 
 

 
 a) From 0 to 0.10 s.  b) Zoom in from 0 to 0.03 s. 
 

Figure 4. Case 1, Z deflection time history at grid 51. 
 
 
 

 
 a) From 0 to 0.10 s.  b) Zoom in from 0 to 0.03 s. 
 

Figure 5. Case 1, pitch angle time history at grid 51. 
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 a) From 0 to 0.10 s.  b) Zoom in from 0 to 0.03 s.. 
 

Figure 6. Case 1, Z acceleration time history at grid 51. 
 
 
 

 
 a) From 0 to 0.10 s.  b) Zoom in from 0 to 0.03 s. 
 

Figure 7. Case 1, pitch acceleration time history at grid 51. 
 
 
 

 
 a) From 0 to 0.10 s.  b) Zoom in from 0 to 0.03 s. 
 

Figure 8. Case 1, Z velocity time history at grid 51. 
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 a) From 0 to 0.10 s.  b) Zoom in from 0 to 0.03 s. 
 

Figure 9. Case 1, pitch rate time history at grid 51. 
 
 
 

 
 a) From 0 to 0.10 s.  b) Zoom in from 0 to 0.03 s. 
 

Figure 10. Case 2, Z deflection time history at grid 2601. 
 
 
 

 
 a) From 0 to 0.10 s.  b) Zoom in from 0 to 0.03 s. 
 

Figure 11. Case 2, pitch angle time history at grid 2601. 
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 a) From 0 to 0.10 s.  b) Zoom in from 0 to 0.03 s. 
 

Figure 12. Case 2, Z acceleration time history at grid 2601. 
 
 
 

 
 a) From 0 to 0.10 s.  b) Zoom in from 0 to 0.03 s. 
 

Figure 13. Case 2, pitch acceleration time history at grid 2601. 
 
 
 

 
 a) From 0 to 0.10 s.  b) Zoom in from 0 to 0.03 s. 
 

Figure 14. Case 2, Z velocity time history at grid 2601. 
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 a) From 0 to 0.10 s.  b) Zoom in from 0 to 0.03 s. 
 

Figure 15. Case 2, pitch rate time history at grid 2601. 
 
 
 

 
Figure 16. Sensitivity study configurations for number of fibers. 

 
 
 

 
 a) Central difference with linear AR model.  b) Backward difference. 
 

Figure 17. Case 2, pitch rate time history at grid 2601. 
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