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Abstract We present the first measurements on the proposed magnetically-tuned 
superconducting transition-edge sensor (MTES) and compare the modified re­
sistive transition with the theoretical prediction. A TES's resistive transition is 
customarily characterized in terms of the unit less device parameters a and fl 
corresponding to the resistive response to changes in temperature and current re­
spectively. We present a new relationship between measured IV quantities and the 
parameters a and {1 and use these relations to confirm we have stably biased a 
TES with negative {1 parameter with magnetic tuning. Motivated by access to this 
new unexplored parameter space, we investigate the conditions for bias stability 
of a TES taking into account both self and externally applied magnetic fields. 

Keywords Low Temperature Detectors, Supeconductivity, Magnetic Field 
dependence, superconducting resistive transition width, superconducting weak­
links 

1 Introduction 

Significant progress has been made in transition-edge sensors (TESs) treating the 
resistive transition R( T, I) as a function of temperature T and current /. Recent de­
velopments have shown that it is important to also consider the magnetic field de­
pendence B of the resistive transition R(T,I,B). 3 Work extending the TES model 
to include the magnetic field dependence also found a way to alter the effective 
width of the resistive transition .dT, in what the authors called a magnetically­
tuned TES or MTES. 1 With magnetic tuning we explained that it is possible to 
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reduce /3 while maintaining a large a that will increase the signal size, speed up 
the pulse recovery time, reduce the performance limiting Johnson noise, and in­
crease the energy resolving power provided no new sources of noise appear. One 
of the more extreme predictions was that it was possible to not only reduce fJ to 
values approaching zero but it was also possible to stably bias a MTES with neg­
ative fJ. In this work we show measurements on a prototype MTES that confirms 
the predicted change in transition shape with magnetic tuning and also realizes 
stable bias with a negative fJ. To demonstrate stable bias with negative fJ this we 
derive a new relationship between measured IV quantities. Lastly, we reinvestigate 
the bias stability conditions for a TES including the magnetic field dependence B 
of the R(T,I,B).The results are used to show the allowable fJ range with stable 
solutions and the constraints placed on the other device parameters. 

2 R(T,I,B) transition 

For small signals the TES's R(T,I,B) can be expanded around a point in resis­
tance, temperature, current, and magnetic field space Vo = (Ro, To,Io,Bo) to first 
order as 

. oR oR iJR 
R(T,I,B) 1'::::: Ro + oT 8T + ()J 81 + ()B 8B, (1) 

with oT = T- To , OJ= I- Io , 8B = B-Bii representing the departures away 
from the initial operating point and all partial derivatives evaluated at Vo. 

We define the following parameters as the logarithmic derivative of the re­
sistance with respect to temperature, current, and magnetic field (a = ~ M , 
R. - fll_ iJR - !!a. iJR) 
PI= Ro di • Y= Ro dii • 

where again the partial derivatives are evaluated at the initial operating point 
in the transition vo. 

Using our Ic rectification model for asymmetric current injection4 we know 
we can write the total magnetic field at the TES as B = Ba + g I where Ba is an ex­
ternally applied magnetic field and g is a geometry-dependent self-fielding factor 
and I is the TES current. For a constant Ba we have 6B = g OJ. 

After substituting the above definitions our Taylor expansion becomes, with 

fJ=Pr+PB =J3r+~~. 

R(T,I,B) I'::::Ro+aRo 8T+f3 ~0 o/. (2) 
To ~o 

It was shown that f3r is positive and fJB can be: positive, go to zero, or negative 
(corresponding to required conditions for case 0, 1, and 2 respectively in refer­
ence 1 ). Additionally, fJ8 can be made sufficiently negative such that the overall fJ 
becomes negative. 

3 aw Derivation 

In this section we derive a relationship between aw = ~ ~: and the perviously de­
fined parameters a and fJ. This relationship is useful as arv (which is composed 
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of both a and fj) is obtainable from current I versus voltage V measurements 
routinely used to determine the thermal conductance to the heat path G and as~ 
sociated thermal power exponent n. In contrast, impedance measurements Z(f) 
are routinely used to find a and fj by fitting the Z(f) data over a range of bias 
voltages and frequencies f. The aN relationship also has utility if used as another 
constraint equation for the Z(f) fits. Lastly, it gives a measure of the important~ 
vice parameter ratio J from IV measurements alone in certain limits of operation 

discussed below. 
If we equate the Joule power heating from the biased TES to the heat flow 

from the TES at temperature T to the heat bath at temperature Tbath = Tb we have 
a thermal equation for the electrical resistance Rrh satisfying Rth = Pixuh/ P. 

After a first order Taylor expansion of R,h(T,I), equating to R(T,I,B), and 
collecting terms we find 

(3) 

The equation does not depend upon the specific resistance mechanism or func~ 
tional form for the TES resistance nor does it depend on the specific functional 
form describing lkh· 

If we now assume a specific thermal equation describing the flow of heat to 
the bath of the form 

1'bat = __!!__ (T" _ T.") = GT~ 
h nrn-1 b n 

(4) 

then we have R,h =;JJ•-i (T"- Tt) =~with the definition~ = 1- (Tb/T)". 
The above functio form for Pixuh gives, 

2a + fj ( 1 + n ( ~ ~ 1)) 
aN= 2 +/3 (5) 

In the limit Tb « T, if' ---+ 1, and aw ---+ z::f. If we also have fj large then 

aN---+ 1 + 2J. From the definition of aN we may also write 

(
dR) _ G(2a~ + fj (n +if'- iup )) 
dT IV- J2n(2+{3) . 

(6) 

We later use eqn 6 to confirm that the MTES is stably biased with negative fj 
values from IV measurements. 

4 Measured RT derived from IV measurements 

The standard procedure of IV measurements made over a range of bath tempera~ 
tures was used assuming a thermal model of 4 giving G = 20 nW/K and n = 3.73 
for the prototype MTES tested. 
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Fig. 1 (Color online) R vs. T from IV measurements left predicted and right measured. Black 
dashed curve is fof negligible self-field (g --+ 0) and no applied field (B4 = 0), case 1 from 
reference 1• Red to Violet curves are in order of increasing applied magnetic field Ba from -2 
to 10 p.T. Thicket- curves represent case 2 from 1 and the thin solid curves case 0 with a lqe 
negative self magnetic field. 

With the known thermal parameters G and n the IV data collected at different 
Tb are plotted in Fig. 1 on the right. These measurements are compared against 
the theoretical predicted MTES behavior shown on the left plot of Fig. 1 showing 
similar behavior as the applied magnetic field Ba changes. We see that the yellow 
curve <PB > 0, case 0) of Fig. 1 has an increased resistive .transition width .;:1 T as 
compared to the black dashed curve (f3B ~ 0, case 1 ), With g < 0 as Ba is increased 
you enter the curves where fJB is negative, thick solid curves, (fJB < 0 case 2). As 
predicted a MTES can have its (~:) w (and the associated transition width AT 
either decrease or increase) by simply changing the applied magnetic field B4 • For 
the large lgllim.it we confirm that it is possible to make /3B sufficiently negative 
such that the total fJ = /31 + fJB is negative where the transition RT projection's 
slope changes sign and the curve doubles back on itself as predicted. 

By simply changing an applied magnetic field over an entire array of MTES 
sensors it is possible to change the width of the resistive transition in situ. Ap­
plications include tuning the applied field Ba to an optimal value for a specific 
maximum photon energy for optimal energy resolution then changing the applied 
magnetic field Ba to broaden the resistive transition over the array of MTESs and 
collect a spectrum over a larger spectral range without saturation. 

In addition magnetic tuning can be used to change the shape of the resistive 
transition to improve the linearity of the detector response. 

5 Negative /3 Confirmation 

- Negative (~:) w Argument. 
With the modest assumption that G, q,, P, n all > 0; then if our only ad­
ditional assump~on is a> 0, it follows from Eq. 6 that (~:)w < 0 im­
plies /3 < 0. The measured thermal X-ray pulse signal direction implies 
the a > 0 condition is satisfied therefore we have /3 < 0. 

- Infinite (~)IV Argument. 
We see from measurements of IV curves at different bath temperatures for 
the data projected onto the RT -plane in Fig. 1 that there exists curves with 
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a region of (~:)IV > 0 that continuously transitions as Rl RN is reduced to 

a region with (~:)IV < 0. In between these regions the slope is very sharp 

with (~:)IV ~ oo. By inspection of our equation 6 for (~:)IV if n and P 
are both finite and "1- 0, then (~:)IV ~ oo implies {3 --+ -2. Our simulations 
show that the point where the the bias trajectory projected onto the RT­
plane turns in the opposite direction and has infinite slope does correspond 
to J3 = -2. 

6 Bias Stability Conditions 

We reinvestigate the TES bias stability conditions to include the magnetic field 
dependence of the resistive transition. Additionally we wish to investigate what 
values of f3 are allowed for stable operation, in particular are negative J3 values 
stable, if so how negative can f3 become and be stable and what constraints are 
imposed on other physical parameters. 

The coupled nonlinear electrothermal differential equations describing a TES 
can be approximated by coupled linear differential equations for which analytic 
solutions exist. This system of coupled linear differential equations has solutions 
that are either over damped, under damped, or critically damped. Each type of 
solution can be either stable or unstable. In each of the three cases the stability 
condition is met if the real part of both eigenvalues 1 I 't'+ and 1 I 't'- are positive ( 
Re[ll-r+J > OtiRe[l/'r-] > 0). 

Using the variable definitions from the hwin Hilton review article we find that 
the two eigenvalues agree but with the new definition of f3 = J3I + J3B, meaning 
adding the f3B contribution. 

The eigenvalues are simply 1 I 't'± = x± .;q, using the parameter definitions x := 

1 1 d _ 1 (( 1 1 )
2 

4 R 2(2+,6)) ·ththe tural · 2Te1 + 2Tr an q = 4 r.1 - fi - Lu.t " w1 na nme constant 

-r = C I G where C is the heat capacity and G is the thermal conductance between 
the sensor and the heat bath, 1:~1 = LwJ/ (Rsh + R( 1 + {3)) is the electrical time 
constant with 4.d the inductance connected in series with the TES and Rsh the 
shunt resistor. 't'1 = 't'l(l- 2), with~ the loop gain as defined in hwin and 

Hil · fyi aJ aP aPR ton sans ng .z; = GT = GT • 

- The conditions for stability: 
1. stable over damped(q > 0) fl (x > .;q), 
2. stable under damped (q < 0) fl (x > 0), 
3. stable critically damped (q = 0) /1. (x > 0). 

The space of all stab1e bias operation is then given by 

[(q > 0) fl (x > y'q)] V [(q $ 0) fl (x > 0)]. (7) 

The derived set of inequalities for stability differ from the set of inequalities in the 
review article by hwin and Hilton (equations 51, 52, and 53). We emphasize that 
the stability criteria up to this point are quite general and follows simply from the 
set of coupled linear differential equations describing the temperature T(t) and 
current/(t) time evolution of the TES. 
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Despite the complicated fonn for the stability space some simplifications exist. 
To reduce the complexity of the expressions, in what that follows we limit our 
discussion to the parameter space of greatest physical interest specific for TESs 
and consider ~ ~ 0, which from the definition effectively assumes a ~ 0. We 
also consider f > 0 and so too the resistances and inductances (R, R~h, and LwJ). 

Looking at solutions for the most negative fj, stable bias with fj < -2 exists 
but only for over damped ~lutions and also requires~< 1 and R < Rsh(~-
1)/(1 +~ + fj), which implies that R < R.rh• 

Assuming t' > 0 II. Rsh > 0 II. R > 0 II. Lind > 0 then no stable solution exists 
for f3 :::; -2 A (R ~ Rsh V ~ ~ 1). This combined with the earlier statement means 
that R < Rsh and ~ < 1 is a necessary but not sufficient condition to stably bias 
with,B < -2. 

Stable critically damped solutions (q = 0) exist with fj = -2, provided~< 1, 
andLwJ = f(Rsh -R)/(1-~), which implies thatR < Rsh. 

For R = Rsh and ~ = 1 then if we define a variable p = 4LwJ/ (R(2 + fj)) 
we have stable under damped solutions for fJ > -2A f < p, stable over damped 
solutions for fj > -2A t' > p, and stable critically damped solutions for fJ > -2A 
'C=p. 

Stable critically damped solutions occur with q = 0, ~ > 1, and R > Rsh if and 

onlyif{J > -1/1. Rrz1JJ) (~+2~+ 1) < t"< R(m)2 (2v'~(2+{J)(l+~+{J)+ 1+/3+~(3+/3)) 
or -2 < fJ:::; -lA't' > R{ttp) (~+2¥2+1 ). 

7 Stability plots 

The previous section we learned how exactly the TES or MTES tends to unstable 
solutions for larger~. L;ntJ, or R.rh; or smaller 't', fj, orR. In figure 2 we present 
region plots of stability with device parameter values C = 0.135 pJ/K, G = 20 
n W/K, 't' = c I G = 675 p.s, LwJ = 18 nH, Rsh = 0.2 mn and Rsh = 2.2 mn. We 
do not need to assume a specific RN value but plot R to a typical value of the nor­
mal state resistance RN ~ 10 rnn. Also in the figure are gray dashed lines going­
through fj = -2 and R = R.rh landmark values as a guide to the eye for compar­
isons. Different ranges are covered for the plots with axis log~ (left column) as 
compared to .5t' (right column) plots of Fig 2. 

An important result of our analysis is that stable operation in the underdamped 
regime is not insured with the condition R > Rsh. In contrast with equation (51) or 
Irwin and Hilton's review we find that for any fj and with R > Rsh for sufficiently 
large ~ the device becomes unstable. In other words, there exists over damped 
solutions that pass the stability criteria of equation (51) but are unstable even for 
positive values of f3 and~- Our stability criteria for under damped operation also 
departs from equations (52) and (53) in the same article6 when negative fJ values 
are considered. · 
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