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Formal solutions to the equations of motion of the one-dimensional, unsteady flow of a viscous, 
compressible, heat-conducting gas are presented. The relationship between the existence of these 
solutions and the problem of hydrodynamic stability is discussed. 

INTRODUCTION 

T
HE present investigation aims to demonstrate 
that the one-dimensional flow of a viscous, 

compressible, and heat-conducting fluid can be 
represented formally by the heat-conduction equa-
tion in the stream function—time plane. No explicit 
solutions are obtained; nevertheless the behavior 
of the fluid can be deduced without actually solving 
the equations of motion. 

In order to simplify the analysis, the stream 
function is introduced as a streamwise coordinate 
and the Prandtl number, Pr, is taken to be 14 . This 
coordinate transformation is patterned after the 
von Mises trtnsformation.' The momentum equa-
tion is nonlinear in the space-time plane by virtue 
of its convective acceleration term; in the stream 
function—time plane the term drops out and the 
equation assumes the form of the well-known 
diffusion equation in a homogeneous medium. This 
equation is, of course, linear, and the classical 
methods of dealing with this type of equation can 
be brought to bear on the investigation. 

ANALYSIS 

The equation expressing the conservation of 
energy' is given by 
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where c9 is the specific heat at constant pressure, A 
is the thermal conductivity, and u is the streamwise 
component of velocity. Substituting Pr A/c, for p, 

and setting Pr = 24yields 
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1 R. von Mises, Mathematical Theory of Compressible 
Fluid Flow, (Academic Press, Inc., New York, 1958), pp. 157-
158.
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1076 (1949).

where H = c9T +u2. The momentum equation 
for Pr = * is simply 
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The continuity equation is given by
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The stream function, defined by 

	

P = 3t'/3x,	 PV = — ä/8t,	 (5) 

may be introduced as a streamwise coordinate, 
yielding
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where k2 = Ap/c9. 
It is to be noted that the momentum equation 

(which is coupled to the energy equation only 
through the pressure gradient term) is now linear 
while the energy equation remains nonlinear. Our 
plan is to treat the pressure gradient term in the 
momentum equation as a known function of ,L' and 
1 1 and to treat Eq. (7) as if it were a nonhomogeneous 
heat conduction equation. We shall be able to 
demonstrate that without actually knowing the 
dependence of p on 4, and 1, and by imposing only 
certain physically plausible restrictions, we can 
establish whether or not the equations of motion 
possess solutions that are bounded for all times. 

The linear nature of Eq. (7), together with the 
hypothesis concerning the pressure gradient, per-

	

Application of this transformation to 	 the energy	 - 
equation gives	 - 
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while the momentum equation reads 
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he use of the principle of superposition. Thus 
we may first solve the homogeneous equation with 
inhomogeneous boundary conditions and then solve 
the inhomogeneous equation with homogeneous 
boundary conditions. The complete solution is a 
linear combination of the two. Calling the solution 
to the homogeneous equation v 1 , we obtain by the 
method of Green's function
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where v 1 = f(i,1'), at I = 0. We are, of course, 
interested in the behavior of the solution as I --> 
thus we have to take the limit of the integral. Since 
the integration is independent of t, and, moreover, 
since the integrand is uniformly continuous with 
respect to t, it is permissible to interchange the 6rder 
of integrating and of taking the limit, provided the 
improper integral (8) converges. A sufficient con-
dition for the convergence of the integral is the 
convergence of
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In other words, any initial velocity distribution, 
compatible with the boundary conditions, that 
satisfies the convergence condition is a permissible 
one. In turn, any permissible initial distribution 
satisfying the. boundary conditions and the con-
vergence criterion will die out as t; thus 

-	 •1imv1=0.	 (10) 

The particular solution to the inhomogeneous 
equation v2 (4,, t) is obtained with the aid of the 
Laplace transform. We take the Laplace transform 
of Eq. (7) with respect to 4,, calling the transform 
variable s and the transformed functions by their 
respective capital letters, V2 and P. We thus obtain 
for the transformed momentum equation 

d V2
+ k2s2 V2 = sP(s, t),	 (11) 

dt

V2 = exp (—k2s21) f exp (k2s2 r)sPs, r) dr.	 (12) 

Taking cognizance of the fact that we are dealing 
with a real as opposed to an ideal gas, we now 
assert on a physical basis that whatever the pressure 
may be—and for that matter, its image function 
P(s, t)—it must be bounded. The rationale for this 
is simply that a viscous and heat conducting gas 
cannot support an infinite pressure. Setting the 
maximum value of the pressure equal to 31"2 permits 
us to perform the integration and obtain 
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Before performing the inversion integration to 
return to the physical plane, we let t - , and thus 
obtain

llmV2 < (M//c) 2	 (14) 

This inequality asserts that v 2 is bounded. Our 
apparent success in dealing with the momentum 
equation by showing the existence of a bounded 
solution obviates the need to consider the energy 
equation, which can be dealt with in7 precisely the 
same fashion.

DISCUSSION 

We have demonstrated that the unsteady equa-
tions of motion possess only bounded solutions. A 
bounded solution is also a stable one if after the 
initial conditions are changed slightly the new 
solution will approach the original one asymp-
totically. Since the initial conditions are involved 
only in the solution to the homogeneous equation, 
which we have shown to -be zero• provided that 
j f(")di' converges, it follows that the solution is 
stable.
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