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ABSTRACT 

Hartmann testing of x-ray telescopes is a simple test method to retrieve and analyze alignment errors and low-order 
circumferential errors of x-ray telescopes and their components. A narrow slit is scanned along the circumference of the 
telescope in front of the mirror and the centroids of the images are calculated. From the centroid data, alignment errors, 
radius variation errors, and cone-angle variation errors can be calculated. Mean cone angle, mean radial height (average 
radius), and the focal length of the telescope can also be estimated if the centroid data is measured at multiple focal plane 
locations. 

In this paper we present the basic equations that are used in the analysis process. These equations can be applied to full
circumference or segmented x-ray telescopes. We use the Optical Surface Analysis Code (OSAC) to model a segmented 
x-ray telescope and show that the derived equations and accompanying analysis retrieves the alignment errors and low 
order circumferential errors accurately. 
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1. INTRODUCTION 

In the x-ray wavelength region, light can be reflected efficiently only at very large angles of incidence. Depending on the 
wavelength, the grazing angle on the surface may be only about a degree or less. This fact forces the mirrors to be 
axially long surfaces of revolution. The entrance and exit apertures of the telescopes are very narrow annuli. Wolter 
type-1 mirrors are typically used for most x-ray astrophysics applications. Wolter type-1 telescopes consist of 
paraboloidal primary mirror followed by a confocal hyperboloidal secondary mirror. 

Highly nested x-ray telescopes are typically segmented into quadrants or multiple segments around the circumference of 
the telescope. Mirror segmentation is driven by fabrication and mirror assembly considerations. The segmentation 
further complicates the system image analysis. 

The Next Generation X-Ray Optics (NGXO) project and International X-Ray Optics (IXO) projects at Goddard Space 
Flight Center have developed x-ray and visible Hartmann tests suitable for segmented grazing incidence telescopes and 
their components1
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• In these tests, a narrow slit is scanned in front of the mirror segment across the azimuthal range of 
the mirrors. Centroid coordinates of the images are calculated. The Half Power Diameter (HPD) and Root Mean Square 
diameter (RMSD) of centroids are used as evaluation metrics. 

The image characteristics of x-ray telescopes are unique and fundamentally different from normal incidence telescopes. 
The radial cones of light emerging from the mirrors are very narrow radially. Therefore, out-of-focus images tend to be 
very narrow toroids. The angular width of the toroid can be just a few arc-seconds. These narrow images and their radial 
centroids measured at several focal plane locations can reveal a wealth of information about the alignment errors and 



circumferential errors of the mirrors4
. The centroid data of Hartmann tests of the Wolter telescopes can be difficult to 

interpret because the errors from the primary mirror and secondary mirror cannot be separated. A more practical 
approach is to analyze the errors of the primary and secondary individually before attempting to evaluate the system 
errors. 

In this paper we review the effects of alignment errors of segmented mirrors and their transverse ray equations. We 
present a process of removing decentering errors from out-of-focus images without knowing the location of the optical 
axis. We also present the equations that can be used to evaluate the mirror alignment errors, average radius errors, cone
angle errors, and cone-angle variations along the azimuth of the mirrors. Finally, we show how to apply this process to 
primary and secondary mirrors of segmented Wolter type- I telescopes. 

2. SURFACE EQUATIONS OF WOLTER TELESCOPES 

A cross-section of the primary or secondary geometry of a Wolter type-I telescope is illustrated in Figure 1. The 
parameter ho represents the surface radial height at the axial mid-point of the surface, and L is the axial focal length. The 
surface equation of the primary parabola or secondary hyperbola can be expressed conveniently using just a single 
equation5

: 

h = .Jh~ + 2 K z- P z2, (I) 

where h is the radial coordinate of the mirror, z is the axial coordinate of the mirror, and K and P are constants. This 
equation is used in the OSAC program5

. 
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Figure I. Cross-section of the primary or secondary mirror of a Wolter type-I telescope. 

3. MODELING AND RETRIEVAL OF ERRORS 

In the assembly and alignment process of grazing incidence telescopes, primary and secondary mirror segments are first 
bonded to a temporary mount and then transferred to a permanent mirror mount or module1

• During the bonding process 
the alignment and azimuthal shape of the mirror is monitored using an optical Hartmann test. The x- and y-centroids 
calculated from the Hartmann test are· then used to assess and evaluate the process. This process is done first for the 
primary mirror, then for the secondary mirror, and finally for the combination of the mirrors. 



From the centroid data of the Hartmann tests, alignment errors and mirror parameters and their errors can be determined. 
Alignment errors of mirror segments can be determined from a single Hartmann test. Cone angle errors and average 
radius errors of mirrors can be evaluated from two or more out-of-focus Hartmann tests. 

3.1. CENTROID ERRORS 

Ray equations of alignment errors, average radius errors, and delta-radius errors have been derived for the primary and 
secondary mirrors of Wolter telescopes6

. Focal plane displacement (6-z) is the simplest mirror error. If the focal plane is 
moved a distance 6-z from its nominal position, then image centroids of this error can be expressed as a function of 
azimuth angle, p, and back angle, aa. as6

: · 

Hx = 6-z tan(a0 ) sin(p) (2) 

Hy = 11z tan(a0 ) cos(p). (3) 
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Figure 2. Graphs show the effects of defocus (on the left), azimuth alignment error (in the center), and elevation alignment error (on 
the right) for a segmented and full revolution mirror. Alignment errors are shown for ±I 0 arc-sec of error. 

If the mirror is segmented, the centroids form an arc with an angular length matching the angular length of the mirror 
segment. The shape ofthe resulting images of segmented and full-circumference mirrors are illustrated in Figure 2. 

The azimuth alignment error (ox) of the mirror rotates the mirror about the y-axis in the x.-z-plane. The approximate 
centroid equations of the error are: 

(4) 

(5) 

where fi is the distance from the center of the mirror to the location of the detector as shown in Figure 1. The centroids 
draw an off-centered arc as illustrated in Figure 2. The angular length of the arc is twice the angular length of the mirror 
segments. 

The elevation alignment error, Oy, of the mirror is generated by rotating the mirror segment about the x-axis in y-z plane. 
The approximate centroid equations are6

: 

(6) 

(7) 



In this case the centroids generate an off-centered arc and the angular length of the arc is twice the angular length of the 
mirror. Positive and negative errors generate opposite arcs as illustrated in Figure 2. 

Decenter errors of a single mirror do not have the 2J3-dependency. Decenter simply translates the mirror segment away 
from the optical axis. The coordinates of this error are simply: 

(8) 

(9) 

where x0 and y0 are the focal plane displacements. The decenter of the secondary mirror with respect to the primary 
would have the 2J3-dependency4

. 

The x- and y-centroids of the average radius error can be approximated with equations6
: 

Hy = d 0cos(p), 

(10) 

(11) 

where do is the average radius error. This error simply adds a constant amount of error in every radial location on the 
surface . 

Centroid locations of the delta-radius error, also known as cone-angle error, can be approximately expressed as6: 

where d1 is the cone-angle error expressed in radians. 

(12) 

(13) 

Asswning the errors are small, the component of the centroids can be simply expressed as a linear combination of 
individual terms. Under this approximation the centroid coordinates are: 

Hx = Xo +(do+ ftdt + l!.z tan(a0))sin(p) + ftox + ftoy sin(2P)- {1 oxcos(2P) 

Hy = Yo+ (do+ ftdt + l!.z tan(ao)) cos(p) + ftoy + f1or sin(2P) + ft8y cos(2P). 

These equations can be manipulated into more convenient expressions (Hpws and HMINus) using relations: 

HMmus = Hx cos(p) - Hy sin(p). 

(14) 

(15) 

(16) 

(17) 

Equation (16) is simply the radial component ofthe centroids and Equation {17) is the circumferential component ofthe 
centroids. These equations can be rewritten by substituting centroids Hx and Hy of the ray equations (14) and (15). After 
substitution we get for HPLUS and HMJNus: 

HPLus = Xo sin(p) +Yo cos{p) + (d0 + f1d1 + flz tan(a0)) + 2f1or sin(p) + 2ftoy cos(p) {18) 

H,.uNus = Xo cos(p) -Yo sin(p). {19) 



The circumferential component (19) is a function of azimuth ·angle ~ and translations Xo and y0 only. This component 
does not depend on the alignment terms, average radius error, or cone angle error. 

3.2. RETRIEVAL OF ERRORS FROM CENTROID DATA 

Centroid equations ( 18) and (19) provide a basis to estimate the magnitude of all error terms included in the equations. If 
the azimuth angle p and the centroid coordinates are known, HMJNUS and HPLUS can be calculated from equations (18) and 
(19). Least-squares fitting routines can be used to estimate x0 and Yo of equation (19). This process conveniently finds 
the optical axis. There is no need to locate the optical axis experimentally far away from the mirror segment and the 
Hartmann scans can be done at several axial locations without moving the detector exactly along the optical axis. 

After the centering parameters x0 and y0 are calculated, the alignment errors ~x and ~Y can be estimated from the radial 
component (18). A least-squares fitting routine is used to fit the constant term (c1), sin(p)-term, and cos(P)-tenn of 
Equation (18) to Hradial which is calculated from measured centroid data. 

HRADIAL = Hpws - x0 sin(P) -Yo cos(p) = ct + C2 sin(p) + c3 cos(p). (20) 

In Equation (20) c1 is substituted for d1 + Ji d1+A, tan(ao), c2 and c3 are substituted for 2fiox and 2fi~Y' respectively. 

The alignment errors Ox and Oy can now be estimated from the ~ and c3 parameters of the fitting routine. In the equation 
Ji is the distance from the axial center of the mirror segment to the detector as illustrated in Figure I. In order to calculate 
the centroid coordinates and alignment errors ~x and ~Y• the azimuth angle ~ and focal distance jj need to be measured. 

Fitting parameter c1 includes the average radius error, cone angle error, and defocus term. These terms cannot be 
separated and calculated from a single focal plane Hartmann scan. A minimum of two measurements is required. 
Assuming that fitting of Equation (20) returns parameter c11 for centroid data measured at focal distance fi and c12 at 
focal distanceJi, then d1 can be calculated from the equation: 

(21) 

where a3 is the angle the central ray makes with the optical axis. The cone-angle error of the mirror is now half of the 
angular error d1• 

After d1 is estimated, the average radius error is estimated from fitting parameters c11 or c12• Knowing the design 
parameters h0 and L of the mirror segment, then the average radius error can be written: 

rio = c11 - dtft - lft - L) tan(ao) = Ctz- dtfz - lfz- L) tan(ao). (22) 

In the case where the mirror parameters L and ao are not known, these parameters can be estimated from Equations (21) 
and (22). Assuming the cone angle error d1 and average radius error do are zero, Equations (21) and (22) can be solved 
for L and ao parameters. 

4. MODELING AND RETRIEVAL OF PRIMARY AND SECONDARY MIRROR ERRORS 

The Optical Surface Analysis Code (OSACi was used to model the Hartmann scan and retrieval process of the 
alignment errors, average radius errors, and cone-angle errors of the primary and secondary mirrors a Wolter type-1 
telescope. In the OSAC environment, surface deformations can be easily modeled using Legendre-Fourier (L-F) 
polynomials7

• Design parameters of the modeled telescope are given in Table 1. The mirrors are 30-degree segments of 
full revolution. 



Table 1. Design parameters and dimensions of the modeled telescope. 

Primary Secondary 
p 0.0 -4.17316d-04 
K -1.75273 -5 .20717 
Mirror radial height hO (mm) 243.616 240.0193 
Mirror axial length Lp (mm) 200.000 200.000 
Focal length L (mm) 16929.5 5529.1 

The modeling presented in this paper is based on the ray trace only. We are assuming that centroiding of the image data 
largely removes the diffraction characteristics of the image. An OSAC ray-trace model was built using the data of Table 
1. Ray files of the OSAC software are conveniently organized into ray-intercept data as a function of entrance aperture 
coordinates. These files contain all the data needed to model the primary and secondary mirrors separately, and in 
combination. From the ray files, one can calculate the image plane centroid data at arbitrary locations in the image space. 
In the examples we selected 4 image plane displacements. The detector was placed 0.0 mm, -lOOmm, -200 mm, and 
-300 mm away from the focus of the mirror towards the optical component. 

4.1. MODELING OF PRIMARY MIRROR 

Numerical values of errors used in the modeling of the primary mirror are given in 
Table 2. Cone-angle variation is modeled using the 29th Legendre-Fourier cosine 
term: 

L - F29 = constant z cos(29{J), (23) 

where z is the axial coordinate and p is the azimuthal coordinate of the 
deformation. The contour plot of the deformation is shown in Figure 3. 

The deformation bas 3 maxima and minima across the azimuth and the axial 
component of the deformation is the 1st order Legendre term. 

In Figure 4 the x- and y-centroids of the focal plane images are shown. The 
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Figure 3. Surface cone angle error of 
the primary mirror 

centroids are calculated at 4 focus locations (0 mm., - 100 mm, -200 mm, and -300 mm). Dashed curves represent 
centroids if the detector is perfectly centered on the optical axis. The solid curves represent centroids if the detector is 
not centered on the optical axis. 



Table 2. Primary mirror errors and retrieved errors 

Errors introduced 

Elevation alignment error (arc-sec) -20.00 

Azimuth alignment error (arc-sec) -5.00 

Average radius error ( mm) 0.100 

Cone angle error (arc-sec) 20.63 

Cone angle variation (arc-sec, PV) 0.81 

Images tend to get horizontally longer when moving 
away from the focus. If the image is elongated 
vertically, then azimuthal alignment error is 
dominating. If the image is long horizontally there are 
two options: either the detector is out of focus or the 
elevation alignment error is the dominating error. The 
oscillating waviness in the image is from the cone
angle variation error. 

In Figure 5 the circumferential components (HMINus) 
are plotted as a function of the azimuth angle. Tilt and 
vertical displacement of these curves are proportional 
to the horizontal and vertical decentering of the 
detector. Decentering parameters x0 and y0 are solved 
for using the fitting process outlined in Section 3.2. 

Figure 6 plots the radial component of the centroids as 
a function of azimuth location. The curves are equally 
spaced. There is slight tilt in the curves, due to the 
azimuthal alignment error. A slight 200-order sag of the 
image is coming from the elevation alignment error. 
The waviness is caused by the cone-angle variation. It 
is interesting to notice that even a small amount of 
axial cone-angle error tends to dominate the radial 
centroid components. 

Fitting the centroid data of the radial component 
HRADJA.L in Equation (20) yields the alignment terms if 

Errors retrieved 

-20.00 

-5.01 

0.101 

20.62 

0.81 
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Figure 4. Centroids of 4 Hartmann scans at 0 mrn, = 100, mm, =200 
mm, and =300 mm from the focus. Dashed curves represent centered 
detector centroids and solid curve represents randomly decentered 
detector centroids. 
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the distance fi from the detector to the axial center of Figure 5. Circumferential centroid components of the Hartmann scans. 
the mirror is known. The alignment terms can be 
calculated for every detector location. 

Cone-angle error d1 is calculated from Equation (21). Centroid data at two focal plane locations is required to determine 
the cone-angle error. The back angle ao is calculated from the mirror parameters ho and L. After the cone-angle error is 
known, the average radius error can be calculated using Equation (22). 



The residual error, after removing the alignment 
errors and c-coefficients from the radial components 
HRADtAL• is the cone-angle variation. Figure 7 plots the 
retrieved cone angle variation and the cone angle 
variation of the OSAC model. The developed process 
retrieves the cone angle variation accurately. 

All of the retrieval results are listed in Table 2. The 
developed retrieval process works very well and finds 
the error terms accurately. Only 1 51-order axial errors 
(cone-angle variation) were included in the modeling. 
Third and higher odd-order axial errors could change 

determination of the centroids and have an effect on 
the retrieval process. Second-order axial sag error and 
higher order axial errors would not affect the centroid 
calculations because they would distribute the rays 
equally to both· sides of the centroids. Also, large 
errors could be difficult to model since . part of the 
incoming bundle of rays could only partially hit the 
surface and have an effect on the centroid 
calculations. 
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Figure 6. Radial centroid components of the Hartmann scans. the 

'• 

~ . 
Figure 7. Cone angle variation of the OSAC model and retrieved cone 
angle variation. 

4.2. MODELING OF SECONDARY MIRROR 

The secondary mirror is a 30-degree segment of hyperboloid of revolution. The basic parameters of the mirror are given 
in Table 1. The cone angle variation is modeled using the 2151 Legendre -Fourier · 
term: 

L - F21 = constant z cos(218). (24) 

The cone-angle variation error is illustrated in Figure 8. The variation has 2 
maxima and 2 minima across the azimuth. The axial component is 1st order, or just a 'l 

constant tilt along the axial direction of the mirror. All of the error parameters are 
listed in Table 3. 

The secondary mirror is more difficult to model. A collimated beam of rays does 
not form a perfect on-axis image. Figure 9 plots the footprints of images calculated .. . '>: .,: ~.- .·•· · ·. ., 

. , Figure 8. ~angle variation model 
at 4 focal plane locabons. Focal plane locations selected are: best focus, -100 mm, of the secondary mirror. 
-200 mm, and -300 mm away from the best focus towards the mirror. The best 
focus is located 5,529.1 mm from the axial center of the mirror. At the best focus the footprint of the image is a bowtie. 
The bowtie is slightly deformed by the alignment errors and cone-angle variation. The values of these errors are listed in 
Table 3. Because of the model errors, the top part of the bowtie is smaller than the bottom part. Also, the top edge and 
bottom edge are not perfect circular arcs. The edges are deformed by the alignment errors and cone-angle variation. 



The footprints calculated at larger distances from the 
best focus are segments of a toroid. The top and bottom 
edges of the segments are slightly deformed from 
circular shape by the alignment errors and cone angle 
variation. 

In Figure 10 the centroids of all focal plane locations 

are plotted. Dashed curves plot the centered centroid 
profiles and solid curves plot the centroids after they 
are randomly decentered from their centered locations. 
Decentered locations are used in the retrieval process. 

The centroid curves at out-of-focus locations are long Figure 9. Footprints of the images of secondary mirror at 4 detector 
horizontalliqes indicating that the defocus term is the locations (best focus, =100 mm, =200 mm and=300 mm from the best 

focus). 
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Figu:e I 0. Centroids of 4 Hartmann scans of secondary mirror 
calculated at best focus =100 mm, =200 mm, and =300 mm 
from the best focus. Dashed curves represent centered detector 
centroids and solid curve represents randomly decentered 
detector centroids. 

dominating error. 

Table 3. Secondary mirror errors and retrieved errors 
Model error 

Elevation alignment error (arc-sec) -20.00 
Azimuth alignment error (arc-sec) -5.0 
Azimuth alignment error of cone -
angle variation (arc-sec) 
Average radius error (mm) 0.050 
Cone angle error (arc-sec) 10.00 
Cone angle variation (arc-sec, PV) 1.38 

... 
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Figure 11. Circumferential centroid components of the secondary 
mirror. 
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Figure 11 plots the circumferential component (HMJNus) of the centroids as a function of the azimuth angle. The pistons 
and tilts of the curves are related to the decentering errors x0 and y0. In Figure 12 the radial components of the centroids 
calculated at 4 focal plane locations are plotted. The 
large vertical separation of the curves indicates that the 
defocus is dominating the other errors. The slight tilt 
of the curves is caused by the azimuth alignment 

u -~ ':.''-' ~-
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Figure~- Radial centroid components of the secondary mirror. 
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Figure2-H. Cone angle variation of the OSAC model and retrieved 
cone an~rle variation. 



error;; and the small waviness is caused by the cone-angle variation. 

Cone-angle variation of the model is not symmetric along the azimuth range. The error oscillates from a maximum on 
the left side to a large minimum on the right side. The asymmetry is clearly visible in the surface plot in Figure 8. There 
is a small amount of azimuth alignment error in this model. A ray trace of the cone-angle variation alone and subsequent 

retrieval reveals azimuth alignment error of -1.23 arc-sec. The retrieved cone angle variation and the model cone angle 

variation are plotted in Figure 13. The azimuthal tilt of the model was removed before the variation was plotted. 

All of the retrieved errors and errors of the secondary mirror model are listed in Table 3. The developed retrieval 
process works well in spite of the large on-axis image defect of the secondary mirror. 

5. CONCLUSIONS 

Highly annular apertures of x-ray Wolter type-1 telescopes make them good candidates for Hartmann testing of 
circumferential primary and secondary mirror errors, including alignment errors and varying radius and cone-angle 

errors. On the other hand, this technique would not be practical in measuring axial errors since the radial extent of the 
surfaces can be just 1-2 mm. If out-of-focus Hartmann scans are done in several focal plane locations, average radius 
and cone-angle errors, and cone-angle variations can be retrieved. This technique seems an easy way of estimating and 
asses~ing these parameters. 

Equa:ions (21) and (22) can be used to estimate basic mirror radial parameters ho. mirror axial focal length L, and back 
angle ao from multiple Hartmann tests. These parameters cannot be measured using conventional normal incidence 

interferometric techniques that the NGXO project has developed to characterize mirror shape and overall surface quality. 

Image-centering techniques can be used to fmd the image location with respect to the optical axis of the mirror. Through 
this process one can relate images measured at various detector locations to each other and calculate low-order error 
parameters or basic parameters of the mirrors. 
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