Developing the Next Generation of Science Data System Engineers

John.F.Moses@nasa.gov, Jeanne.Behrke@nasa.gov, Christopher.D.Durachka@nasa.gov

NASA/Goddard Space Flight Center

Science Data System Challenges

- Architect smarter, flexible and scalable data systems; simplify components with common science data processing functions to ease evolution with emerging technology while maintaining connectivity with archival science data.
- Standardized public data access interfaces of central & distributed sources.
- Increase science findings and practical applications by enabling cross-discipline use of science data.
- Standardize the fundamentally required content and structure: common depiction of time, location and accuracy. Increasing complex remotes sensors and in-situ sensors from spacecraft, aircraft and space networks.
- Encompass data complexities of research and application discipline communities.

Data System Engineer Challenges

- Play an increasing role in developing metadata and data products. Adapt data processing and integration of science algorithms to an evolving computer industry.
- Depicting discipline specific attributes for multiple types of observational data.
- Utilize attributes that can become common across science disciplines and observation systems.
- Working with increasingly complex science data, multiple datasets and diverse sources requires a skilled workforce.
- Take technical training focused in data science and new technologies.
- Develop next generation science data systems that can serve multiple science disciplines, diverse observational data and model output.

Pathways and Perspectives

- Mission & Organization Awareness
 - Goals, Strategy & Policy
 - Software Standards & Adherence
 - Discipline Standards & Awareness
 - CCSDS, HDF

- Instrument Software Data Systems
 - Flight & Ground Data Systems
 - Data System Engineering
 - Data & Information Management
 - Systems Thinking
 - Integration
 - Collaboration

- Personal Mastery
 - Attention to Detail
 - Technical Competence
 - Ethics
 - Honesty/Loyalty
 - Continuous Learning

- Super/Team
 - Self-direction
 - Resilience
 - Flexibility
 - Self Esteem
 - Self Esteem

- Stewardship
 - Risk Management
 - External Awareness
 - System Engineering
 - Project Management
 - Mission

- Strategic Vision
 - Change Management

- Ethos
 - Customer Orientation
 - Decisiveness
 - Problem Solving
 - Quality Principles
 - Resource Management & Stewardship
 - Technology Management
 - Creativity & Innovation
 - Results Orientation
 - Process Oversight
 - Management
 - Program Development, Planning & Evaluation
 - Interpersonal
 - Interpersonal
 - Oral/Written Communication
 - Influencing
 - Negotiating
 - Partnering/Teaming
 - Political Savvy
 - Presentation/Markeing Skills
 - Organizational Representation & Liaison
 - Working within a Team

Duties/Skills

- Works in-depth on a data system component development or operation.
- Serves with specific science or instrument team.
- Offers cross training in science and computer technologies.
- Develops and operates specific components of an instrument data system.
- Integrates and tests instrument algorithms.
- Manages mission science data collections.
- Participates in professional societies.
- Works on collaborative US agency programs.
- Leads technical activities of interdisciplinary engineers developing an instrument or data system component.
- Overseas data center development, tracks costs and schedule, technical constraints.
- Leads standards development efforts.
- Serves as an instructor on data management.
- Serves as NASA representative to other US Agencies.
- Participates in International projects.
- Overseas development for a mission or multi-mission science data system.
- Plans and administers projects of national or international importance.
- Establishes long range agendas for development of large new unusually complex systems.
- Responsible for resource requirements, policies, procedures and budgets.
- Leads international projects.

Very often our candidate have been contractors.

Knowledge

- Looking for degrees in the following areas:
 - Physical Science
 - Astronomy, Astrophysics
 - Geology
 - Hydrology
 - Meteorology
 - Oceanography
 - Physics
 - Computer Engineering
 - Computer Science

- But the following fields of expertise are also useful:
 - Remote Sensing
 - Mathematics
 - Physical geography
 - Human geography

- Thorough knowledge of:
 - Science Data structures
 - Programming languages
 - Operating systems
 - Applications techniques
 - Service oriented architectures
 - Off-the-shelf and open source software (e.g., RONIS, GIS)
 - Hardware systems
 - Knows science and engineering concepts, practices:
 - Levels of processed data (0, 1, 2...)
 - Orbital mechanics, instruments
 - Map projections (Lambert, RA/DEC)
 - Instrument calibration techniques/ algorithms
 - Validation techniques
 - Physical science algorithms, modeling systems, Geographic Information Systems
 - Standard data formats (CCSDS, HDF, CDF, FITS)
 - Knows how to integrate new technologies into current systems.

www.nasa.gov