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ABSTRACT 

For the informed design ofmicrofluidic devices, it is important to understand transport phenomena at the 
microscale. This letter outlines an analytically-driven approach to the design of rectangular microcavities 
extending perpendicular to a perfusion microchannel for microfluidic cell culture devices. We present 
equations to estimate the spatial transition from advection- to diffusion-dominant transport inside cavities 
as a function of the geometry and flow conditions. We also estimate the time required for molecules, 
such as nutrients or drugs to travel from the microchannel to a given depth into the cavity. These 
analytical predictions can facilitate the rational design of microfluidic devices to optimize and maintain 
long-term, physiologically-based culture conditions with low fluid shear stress. 

PAPER 

Replenishing nutrients in traditional cell culture systems can induce significant fluid shear not seen in 
vivo, disrupt intercellular signaling and extracellular matrix binding, and alter proliferation and migration 
behavior [1,2]. With its inherently' low Reynolds numbers, Re, microfluidics technology has become 
attractive for establishing appropriate culture conditions by enabling cell culture in microcavities [3,4], in 
vitro differentiation of shear sensitive cells [5-7] and the generation of stable spatiotemporal gradients to 
study chemotaxis [8-10], among other applications [11,12]. However, they often rely on guesswork or 
extensive simulations of different geometries and flow conditions to produce the desired 
microenvironment. In this letter, we derive equations describing the mass and momentum transport in a 
microcavity extending perpendicular to a perfusion channel, which is the simplest microfluidic geometry 
considered for creating a diffusion-dominant region in the vicinity of cell cultures with continuous 
replenishment of nutrients and removal of cellular waste. 

Microcavities offer an ideal platform for low-shear diffusion-dominated cell types since they can easily (i) 
mimic in vivo microenvironments, (ii) do not necessarily require complex barriers or membranes, (iii) 
consume relatively small quantities of culture media and (iv) allow for the precise control of fluid 
behavior [13,14]. To understand how flow around complex geometries affect nearby cell cultures, we 
consider the case of flow past a rectangular cavity. Intuitively, a cavity extending perpendicular to the 
freestream flow will see diminishing advection velocities to a point where they become negligible relative 
to diffusion rates. We derive an equation for the minimum depth into a cavity where this occurs. While a 
very long cavity would mostly be diffusion-dominant, it may not be feasible since the time required for 
the transport of nutrients and waste through long cavities can be prohibitive. Thus, we also present a 
simple model to predict the time required for molecules in the freestream to reach a given cavity depth. 



Fig.1 shows a schematic of the problem formulation, where cells seeded at the bottom of a rectangular 
microcavity are exposed to a velocity field that decays along the cavity depth, y. At a critical cavity 
depth, y* advection velocities become negligible compared to diffusive mass transport. To formulate the 
problem analytically, we evaluate the local Peclet number, Pe, at the center of the cavity (maximum 
velocity for a given cross section). The Peclet number, 

Pe = u·a·D-1 (1) 

relates the time it takes a particle moving with a velocity, u in the bulk flow to travel a characteristic 
length, a with the time it takes for that particle to diffuse the same length, where D is the diffusion 
constant. The transition between advection-dominant and diffusion-dominant mass transport occurs at 
approximately Pe = 1 and is decisively diffusive at Pe :S 0.1 

As a representative example, we consider the diffusion of a small molecule (D ~ 7xl o-10m2/s) traveling 
a= 50 f.liTl, roughly two cell diameters. For a diffusion-dominant microenvironment, that is Pe = 0.1, Eq. 
(1) yields a critical velocity of u* ~ I f.I.ITl/s. Given this, we are interested in finding an explicit analytical 
equation relating the overall velocity field to the depth into a cavity, i.e. u = j(y), to ultimately estimate the 
critical cavity depth, y* necessary to meet the condition u ~ u*. 

Findingy* requires knowledge of the velocity field, which we derive from cavity flow parameters. We 
simplified Weiss and Florsheim's solution [IS] to the biharmonic equation that assumes low Reynolds 
number in the streamfunction-vorticity formulation of the Navier-Stokes equations. The model is two 
dimensional in x andy and assumes infinite thickness (z = oo ). In our solution, we: (i) consider only 
centerline velocities, which is maximum for a given cross section; (ii) eliminate oscillatory terms to 
isolate the decay profile; and (iii) set the coordinate system origin to the top of the cavity as depicted in 
Fig. I a. We find that the velocity decay is given by, 

u = u D • e -4.24-ytw (2) 

where u0 is the maximum velocity atthe top ofthe cavity, Wis the width ofthe cavity andy is the length 
into the cavity. Remarkably, the velocity decay constant only depends on the depth into the cavity and 
the width of the cavity. Setting Pe* = u*a/D, substituting u* for u into Eq. (2) and rearranging yields the 
critical cavity depth, 

. -W I (Pe" ·DJ y =--· n 
4.24 u0 ·a 

(3) 

We used finite element analysis to verify that with increasing cavity thickness, 3D centerline velocities 
converged to the 20 solution in Eq. (2). Thus, Eq. (2) represents a worse case in velocity decay as 
compared to the 3D simulations and therefore, Eq. (3) is a conservative estimate for y*. 

To experimentally validate Eq. (2), we fabricated a microfluidic device by sandwiching double-sided 
medical grade tape, AR8890 (Adhesives Research, Glen Rock) - with a perfusion channel and a 
microcavity cutout - between two standard glass microscope sides, per previously developed protocols 
[ 16]. The cavity dimensions were W = l mm, L = 15 mm, thickness d = 200 f.liTl and main channel height 
h = 500 Jlffi· With a flow rate of Q = 500 ,UL/hr, we measured a maximum velocity at the top of the cavity 
of uD = I.2 mm/s [24]. Velocities in Fig.' 2a were examined under a fluorescence microscope, Zeiss 
Axiovert 200 (Zeiss, Gena) by measuring streak lengths of I 0 f.liTl-diameter latex particle standards 



(Beckman Coulter, Pasadena) after 1 00 ms exposure at 450 nm excitation. Qualitative observations of the 
flow field (Fig. 2a) were similar to those published extensively in literature [17~20]. The experimental 
centerline velocity distribution in the cavity agrees well with the theoretical decay from Eq. 2 as shown in 
Fig. 2b. The resulting value for y* = 1.5 mm is calculated via Eq. (3), which indicates the critical depth 
. for diffusion-dominant flow. 

In order to assess the dynamics of mass transport from the perfusion channel to the cellular 
microenviroJiment in the cavity, we propose a simplified model of the transport process. In our model, 
we assume that molecules travel first, along a streamline primarily by advection ta and second, from that 
position to the bottom of the cavity mainly by diffusion, td, (Fig 3a). The advection time is estimated by 
considering a molecule traveling from the entrance of the cavity to the centerline at depth y as ta ~ 
(/+0.25WYu(y), where substituting u(y) with Eq. (2) yields, 

(4) 

The estimated time required for molecules to travel from y to the bottom of the cavity y* by diffusion is, 

td = o.s(y"- y r n-l (5) 

Since there are as many possible trajectories for nutrient delivery as streamlines into the cavity, the 
minimum time, tc required to reach a steady state concentration at y* is given by the minimum time 
required to travel through any of the possible paths by advection and diffusion, 

(6) 

Eq. (6) does not have an explicit analytical solution but can be solved using numerical methods, as 
depicted graphically in Fig. 3 b for the transport of fluorescein inside a microcavity of depth of 
y*= 1.5mm. 

We verified our model by experimentally quantifying the evolution of the concentration profile of 
fluorescein inside the cavity as it enters from the perfusion channel. Time~lapsed images were acquired 
with a fluorescence microscope and quantification was determined by measuring the average pixel 
intensity of a 0.5 mm wide by 0.05 mm tall region at the bottom of the cavity. The experimental steady 
state value of tc = 4.5 min shown in Fig. 3c agrees well with the analytical model. Equation (6) can also 
be used to estimate the t.ime required for the delivery of a drug or for the time required to remove waste 
products secreted by cells. 

Additional values for y* and the corresponding tc are tabulated in Table I for typical flow conditions and 
geometries used in microfluidics. To determine if conditions at these values of y* are physiological for 
diffusion~dominated, interstitial flow in tissues, we estimate the shear stresses from Eq. (2) using the 
relation, r= p(au/(}y). Resulting stresses are physiologically-relevant to stresses expected in interstitial 
flow [21 ,22]. The estimates in Table I provide a quick reference to develop microfluidic designs. 

In summary, we derived an equation to predict the transition from advection- to diffusion~dominant 
regions in a microcavity, which can be used to design devices mimicking in vivo diffusion~dominant 
microenvironments for cell culture. We also derived the time needed to obtain a steady-state 
concentration of nutrients in the system. Shear stress approximations show that transport conditions in 
microcavities in the vicinity of cell cultures are similar to physiological behavior of the interstitial flows. 



Both equations can be used for the rational design of microcavities for cell culture under diffusion
dominant conditions. Microcavities and similar structures are simple to fabricate, with potential 
applications in diffusion-dominant cell culture, protein crystallization and applications that require 
stagnant flow with continuous replenishment of soluble chemicals. 
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FIG. 1. Problem formulation: cells attached to the bottom of a rectangular microcavity that is 
perpendicular to the freestream flow in a microchannel. (a) Intuitively, velocity decays as fluid flow 
enters the microcavity. At Pe = 1 advection velocities match rates of diffusion. The physiological range 
of flow conditions for many cell types occur at Pe < 0.1, where mass transport is diffusion-dominant. (b) 
With the proper geometrical design of microcavities, velocities near the vicinity of cultures should be 
sufficiently small, as calculated by Pe to ensure that soluble signals are able to travel some characteristic 
distance, a and are not removed. 
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FIG. 2. Experiments were used to validate the analytical model derived for predicting the velocity decay 
in microcavities. Tracer particles were sufficiently small (> 1 0 times smaller than the smallest cavity 
dimension) and followed streamlines in the flow. (a) Images of beads flowing at 500 ,uL/hr from a 
perfusion microchannel into a 1 mm wide cavity. The figure is a composite of nine independent 
pictures at 100 ms exposure. (b) Velocities in experiments were obtained by measuring streak lengths, 
where n = 90. Data points correlate well with the analytically-derived curve. 
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FIG. 3. Experiments of nutrient delivery in microcavities using fluorescein as a representative small 
molecule to validate Eq. (6). (a) Illustration of the model used to estimate the time required for small 
molecules to reach cells aty* from the perfusion channel. The model assumes that first, molecules travel 
only by advection to the centerline of the cavity, and then only by diffusion to the bottom; the total time 
for the mass transport through any streamline trajectory can be calculated by adding both contributions. 
(b) The minimum time required for nutrients to migrate from the freestream toy* through any possible 
path is tc = 4.5min. At this minimum, nutrients would travel roughly 1.1 mm by advection and 0.4 mm by 
diffusion to reach y* and would roughly reach steady state concentration. (c) For validation, fluorescence 
intensity at y* was measured at I Os intervals with 860 ms exposure and 450 nm excitation. In agreement 
with our estimate from Eq. (6), the intensity reached 97% of the steady state value at 4.5 min. 



TABLE I. Estimation of the cavity depth required to generate a diffusion dominant microenvironment for 
a given velocity at the top of the cavity, un and a cavity width, Wusing Eq. (2-3). The value of tc 
estimates the time for the concentration of molecules at the bottom of the cavity to reach steady state. All 
the values where calculated for fluorescein, where Pe* == 0.1, D = 7x 1 o-Jo m% and a = 5 O.um. 
Corresponding shear stresses, rare physiological for cells exposed to low-shear, interstitial flow. 

W(rnm) un(rrnnfs) y*(rnrn) tc.(min) r(dyn/cm2
) 

0.2 1 o.~no 0.:3511 :·w:Jx 10 ·1 

0.5 1 0.775 1.546 1..20 X 10~4 

1.0 1 1.550 11.350 5.9() X 10-.'0 

0.2 10 0 .419 0.410 3.00xl0-4 

0.5 10 1.016 1.808 Ll9x 1.0-'1 

1.0 10 2.092 5.361 5.96xl0-5 
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