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The diffusion of heat through gases is treated where the coefficients of thermal conductivity and 

diffusivity are functions of temperature. The diffusivity is taken proportional to the integral of 
thermal conductivity, where the gas is ideal, and is considered constant over the temperature inter- 

(n	

val in which a chemical reaction occurs. The heat diffusion equation is then solved numerically for
semi-infinitesemi-infinite gas medium with constant initial and boundary conditions. These solutions are 

in a dimensionless form applicable to gases in general, and they are used, along with measured 
shock velocity and heat flux through a shock reflecting surface, to evaluate the integral of thermal 
conductivity for air up to 5000 K. This integral has the properties of a heat flux potential and re-
places temperature as the dependent variable for problems of heat diffusion in media with variable 
coefficients. Examples are given in which the heat flux at the stagnation region of blunt hypersonic 
bodies is expressed in terms of this potential. 

T
HIS paper will consider some aspects of heat conduction 
through gases. Specifically, it will be confined to the case 

of pure diffusion; that is, heat transfer by mass convection 
and by radiation will not be treated. Finally, it will consider 
briefly the role of the diffusion process in heat transfer to the 
stagnation region of high speed vehicles. 

Heat Diffusion in Ideal Gases 

The classical solutions to the heat diffusion equation have 
generally made use of the assumption that the coefficient of 
thermal conductivity is a constant [see (1 and 2) for example 1.2 

However, for the problem of interest here, the conduction of 
heat through gases, thermal conductivity must be treated as 
a strong function of temperature (3). In such a ease, it is 
useful to replace the usual dependent variable, temperature, 
with a quantity

fT
[1] 

which is the coefficient of thermal conductivity integrated over 
temperature. Then the differential equation of heat conduc-
tion takes the usual form of the diffusion equation 

ôca/?iL - aV 2 = 0	 [2] 

where a is the thermal diffusivity. The dependent variable 
will be called the heat flux potential, since the heat flux at any 
point in the medium is just the gradient of 

q = grad p	 [3] 

Presented at the ABS Semi-Annual Meeting, June 8-11, 1959, 
San Diego, Calif. 

'Chief, Physics Branch. Member ARS. 
2 Numbers in parentheses indicate References at end of paper.

Note that just as the reference level used for temperature is 
arbitrary, so the lower limit of the integral (Eq. [1]) is arbi-
trary. However, it will prove convenient to choose this lower 
limit somewhere near absolute zero for the case of conduction 
in gases. 

Consider now the one-dimensional heat flow through a semi-
infinite gas medium, where the initial conditions and the 
boundary conditions are constants. The initial potential 
throughout the gas will be designated by and the boundary 
value by ço, the diffusivities by a, and a0, respectively (see 
Fig. 1). Normalized coordinates will be used such that po 
a0 are both taken to be unity. The results can easily be gen-
eralized to account for arbitrary units of these boundary con-
ditions, of course. 

The idealization of constant initial and boundary conditions 
will be approximately realized in a physical situation where 
the reservoir is a slab of material with a very large heat 
capacity and a large thermal conductivity, such as a metal. 
Then the wall can soak up heat fast enough to maintain nearly 
constant conditions at the interface. The slab might be sud-
denly immersed in a constant temperature gas, for example, or, 
alternatively, the gas might be heated suddenly by a plane 
shock wave reflecting from the solid interface. 

Boltzmann (4) has shown that the solution to this problem 
may be expressed with perfect generality as a function of 
x/ ss/t. Therefore, the time and distance variables are trans-
formed to the single dimensionless parameter y

[41 

where a0 is the diffusivity of the gas at the boundary. The co-
efficient a0 is unity, of course, in the present normalized co-
ordinate system, but this is not an essential feature of the 
transformation. In terms of this parameter y, the partial 
differential equation of heat conduction becomes the dimen-
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Fig. 1 One-dimensional heat diffusion 
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Fig. 2 Heat potentials in inert gases 
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Fig. 3 Heat diffusion in inert gases 

sionless, total differential equation 

a+2
d 

-	 y=o	 [5]
dy dy2

The factor 4 in the parameter y (Eq. [41) is an arbitrary 
stretching factor. It is chosen merely so that the solutions to 
Equation [5] reduce to the usual error function form when 
the diffusivity is constant, that is when a equals O. The 
merit in using the normalized form for the potential ç (that 
is, /goo) is that one set of integrations for Equation [5] will 
suffice for all possible boundary conditions. All that is re-
quired before one proceeds with the integration is that the 
diffusivity a be evaluated. Two cases will be considered, one 
in which the gas is ideal and inert, and the second in which the 
gas is in local equilibrium but is chemically active with a large 
heat of reaction. 

According to the kinetic theory of inert gases (5), the co-
efficient of thermal conductivity is approximately proportional 
to a power n of the temperature, where n is close to 12 . Thus 
the integral of thermal conductivity is proportional to the 
a + 1 power of temperature 

	

f kdT T'	 [61 

Now the thermal diffusivity equals the conductivity divided 
by the heat capacity per unit volume Cp . Since the density 
p is inversely proportional to temperature, for an ideal gas, 
the diffusivity is proportional to the n + I power of tempera-
ture also

Ic/Cp	 [7] 

It follows that diffusivity is proportional to the potential , 
and in the present normalized coordinates this means that 

a=	 [8] 

Sometimes a linear relation between a and with a finite 
intercept will best fit measured values, but this can always 
be transformed to the direct proportionality of Equation [8] 
by appropriate adjustment of the lower limit of the integral, 
Equation [1]. Generally, this limit will he close to absolute 
zero. 

It may be remarked that even if one accounts for the 
variations of heat capacity which occur in a real gas, the pre-
ceding relations are valid to the order of approximation that 
Prandtl number is a constant. This can be seen from the fact 
that diffusivity is just the kinematic viscosity divided by the 
Prandtl number

	

a=—	 [9]
Pr 

and the kinematic viscosity is again approximately propor-
tional to the n + 1 power of temperature, at least in gases 
composed of neutral particles. 

When the result of Equation [8] is used, the heat diffusion 
equation takes the simple but nonlinear form 

d2p
[101 y2	 dy 

Analytic solutions to Equation [10] are known, but none 
which satisfy the boundary conditions, namely 

	

= 1	 [ha] 

lim ç, -	 [lib] 

However, it is relatively easy to integrate the equation 
numerically, starting from a given value of the boundary 
derivative co ' = (d(p/dy)o, and terminating as the solution 
asymptotically approaches a limit p . . The solutions are 
something like error functions stretched slightly out of shape. 
Three of these solutions are shown in Fig. 2 as functions of

The solutions are shown divided by the error 
functions, 1 + - 1) erf (i/). The P functions rise 
more steeply than the error functions near the origin, go 
through a maximum deviation, then approach the error func-
tion as a limit. 

The value of ç is uniquely related to the derivative at the 
origin, '. This relation is shown in Fig. 3. The derivative 

o' is equivalent to a dimensionless heat flux at the boundary, 
whereas the normalizing function 1 + V'7r/4 o' is the value 
which would have if diffusivity were a constant. We shall 
return to this relation between p,,, and a' after considering the 
case of the chemically reacting gas. 
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Heat Diffusion in a Chemically Reacting Gas 

A chemical reaction in the gas behaves as a reservoir which 
soaks up heat as temperature is increased, and liberates heat 
when temperature drops. Consequently, the specific heat is 
very large if the heat of reaction is large compared to RT. 
Hirschfelder (6) has shown that the coefficient of thermal con-
ductivity, for gases in local equilibrium, is also very large; 
in fact it is approximately proportional to the specific heat. 
Thus, the Prandtl number is relatively constant and the dif-
fusivity is a function of temperature which is not greatly 
affected by the chemical reaction. The integral of thermal 
conductivity, on the other hand, is greatly increased as a re-
stilt of the reaction. This situation is illustrated in Fig. 4. 

The diffusivity increases linearly with up to the point 
where the chemical reaction occurs; there it flattens out until 
the reaction is about complete, and then it increases again in a 
more or less linear manner. The solid lines are theoretical 
estimates, calculated from results in (7) for the case of air in 
which oxygen dissociation occurs. The pressure dependence 
of the curve for less than 2, has been removed by normaliz-
ing both ordinate and abscissa with the factor 

= (T,/T0)"'	 [12] 

where 

To = boundary temperature 
= temperature where thermal conductivity is a maxi-

mum, i.e., where diffusivity is most nearly inde-
pendent of the conductivity integral 

The temperature 7', may be calculated from equations 
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Fig. 5 Chemical equilibrium heat diffusion

derived by Butler and Brokaw (8) for the thermal conduc-
tivity of reacting gas mixtures. 

It should be noted that the calculation of the relation be-
tween diffusivity and the conductivity integral does not de-
pend on precise numerical values of the transport coefficients. 
For example, the estimate shown for air in Fig. 4 is based on 
simple kinetic theory and very approximate collision cross 
sections (7). However, the corrections introduced by more 
exact calculations affect both the diffusivity and the conduc-
tivity simultaneously in such a way that the functional rela-
tion between the two is maintained. 

The relation for reacting gases in general will be similar to 
that for air. The dashed curve on Fig. 4 is a limit which is 
approached as the heat of reaction becomes very large. This 
limiting relation has been used in the integrations which 
follow; that is, a is assumed to equal p up to the point p,, 
and thereafter is taken to be constant. Up to the point , 
then, the solutions are the stretched out error functions which 
were discussed earlier, and which are shown in Fig. 2. At , 
these solutions are joined by the solution for constant diffusiv-
ity which has a matching slope at the junction (d/dy), 

!

	 (
^) (e.p —' X , 	 c,,J 

( 
erf - Y

_
 - ei'f 7) [13] 

In Fig. 5, the limit of the potential p. is shown for a reacting 
gas as a function of the boundary heat flux o'• The solution 
now depends on the value of p,, which in turn depends on the 
boundary temperature, the pressure and the chemical reaction 
being considered. For example, in the case of air and a 
boundary temperature of zero deg C, the values 20, 40 and 60 
for , correspond to pressures about 10, 100 and 102 atm, 
respectively. The solutions for values of , corresponding to 
other pressures and different boundary temperatures can be 
obtained fairly accurately by interpolation between the nu- 
merically integrated solutions, such as the curves plotted in 
Fig. 5. The inert gas solution (Fig. 3) corresponds to equal 
to infinity (Fig. 5). It should he noted that these solutions 
can only be used up to the point where the chemical reaction 
goes to completion. Beyond this, the increase in diffusivity 
must again be taken into account. The domain of validity is 
a characteristic of each specific reaction. Within this limita-
tion, the curves of Fig. 5 apply to chemically reacting gases 
in general. 

Heat Flux Potentials for Air 

The foregoing solutions (Fig. 5) have been put to use, in 
conjunction with experiment, to evaluate the heat flux po-
tential for air as a function of temperature (3). In this ex-
periment, a plane shock wave is reflected from the end wall of a 
shock tube. The heat flux to the wall is measured, and this 
fixes the abscissa for the graphical solution in Fig. 5. The 
temperature at the wall and the pressure of the gas after the 
shock reflection determine the value of ç, (see Eq. [121). 
Hence the value of the ordinate in Fig. 5 is fixed, and the value 
of P. is determined. The temperature of the gas associated 
with this heat flux potential is taken to be the equilibrium 
temperature after the shock reflection, and this is a known 
function of the measured shock velocity. This procedure, of 
course, implies that the experiments are conducted under 
conditions where the chemical relaxation times are short com-
pared to the test interval. 

Results of the experiments and calculations are shown in 
Fig. 6. The heat flux potential is shown divided by the inert 
gas value, where the coefficient n is taken to be 

(TV"	 cal 
inert. = koTo	 = 3.2 X 10T'1' cm sec [14] 

1.5

60 

40 

20 
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and T is in deg K. Thus the ratio / p it should be unity if 
the coefficient of thermal conductivity is proportional to the 
one half power of temperature. This appears to be approxi-
mately true up to the temperature where oxygen dissociation 
begins. At the pressures involved in the present shock tube 
experiments, this occurred at about 2500 K. At higher 
temperatures, the heat flux potential becomes more than 
twice as large as the inert gas value as a result of the 
dissociation of oxygen. The solid curve on Fig. 6 shows 
a theoretical estimate of the heat flux potential, based 
on the coefficients of thermal conductivity presented in 
(7). The experimental points were obtained by the 
method described in (3), except that somewhat better 
instrumentation has been used to improve the reliability 
of the data.. The small departure from ideal gas values 
which occurs at low temperatures is a result of the effect 
on thermal conductivity of vibrational energy excita-
tion and of the formation of nitric oxide. However, the oxy-
gen dissociation process has the large heat of reaction re-
quired to produce a sizable increase in the heat flux potential. 
The theory and experiment clearly show the same behavior 
owing to this effect. 

It will be of interest next to examine an application of the 
heat flux potential to some problems of heat transfer in hyper-
sonic flow. 

Applications to Hypersonic Flow 

Normally, heat transfer in fluid flow exhibits a complex in-
terdependence between conduction and convection processes. 
However, at the stagnation region of hypersonic vehicles, it 
has been shown (9) that, to a first approximation, the conduc-
tion and convection effects are separable, and solutions can be 
expressed in a form which has a simple physical interpretation 
in terms of the heat flux potentials. The heat flux at the wall 
is given by the difference between the potential at stagnation 
conditions p t and its value at the wall all divided by a 
characteristic length &

	

q = ( j - c.)/&	 [15] 

The quantity & can be interpreted as a thermal boundary layer 
thickness defined such that the gas temperature at the edge 
of the layer is a maximum, approximately the stagnation 
temperature (Fig. 7). According to this model then, the heat 
transfer at the stagnation region occurs essentially by a duff u-
sion process, although the mass convection processes are re-
sponsible for establishing the magnitude of &. For an axially 
symmetric stagnation region, for example, the thickness & 
is approximately given by [see (9)] 

(	 \I/4	
[16] (L-) _i) 

where the subscript t refers to stagnation conditions and the 
subscripts 1 and 2 refer, respectively, to the free stream and 
to conditions just following the shock wave (see Fig. 7). The 
Reynolds number Re is based on free stream conditions and 
on a length equal to the effective radius of curvature of the 
body. 

None of the factors in. the expression for the thermal 
boundary layer thickness (Eq. [161) is strongly influenced 
by chemical reaction. In the integral ç, however, the inte-
grand Ic is greatly increased,.and the upper limit of the integral 
T is greatly decreased by the reaction 

	

= f Ti 
kdT	 [17] 

It can be shown that these two effects almost compensate one 
another, and to a first approximation is just a function of 
the vehicle velocity, the Prandtl number and a weighted 
average coefficient of viscosity 
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Fig. 6 Heat flux potential for air 
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where
= f Ti 

/2CdT /f" CJ,dT	 [19] 

The viscosity coefficient, however, is not strongly influenced 
by chemical reactions, unless a high percentage ionization is 
produced [see (7)]. Consequently, stagnation region heating 
is relatively insensitive to dissociation effects, and is not a 
good quantity to measure for the purpose of evaluating trans-
port properties or real gas effects in dissociating gases. It 
also becomes clear why calculations based on ideal gas proper-
ties have been observed to have the correct magnitude in 
spite of the unrealistically high stagnation temperature pre-
dicted by this method. Another method, found to give 
reasonable results where chemical reactions occur, assumes 
heat flux proportional to the enthalpy gradients. This is, of 
course, consistent with the fact that thermal conductivity is 
approximately proportional to the specific heat in the domain 
of the reaction, so that the integral p is approximately propor-
tional to enthalpy. 

The heat transfer to cylindrical stagnation regions can like-
wise be expressed in terms of the heat flux potentials. Equa-
tion [15] applies to this case without change, except that & is 
slightly larger than for the axially symmetric case [see (9)]. 

1	 (3)1/i 
(^2

 -	 /4	
[20] 

&	 r	 4	 P1	 /	 \!2t/ 

The analysis can also be extended to yawed cylindrical stag-
nation regions, such as the leading edge of a swept hypersonic 
wing. It is found that the chemical reaction effects are can-
celed in somewhat the same manner as in the stagnation 
heating of axially symmetric bodies. In the limit as the 
stagnation temperature becomes large compared to the wall 
temperature, the ratio of heat flux at angle of yaw q(X) to the 
value at zero yaw q(0) is approximately given by 

= cos X (CO52 X + 
(3

) 
Pr sin2	 [21]q(0) 
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For a Prandtl number of 24 and yaw angles up to 70 deg, this 
is very close to the cos 112 X relation proposed by Goodwin, 
Creager and Winkler (10) for the total heat transfer to yawed 
cylinders. This effect has been checked experimentally in 
hypersonic flow (9,11). 

Concluding Remarks 

Although the preceding solutions are based on some de-
cidedly first-order approximations to the Navier-Stokes equa-
tions, it is felt that the essential functional relationships which 
influence stagnation region heat transfer are probably retained, 
inasmuch as the results compare favorably with more rigorous 
calculations which are now available, such as those per-
formed by Fay and Riddell (12). Perhaps the principal value 
of these approximations, at least in domains where the rigorous 
solutions have been worked out, lies in providing a somewhat 
simplified physical insight into the problems. It may be 
noted, however, that the concept of the heat flux potential is 
free of restrictions concerning the behavior of the Lewis num-
ber, and it can be applied to problems where multiple diffusion 
coefficients are involved in the heat transfer process. This 
situation exists, for example, where ionization or two or more 
simultaneous chemical reactions occur. However, at ioniza-
tion temperatures the effects of emission and adsorption of 
radiation in the gas may be difficult to analyze separately from 
heat diffusion. In this case, temperature again becomes the 
normal dependent variable to use in the problem, and the 
functional dependence of thermal conductivity on tempera-
ture becomes important. This function could be approxi-
mately obtained from values of the integral ç, but the dif-
ferentiation of the data involves a considerable loss of ac-
curacy. It is advisable to treat a favorable, comparison be-
tween theoretical and experimental values of as satisfying 
merely a necessary but not sufficient check of the theory. 

In summary, some solutions have been presented for the

nonsteady. diffusion of heat through a semi-infinite gas having 
constant initial and boundary conditions. It is found that the 
heat flux potential function is a natural parameter to use as 
the dependent variable for problems involving heat diffusion 
through media in which thermal conductivity is a function of 
temperature. This potential has been evaluated by experi-
ment for air up to 5000 K, including the influence of oxygen 
dissociation, and the results agree reasonably well with theo-
retical estimates. Finally, some relations between the heat 
flux potentials and heat transfer at the stagnation region of 
high speed vehicles have been discussed. 
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