Glenn Extreme Environments Rig (GEER)
Independent Review

Robert S. Jankovsky/NESC and Michael D. Smiles/NESC
Langley Research Center, Hampton, Virginia

Mark A. George
Glenn Research Center, Cleveland, Ohio

Mimi C. Ton
Jet Propulsion Laboratory, Pasadena, California

Son K. Le
Stennis Space Center, Mississippi
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA’s STI. The NASA STI program provides access to the NTRS Registered and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA Programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counter-part of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services also include organizing and publishing research results, distributing specialized research announcements and feeds, providing information desk and personal search support, and enabling data exchange services.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov

- E-mail your question to help@sti.nasa.gov

- Phone the NASA STI Information Desk at 757-864-9658

- Write to:
 NASA STI Information Desk
 Mail Stop 148
 NASA Langley Research Center
 Hampton, VA 23681-2199
Glenn Extreme Environments Rig (GEER) Independent Review

Robert S. Jankovsky/NESC and Michael D. Smiles/NESC
Langley Research Center, Hampton, Virginia

Mark A. George
Glenn Research Center, Cleveland, Ohio

Mimi C. Ton
Jet Propulsion Laboratory, Pasadena, California

Son K. Le
Stennis Space Center, Mississippi
Acknowledgments

The NESC team would like to acknowledge Mrs. Lori Arnett for assuring that the NESC team had access to whomever and whatever information was requested. Her efforts were essential to the efficient completion of this assessment. The NESC team also would like to acknowledge the following individuals for their openness during the facility inspections and tabletop discussion:

- Leah Nakley – Lead Operations
- Ken Gregg – Mechanical Design
- Joe Rymut – Electrical Design
- Alex Sgondea – Electrical Design
- Jim Mullins – Facility Engineer
- Rodger Dyson – Mechanical Design
- Lori Arnett – Facility Manager
- Dan Vento – Project Manager
- Jim Hritz – Safety/Hazard Analysis
- Tim Fiorilli – Industrial Hygienist
- Chuck Druesedow – Pressure Systems Office

The use of trademarks or names of manufacturers in the report is for accurate reporting and does not constitute an official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and Space Administration.
Glenn Extreme Environments Rig (GEER) Independent Review

September 10, 2015
NOTE: This document was approved at the September 10, 2015, NRB. This document was submitted to the NESC Director on September 17, 2015, for configuration control.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description of Revision</th>
<th>Office of Primary Responsibility</th>
<th>Effective Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Initial Release</td>
<td>Mr. Robert Jankovsky, NESC Chief Engineer, GRC</td>
<td>9/10/15</td>
</tr>
</tbody>
</table>
Table of Contents

Technical Assessment Report
1.0 Notification and Authorization ... 4
2.0 Signature Page .. 5
3.0 Team List ... 6
 3.1 Acknowledgements .. 6
4.0 Executive Summary .. 7
5.0 Rig/Facility Description ... 8
6.0 Documentation ... 14
7.0 Findings and NESC Recommendations ... 18
 7.1 Findings .. 18
 7.2 NESC Recommendations .. 20
8.0 Alternate Viewpoint ... 20
9.0 Other Deliverables .. 20
10.0 Lessons Learned ... 20
11.0 Recommendations for NASA Standards and Specifications 20
12.0 Definition of Terms .. 21
13.0 Acronyms List .. 21
14.0 References .. 21

List of Figures
Figure 5.0-1. GRC GEER .. 8
Figure 5.0-2. GRC Building 334 ... 9
Figure 5.0-3. Pressure Vessel .. 10
Figure 5.0-4. Gas Cabinets .. 11
Figure 5.0-5. Mixing Cabinet .. 11
Figure 6.0-1. Electronic Folders with All Documentation Provided for Review 15
Figure 6.0-2. Review Documents Folder Contents .. 15
Figure 6.0-3. Released Electrical Drawings Folder Contents 15
Figure 6.0-4. PSO Supporting Documentation Folder Contents 16
Figure 6.0-5. PSO Drawings Folder Contents .. 16
Figure 6.0-6. Checksheets Folder Contents ... 17
Figure 6.0-7. 7150 Documents Folder Contents ... 17
Figure 6.0-8. On-line Safety Permit System with Links to PSO Certifications and Operation Procedures .. 18
Figure 7.1-1. Pressure System Component Tags .. 19
Technical Assessment Report

1.0 Notification and Authorization

The Chief of the Space Science Project Office at Glenn Research Center (GRC) requested support from the NASA Engineering and Safety Center (NESC) to satisfy a request from the Science Mission Directorate (SMD) Associate Administrator and the Planetary Science Division Chief to obtain an independent review of the Glenn Extreme Environments Rig (GEER) and the operational controls in place for mitigating any hazard associated with its operation.

Mr. Robert Jankovsky, NESC Chief Engineer at NASA GRC, was selected to lead this assessment.

The key stakeholders for this assessment are the NASA SMD, GRC, and the planetary science community.
2.0 Signature Page

Submitted by:

Team Signature Page on File – 9/22/15

Mr. Robert S. Jankovsky Date

Significant Contributors:

Mr. Michael D. Smiles Date

Mr. Mark A. George Date

Ms. Mimi C. Ton Date

Mr. Son K. Le Date

Signatories declare the findings, observations, and NESC recommendations compiled in the report are factually based from data extracted from program/project documents, contractor reports, and open literature, and/or generated from independently conducted tests, analyses, and inspections.
3.0 Team List

<table>
<thead>
<tr>
<th>Name</th>
<th>Discipline</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Team</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robert Jankovsky</td>
<td>NESC Lead</td>
<td>GRC</td>
</tr>
<tr>
<td>Michael Smiles</td>
<td>NESC Chief Engineer</td>
<td>SSC</td>
</tr>
<tr>
<td>Mark George</td>
<td>Hazards Analyses</td>
<td>NSC</td>
</tr>
<tr>
<td>Mimi Ton</td>
<td>Industrial Hygiene</td>
<td>JPL</td>
</tr>
<tr>
<td>Son Le</td>
<td>Pressure Systems</td>
<td>SSC</td>
</tr>
<tr>
<td>Linda Moore</td>
<td>MTSO Program Analyst</td>
<td>LaRC</td>
</tr>
<tr>
<td>Administrative Support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erin Moran</td>
<td>Technical Writer</td>
<td>LaRC/AMA</td>
</tr>
</tbody>
</table>

3.1 Acknowledgements

The NESC team would like to acknowledge Mrs. Lori Arnett for assuring that the NESC team had access to whomever and whatever information was requested. Her efforts were essential to the efficient completion of this assessment. The NESC team also would like to acknowledge the following individuals for their openness during the facility inspections and tabletop discussion:

- Leah Nakley – Lead Operations
- Ken Gregg – Mechanical Design
- Joe Rymut – Electrical Design
- Alex Sgondea – Electrical Design
- Jim Mullins – Facility Engineer
- Rodger Dyson – Mechanical Design
- Lori Arnett – Facility Manager
- Dan Vento – Project Manager
- Jim Hritz – Safety/Hazard Analysis
- Tim Fiorilli – Industrial Hygienist
- Chuck Druesedow – Pressure Systems Office
4.0 Executive Summary

Ms. Ann Over, Chief of the Space Science Project Office at Glenn Research Center (GRC), requested this assessment to satisfy a request from the Science Mission Directorate (SMD) Headquarters leadership for an independent review of the Glenn Extreme Environments Rig (GEER) hazards due to its large scale compared to what historically has been done [ref. 1].

The assessment included a review of existing GEER documentation (Section 6.0 Documentation) and a 1-day on-site inspection of the rig/facility (Section 5.0 Rig/Facility Description), including a tabletop review with the project/facility engineering team that designed and built the GEER.

The NASA Engineering and Safety Center (NESC) team found the hazards (high temperature, high pressure, toxic gases) inherent to GEER had been thoroughly and systematically addressed and concurred the transition from commissioning to operations should continue. All other findings were considered minor. Three of the remaining findings were minor discrepancies between documents and the as-built rig, or documented procedures, and those verbally discussed. These discrepancies should be eliminated and changes to procedures reviewed with the operators. Four findings had to do with the main pressure vessel (referred to as TM9001), and maintaining its integrity and history for future recertification. The first of these four findings was that although the facility engineering team considered creep of the TM9001, they did not have a procedure for documenting the cycles, pressure, and temperature to support potential future analyses at different operating conditions.

In the second of the four related findings, the NESC team noted that although the facility engineering team had identified the facility sprinkler system activation while at temperature as a possible hazard, and closed it after testing, the hot vessel could not set off the sprinklers even without the ventilation system operating. The team did not consider other inadvertent sprinkler system activation, and as such have not completely considered the potential for rapid cooling of the TM9001 causing loss of containment.

In the third related finding, the NESC team also found that in at least one instance pressure drop calculations on a pressure relief valve did not consider pipe diameter in accordance with American Society of Mechanical Engineer (ASME) Section VIII, Division 1 allowances.

In the final related finding, the NESC team found that corrosion under the TM9001 insulation was not considered in accordance with American Petroleum Institute (API)-571 and is recommending an inspection/monitoring procedure be added.

Lastly, it was found that the control room had no visual monitoring of the test cell. Although procedures are in place to ensure the area is clear before flowing gases, the NESC team recommends that a video system be installed.

In all cases, the Space Science Project Office and facility engineering team at GRC has accepted all of the findings and NESC recommendations and has either already completed them or they are in work.
5.0 Rig/Facility Description

NASA recently started the commissioning process of the GEER (Figure 5.0-1), located in Building 334 (Figure 5.0-2) at GRC. The GEER is designed to simulate the temperature, pressure, and atmospheric compositions of bodies in the solar system, including those with acidic and hazardous elements.

The GEER consists of a 0.79m³ (28ft³), 304 stainless steel pressure vessel with Inconel® sheathed resistance heaters and a Maximum Allowable Working Pressure (MAWP) of 10.47 MPa (1518 psia) at 538°C (1000°F) (Figure 5.0-3); four gas cabinets to store up to eight gas cylinders (Figure 5.0-4); a gas mixing cabinet to precisely mix the desired gas chemical composition (Figure 5.0-5); a gas booster to maintain the test conditions over a long period of time with allowable leaks (Figure 5.0-6); a Fourier Transform Infrared (FTIR) Spectrometer to measure chemical composition (Figure 5.0-7); and a vent stack to exhaust gases outside the facility (Figure 5.0-8).

![Figure 5.0-1. GRC GEER](image-url)
Figure 5.0-2. GRC Building 334
Heaters

Figure 5.0-3. Pressure Vessel
Figure 5.0-4. Gas Cabinets

Figure 5.0-5. Mixing Cabinet
Figure 5.0-6. Gas Booster

Figure 5.0-7. FTIR Spectrometer
Figure 5.0-8. Vent Stack
Currently, GEER is configured for Venus surface conditions (Table 5.0-1) and is in the commissioning phase.

Table 5.0-1. GEER Configuration during Commissioning

<table>
<thead>
<tr>
<th>Chemical Species</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>96.5% carbon dioxide (CO₂)</td>
<td></td>
</tr>
<tr>
<td>~3.4% nitrogen (N₂)</td>
<td></td>
</tr>
<tr>
<td>130 ppm sulfur dioxide (SO₂)</td>
<td></td>
</tr>
<tr>
<td>5 ppb hydrogen fluoride (HF)</td>
<td></td>
</tr>
<tr>
<td>0.5 ppm hydrogen chloride (HCl)</td>
<td></td>
</tr>
<tr>
<td>15 ppm carbon monoxide (CO)</td>
<td></td>
</tr>
<tr>
<td>27 ppm carbonyl sulfide (OCS)</td>
<td></td>
</tr>
<tr>
<td>30 ppm water (H₂O)</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>470°C (878°F)</td>
</tr>
<tr>
<td>Pressure</td>
<td>9.24 MPa (1340 psi)</td>
</tr>
</tbody>
</table>

A simplified outline of operations for the GEER is as follows: 1) the test operations start by purging and evacuating the TM9001; 2) component gasses are then blended using the gas mixer; 3) the TM9001 is filled with the desired gas mixture up to 3.45 MPa (500 psi) (at ambient temperature) for the desired end-state chemistry; 4) heat is applied and controlled autonomously to bring the system to a steady-state operating point; and 5) after testing, chamber and plumbing are vented and purged.

6.0 Documentation

The NESC team was provided access to all project documentation for review. Figures 6.0-1 through 6.0-8 summarize the documentation that was made available to the NESC team. The NESC team selectively reviewed these documents with a focus on the hazards analyses, pressure systems, industrial hygiene, and procedures (e.g., startup, shutdown, and operating/emergency).
Welcome to eRoom!

Help with eRoom: GRC KMS Support: KMS-Support@hcs.nasa.gov or 216-433-9702 or Online: Working In your eRoom

Review Documents

a folder created by Ü. ARNETT, LORI (GRC-FTHO) on 9 Jun 15

June 1921 Meeting Documents

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Modified</th>
<th>Owner</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CERT-13-0287 P1/2006 Statement Of Vessel Recertification with ISI Table.pdf</td>
<td>10 Jun 15 1:41pm</td>
<td>ARNETT, LORI (GRC-FTHO)</td>
<td>417 k</td>
</tr>
<tr>
<td>2</td>
<td>GEER Alarms And Shutdowns Current.xlsx</td>
<td>10 Jun 15 1:41pm</td>
<td>ARNETT, LORI (GRC-FTHO)</td>
<td>32 k</td>
</tr>
<tr>
<td>3</td>
<td>GEER PHA Update 4-20-15.pdf</td>
<td>10 Jun 15 4:37pm</td>
<td>ARNETT, LORI (GRC-FTHO)</td>
<td>88 k</td>
</tr>
<tr>
<td>4</td>
<td>GEER Operations and Hazards Rev.C.pdf</td>
<td>10 Jun 15 1:41pm</td>
<td>ARNETT, LORI (GRC-FTHO)</td>
<td>223 k</td>
</tr>
<tr>
<td>5</td>
<td>GEER PHA 4-20-15 report.pdf</td>
<td>10 Jun 15 4:39pm</td>
<td>ARNETT, LORI (GRC-FTHO)</td>
<td>214 k</td>
</tr>
<tr>
<td>6</td>
<td>Glenn Extreme Environments Rig Overview revA.pptx</td>
<td>9 Jun 15 5:05pm</td>
<td>ARNETT, LORI (GRC-FTHO)</td>
<td>657 k (v1)</td>
</tr>
<tr>
<td>7</td>
<td>RAC-13-0087 dated 06-11-2013.pdf</td>
<td>11 Jun 15 11:40am</td>
<td>ARNETT, LORI (GRC-FTHO)</td>
<td>391 k</td>
</tr>
<tr>
<td>8</td>
<td>Safety Permit 334-13-0045_revA.pdf</td>
<td>10 Jun 15 1:40pm</td>
<td>ARNETT, LORI (GRC-FTHO)</td>
<td>48 k</td>
</tr>
</tbody>
</table>

Released Electrical Drawings

a folder created by Ü. ARNETT, LORI (GRC-FTHO) on 2 Dec 14

81 released electrical drawings for GEER

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Modified</th>
<th>Owner</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0334-TP320x1410-Release Sec.pdf</td>
<td>3 Dec 14 10:14am</td>
<td>ARNETT, LORI (GRC-FTHO)</td>
<td>14219 k</td>
</tr>
<tr>
<td>2</td>
<td>0334-TP320x1410-Release Sec.zip</td>
<td>3 Dec 14 2:42pm</td>
<td>ARNETT, LORI (GRC-FTHO)</td>
<td>9571 k</td>
</tr>
</tbody>
</table>

Figure 6.0-1. Electronic Folders with All Documentation Provided for Review

Figure 6.0-2. Review Documents Folder Contents

Figure 6.0-3. Released Electrical Drawings Folder Contents
PSO Questions_Answers_Supporting Documentation

Figure 6.0-4. PSO Supporting Documentation Folder Contents

PSO Drawings

Figure 6.0-5. PSO Drawings Folder Contents
Figure 6.0-6. Checksheets Folder Contents

Figure 6.0-7. 7150 Documents Folder Contents
7.0 Findings and NESC Recommendations

7.1 Findings

The following findings were identified:

F-1. The Process Hazards Analysis (PHA) and Facility Hazards Analysis (FHA) were complete and up to date. The inherent hazards of high pressure, high temperature, and toxic gases were thoroughly and systematically addressed.

F-2. No procedure exists for documenting the operational history (e.g., cycles, pressure, and temperature) of the 304 stainless steel TM9001.

F-3. There is a potential for thermal shock to the GEER TM9001 if the wet fire suppression system in the test cell is inadvertently activated.

F-4. The pressure system relief valve inlet piping pressure drop calculation did not consider changes in pipe diameter.

F-5. The cited MAWP were not consistent across data sources (e.g., Piping and Instrumentation Diagram (P&ID), relief device data sheets, Pressure Systems Office (PSO) data book).
F-6. Corrosion of the TM9001 under the insulation material was not considered in inspection or maintenance planning. In accordance with API-571, for 304-type stainless steel equipment that are insulated, operate intermittently, or operate between 60°C (140°F) and 204.4°C (400°F), corrosion under insulation is a concern.

F-7. The written procedure for manually drawing a gas sample from the TM9001 was inconsistent with the procedure described by the qualified operator during the rig/facility inspection.

F-8. The relief valve (TM2703/RV6094) from the booster vessel was not installed in accordance with the P&ID.

F-9. Facility engineering’s component tags were not secured permanently and were not found in some locations on the rig (Figure 7.1-1).

F-10. Two configuration management systems (PSO and facility engineering) are being used for pressure system components (Figure 7.1-1).

F-11. There is no means to visually monitor the test cell from the control room.

F-12. The test cell ventilation assessment was thorough and included multiple smoke tests.
7.2 NESC Recommendations

The following NESC recommendations were identified and directed toward GRC’s Facility, Test and Manufacturing Directorate unless otherwise identified:

R-1. Due to prolonged operation at elevated temperatures, procedures should be modified to include the documentation of the TM9001 operational history (cycles, pressure, and temperature) for consideration of material deformation below yield strength (creep) during future recertification or delta certifications. *(F-2)*

R-2. Determine the risk associated with rapid cooling of the TM9001 while at temperature by the existing wet fire suppression system. Consider a dry fire suppression system as an alternative if risk is unacceptable as currently installed. *(F-3)*

R-3. Verify inlet and discharge piping pressure drop do not exceed ASME Section VIII, Division 1 allowances for all relief valves on rig. *(F-4)*

R-4. Update analyses and any required design, inspection, and monitoring procedures to include consideration of external corrosion over the range of anticipated environments for the TM9001. *(F-6)*

R-5. Update all documentation to be consistent with present design and operating procedures and review the changes with all qualified operators before the rig is operated each time. *(F-5, F-7, F-8)*

R-6. Install a video monitoring system between the test cell and the control room as a verification of no personnel in the area before flowing gas and to facilitate compliance with the buddy system requirement. *(F-11)*

8.0 Alternate Viewpoint

There were no alternate viewpoints identified during the course of this assessment by the NESC team or the NRB quorum.

9.0 Other Deliverables

No unique hardware, software, or data packages, outside those contained in this report, were disseminated to other parties outside this assessment.

10.0 Lessons Learned

No applicable lessons learned were identified for entry into the NASA Lessons Learned Information System (LLIS) as a result of this assessment.

11.0 Recommendations for NASA Standards and Specifications

No recommendations for NASA standards and specifications were identified as a result of this assessment.
12.0 Definition of Terms

Finding A relevant factual conclusion and/or issue that is within the assessment scope and that the team has rigorously based on data from their independent analyses, tests, inspections, and/or reviews of technical documentation.

Lessons Learned Knowledge, understanding, or conclusive insight gained by experience that may benefit other current or future NASA programs and projects. The experience may be positive, as in a successful test or mission, or negative, as in a mishap or failure.

Observation A noteworthy fact, issue, and/or risk, which may not be directly within the assessment scope, but could generate a separate issue or concern if not addressed. Alternatively, an observation can be a positive acknowledgement of a Center/Program/Project/Organization’s operational structure, tools, and/or support provided.

Problem The subject of the independent technical assessment.

Recommendation A proposed measurable stakeholder action directly supported by specific Finding(s) and/or Observation(s) that will correct or mitigate an identified issue or risk.

13.0 Acronyms List

API American Petroleum Institute
ASME American Society of Mechanical Engineer
FTIR Fourier Transform Infrared
GEER Glenn Extreme Environments Rig
GRC Glenn Research Center
JPL Jet Propulsion Laboratory
MAWP Maximum Allowable Working Pressure
MTSO Management Technical Support Office
NESC NASA Engineering and Safety Center
NRB NESC Review Board
NSC NASA Safety Center
P&ID Piping and Instrumentation Diagram
ppm Parts Per Million
psi Pound Per Square Inch
psia Pounds Per Square Inch Absolute
PSO Pressure Systems Office
SMD Science Mission Directorate
SSC Stennis Space Center
14.0 References

The Chief of the Space Science Project Office at Glenn Research Center (GRC) requested support from the NASA Engineering and Safety Center (NESC) to satisfy a request from the Science Mission Directorate (SMD) Associate Administrator and the Planetary Science Division Chief to obtain an independent review of the Glenn Extreme Environments Rig (GEER) and the operational controls in place for mitigating any hazard associated with its operation. This document contains the outcome of the NESC assessment.

15. SUBJECT TERMS
Glenn Extreme Environments Rig; NASA Engineering and Safety Center; Hazard Mitigation