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This paper presents a holistic model order reduction (MOR) methodology and 

framework that integrates key technological elements of sequential model reduction, 

consistent model representation, and model interpolation for constructing high-quality 

linear parameter-varying (LPV) aeroservoelastic (ASE) reduced order models (ROMs) of 

flexible aircraft. The sequential MOR encapsulates a suite of reduction techniques, such as 

truncation and residualization, modal reduction, and balanced realization and truncation to 

achieve optimal ROMs at grid points across the flight envelope. The consistence in state 

representation among local ROMs is obtained by the novel method of common subspace 

reprojection. Model interpolation is then exploited to stitch ROMs at grid points to build a 

global LPV ASE ROM feasible to arbitrary flight condition. The MOR method is applied to 

the X-56A MUTT vehicle with flexible wing being tested at NASA/AFRC for flutter 

suppression and gust load alleviation. Our studies demonstrated that relative to the full-

order model, our X-56A ROM can accurately and reliably capture vehicles dynamics at 

various flight conditions in the target frequency regime while the number of states in ROM 

can be reduced by 10X (from 180 to 19), and hence, holds great promise for robust ASE 

controller synthesis and novel vehicle design. 

Nomenclature 

A = state matrix 

Am = state matrix in the modal form 

B =  input matrix 

C =  output state matrix 

D =  input transition 

L̂  = accumulative transformation matrix 

M = matrices in state space model 

P =  controllability gramian 

p = pitch rate 

Q = observability gramian 

q = pitch rate 

R = common subspace for reprojection 

r = yaw rate 

T = transformation matrix for consistent state representation 

L̂  = accumulative transformation matrix 

u = input signals 

y = response measurements 

V  = transformation matrix in balanced realization 
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W  = transformation matrix in balanced realization 

W = weights for matrix interpolation 

 = a vector of measurable parameters 

 = diagonal blocks of the eigenvalue magnitude in the modal form 

 = Matrix for modal form transformation 

I. Introduction 

he flight performance of aerospace systems is characterized by the interaction between aerodynamics, structural 

dynamics, and flight control dynamics. Modern designs of aerospace vehicles utilize state-of-the-art materials 

and flexible structures that are lightweight and low-cost to achieve better maneuverability, and high performance. As 

the structures become progressively lighter and more flexible, they are prone to complex dynamics, stability and 

durability issues. In addition, the control systems interactions with aerodynamic and structural nonlinearities can 

result in instabilities such as flutter [1], limit cycle oscillations (LCO) [2], and gust loads [3], leading to 

unacceptable flight conditions and risk to the mission. Modeling, and especially maneuvering simulation, of high-

order aeroservoelastic (ASE) systems is essential for successful development of relatively lightweight, necessarily 

flexible, aircraft with complex unsteady and often nonlinear aerodynamics. Therefore, the ability to accurately 

predict aeroelastic (AE) behavior in conjunction with control law design of sensors and actuators is essential for 

developing high-performance, safe aerospace vehicles. Although high-fidelity simulation coupling the nonlinear 

aerodynamics with structural models enables a direct insight into the aforementioned phenomena, its prohibitive 

computational cost, speed mismatch, nonlinear nature, as well as difficulty to deploy controllers with high-state-

order models render it impractical for integration in the design environment involving concurrent ASE analysis and 

control synthesis and design. 

To address these challenges, a variety of model order reduction (MOR) techniques have been developed in 

conjunction with the linear parameter varying (LPV) formulation to reduce high-order aircraft ASE model into a 

reduced state-space form while retaining dominant dynamics of the system. In LPV, the fully coupled nonlinear 

aircraft model is represented as an ensemble of linear models of which the system parameters vary across the flight 

regime. The landmark efforts in the area include regular truncation and residualization [4], modal reduction [5], 

balanced realization and truncation [4, 5], Krylov-based projection and the hybrid SVD-Krylov approach [6]. MOR 

approaches based on model transformation and truncation, such as modal reduction, balanced realization, and 

Krylov projection lead to different state representation of the reduced models at various parameter locations in the 

flight envelope, and hence, they cannot be immediately interpolated. In order to interpolate reduced models to form 

global LPV models encompassing the entire flight envelope, various model transformation techniques have been 

proposed to achieve consistent state representation among local reduced models prior to interpolation. Hjartarson et 

al. [4] developed an LPV aeroservoelastic control toolbox (LPVtools), which was used to derive the reduced state-

space form of a grid-based LPV model of aircraft. In their approach, the transformation matrix obtained from 

balanced realization at a single flight condition was applied across the entire flight envelope to preserve consistent 

state presentation (but at the cost of non-optimal reduction performance). Moreno et al [7] exploited the coprime 

factorization approach in conjunction with the balanced realization to attain a low-order, control-oriented LPV Body 

Freedom Flutter (BFF) model with 26 states consistent across the flight domain, and identify the numerical issues of 

the approach associated with the high state orders. Panzer et al. [8] proposed two methods, respectively, based on 

reprojection into a common subspace and optimization-based matrix matching to achieve identical state meanings 

among local models for interpolation. The former was employed for interpolating LPV reduced models of industrial 

flexible aircraft [6]. Recently Theis et al [5] developed another modal matching technique, which essentially 

determines a mode-wise canonical form and matches modes with similar dynamic properties at neighboring grid 

points to minimize the approximation error due to state inconsistency.  

This paper presents the development of LPV ASE reduced order models (ROMs) of flexible aircrafts based on a 

combination of sequential model order reduction (MOR), consistent model representation, and model interpolation 

approaches. The sequential MOR encapsulates a suite of reduction techniques, such as traditional truncation and 

residualization, modal reduction, and balanced realization and truncation, and is applied to the X-56A MUTT 

vehicle with flexible wing developed by Lockheed Martin and currently being tested at NASA/AFRC for flutter 

suppression and gust load alleviation. The traditional truncation and residualization methods are first conducted on 

the states of the sensors, actuators, aerodynamic lags, rigid bodies, elastic structures of the full-order X-56A MUTT 

ASE model sequentially. The transformation-based MOR including modal reduction and balanced realization and 

truncation is then performed to further refine the frequency contents and remove the states with small contribution to 

the input/output energy of the system in the local reduced model. Next, the method of reprojection into a common 
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subspace is utilized to remedy the issue of inconsistent state representation among the local reduced models caused 

by the flight condition-dependent transformation above, which allows model interpolation in the reduced domain 

and results in a unified LPV ROM applicable across the entire flight envelope. The input/output behavior and the 

system response of the original and the ASE ROMs of the X-56A is compared in the frequency domain.  

II. Linear Parameter-Varying Aeroservoelastic Models of Aircraft 

Linear parameter-varying (LPV) models are state-space models whose state-space descriptions are functions of 

time-varying parameters, i.e.,  

 
   

   

 

 

A B x tx

C D u ty

 

 

    
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     
 (1) 

where A() is the state matrix, B() is the input matrix, C() is the output state matrix, D() is the input transition 

matrix, np is a vector of measurable parameters (such as altitude, Mach, fuel weight, etc.), unu and yny 

are, respectively the vector of the control input and measurement. There are several methods to represent the 

parameter dependence in LPV models above, such as linear fractional transformation, polytopic dependence of the 

state matrix on the parameters, linearization on a gridded domain, etc. This paper targets the MOR of LPV models 

based on the gridded domain to agree with the full-order X-56A models. The gridded domain LPV is illustrated in 

Figure 1, in which the nonlinear dynamics in the ASE problem of the aircraft is treated as its linearization around 

various flight operating points (also termed grid points or parameter locations hereafter). A set of original, full-order 

Linear Time Invariant (LTI) state space models are first constructed at the grid points in the domain, and then can be 

used for ROM generation and controller synthesis.  

 
Figure 1. linear parameter varying (LPV) formulation of the aeroservoelastic (ASE) models of aircraft 

III. Model Order Reduction for LPV Aircraft Models 

Figure 2 illustrates our MOR methodology for LPV ASE models of aircraft. A prerequisite of the approach to 

construct LPV ROMs is to first have a set of full-order LTI state space models describing coupled ASE and flight 

control behavior at grid points in the parameter space. The full model can be generated from various relevant 

modeling tools (e.g., ZAERO [9], NASTRAN [10] or others) as shown in the blue box in Figure 2a. The entire 

MOR process includes two steps: (1) Local MOR (red box in Figure 2a): the full-order LTI model set is first 

reduced and transformed onto a low-dimension subspace to generate a set of local ROMs. Several techniques can be 

used, including truncation and residualization, transformation and truncation (e.g., modal reduction and balanced 

realization and truncation, Krylov methods, and their combinations); and (2) Model Interpolation and PV ROM 

Realization (green box): the global LPV ROM applicable to the entire flight envelope is obtained by interpolating 

the system matrices of the local ROM set obtained in the previous step. As the transformation used in step (1) 

depends on the location of the grid points, measures need to be taken to ensure all the ROMs are cast in a consistent 

state representation (or coordinates) prior to model interpolation. Eq. (2) summarizes the MOR process  
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Figure 2. Organization of linear parameter varying (LPV) model order reduction (MOR) framework 

 

Three MOR techniques have been developed in our framework for the local MOR process, namely, truncation 

and residualization, modal reduction, and balanced truncation. The approach of reprojection into common subspace 

and the linear model interpolation are used, respectively, for consistent state representation and LPV ROM across 

the flight envelope. They are presented in the following sections:  

A Truncation and Residualization 

MOR by truncation and residualization essentially partitions the state vector x in the model into two components 

[x1 x2]T, where x1 are the states to keep and x2 are those to eliminate. Therefore the system matrices, A, B, and C can 

be partitioned as: 

  11 12 1

1 2

21 22 2

, ,
A A B

A B C C C
A A B

   
     
   

 (3) 

The ROM is obtained by truncating all the terms associated with x2. Truncation preserves the ROM accuracy at 

high frequencies. When the steady state gain of a system needs to be retained, a residualization procedure is 

implemented, in which the state derivatives for x2 are set to zero, leading to a more accurate approximation of the 

original system at low frequency. The residualized ROM is then given by, 
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 (4) 

B Modal Reduction 

Modal reduction relies on the real and ordered eigenstructure decomposition to cast the full-order model into a 

modal realization form before state truncation. The modal realization form transforms the state matrix A into a block 

diagonal form Am with either 1X1 or 2X2 blocks when the eigenvalue is real or complex, respectively [11]. That is, 

-1A = Am, were  is a set of “real” eigenvectors spanning the same eigenspace as the complex ones, which leads 

to  

 
 
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m m mm
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 (5) 

where the system matrices in the modal realization are given by 

 
1

0
, ,

0

r

m m m

n r

A B B C C



 
     

 
 (6) 

The diagonal blocks  are normally arranged in ascending order according to their eigenvalue magnitude. The 

magnitude of a complex eigenvalue (for an oscillatory mode) is its angular frequency, while for a real eigenvalue, it 

is the damping coefficient. Then a threshold magnitude can be set to partition  in Am into r and n-r. All the states 

associated with r will be retained (with those for n-r truncated) to capture the frequency range of interest for 

control design.  

C Balanced Realization and Truncation  

Balanced truncation relies on the balancing transformation to determine minimal realization of the model based 

on the Hankel singular values. The controllability and observability gramians of the LTI model above is given by 
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 0   and   0T T T TAP PA BB A Q QA C C       (7) 

The balancing transformation matrix then can be calculated as: 

 1 2 1 2V UZ and W LY      (8) 

where P = UUT and Q=LLT and Z, , and Y can be obtained from singular value decomposition UTL = ZYT. 

Applying the balancing transformation to the state-space model yields,  
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b b
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    
     
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 (9) 

The state-space model in the new coordinate in Eq. (9) is balanced, and hence, its controllability and 

observability gramians are equal and diagonal, i.e., Pb = Qb = diag(1, ,r ,n), where 1, , n are the Hankel 

singular values sorted in descending order. By removing the states corresponding to low Hankel singular values 

(e.g.,r+1n), a ROM without appreciably losing important input/output energy can be obtained. Note that 

balanced realization and truncation only applies to stable systems, although the aircraft state-space model may 

include unstable states. In order to circumvent this issue, typically a stable/unstable state partitioning needs to be 

performed prior to the balanced truncation. 

The aforementioned ROM steps are applied to the full-order state-space model of the aircraft at each grid point in 

the flight envelope, yielding a set of local ROMs  
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ˆ
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 (10) 

where i denotes the ith grid point in the parameter space, , , ,
ˆ ˆˆ ˆ ˆ ˆ ˆ,  ,  and r i i i i r i i i r i i iA L AU B L B C CU    are the system 

matrices of ROM at the ith grid point following the modal and balanced transformation. Ai, Bi, and Ci are the system 

matrices obtained only through truncation and residualization (without state transformation). ˆ ˆ and i iL U are the 

accumulative transformation matrix derived from , W , and V . 

The next step is to interpolate the ROM computed at the grid points to obtain a global LPV ROM that can be 

used for controller design at arbitrary locations in the parameter space. Due to different transformation matrices used 

in MOR (e.g., modal reduction and balanced truncation), the states of the reduced state space model have different 

physical meanings and are not consistent across the flight envelope. Therefore, the ROM cannot be interpolated 

directly.  

D Reprojection onto Common Subspace  

One of the most effective methods to resolve the issue above is to project the individual ROM at grid points in 

the parameter space onto a common basis (subspace), followed by matrix interpolation as discussed in [8]. However 

the method in [8] requires the transformation matrix to be orthonormal, and hence, is not immediately applicable to 

transformation matrices ( ˆ
iU  in Eq. (10)) computed from the modal reduction and the balanced truncation. 

Therefore, an additional coordinate transformation Gi is needed to yield a ROM set spanned by orthonormal bases 

prior to reprojection. Taking an SVD on transformation ˆ
iU  matrix above yields  

 ˆ ,T T

i i i i i i iU V S Y G S Y   (11) 

Applying transformation Gi (i.e., , ,
ˆ

r i i r ix G x ) to Eq. (10) leads to another set of ROMs with new states xr,i, 

which has the same dimension as ,
ˆ

r ix  but with an orthonormal projection matrix Vi, i.e.,   
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     

 (12) 

where ˆT

i i iW G L . Given orthonormal Vi, the procedure of common subspace reprojection can be undertaken. 

Given 
,i i r ix V x  (see Eq. (12)), a linear projection matrix R can be defined which is common to all local ROMs at 

grid points, such that * T

i ix R x  to force the projected states *

ix  of the local states to be equal, that is 

 
* *

1 ,1 2 ,2 ,s s

T T T

r r n r n iR V x R V x R V x x x      (13) 

Thus the transformation from *x  to xr,i can be expressed as 1 *

,r i ix T x , where T

i iT R V . Thus the new ROMs 

at the grid points with consistent state representation is given by 
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 (14) 

The transformation matrix R should capture most transformation information Vi of the local models at the grid 

points. Therefore a straightforward choice for R is to take the underlying basis of all Vi using SVD and truncation, 

that is,  

 
1, s

T

nRS V V      (15) 

Once Eq. (14) for all grid points becomes available, they can be interpolated to obtain LPV ROM that is 

applicable at an arbitrary location in the parameter space. Typical interpolation approaches include (1) polynomial 

regression of the matrix elements *

iA  using the values at the local models; and (2) matrix interpolation. The second 

approach was used in this paper, which is described by 

  * *

1

s

i

i

M w M


  (16) 

where Mi
* is the Ai

*, Bi
*,Ci

*, and Di
*, at the grid point i. and s is the number of the grid points surrounding the 

parameter location . w() is the weights for interpolation at location , and a linear weight inversely proportional to 

the distance between  and grid points i was used in this paper. 

IV. X-56A MUTT Model 

The LTI state-space models of the X-56A MUTT airframe were provided by NASA/AFRC. They were developed 

using the generalized mass, stiffness, and aerodynamic matrices obtained by MSC/Nastran [10] and ZAERO [9]. 

There are 10 control surfaces on the vehicle, five on each wing; and 2 throttle controls for engine dynamics as 

shown in Figure 3. The five actuators on the left wing are labeled as BFL, WF1L, WF2L, WF3L, and WF4L starting 

from the inner body to the outer wing tip. Likewise, the actuators on the right wing are labeled as BFR, WF1R, 

WF2R, WF3R, and WF4R based on the same convention above. The rigid-body state sensors (IMU-MIDG) are 

located around the center of the vehicle, while the six accelerometer locations are, respectively, placed at the front of 

the vehicle (ASESNSR100), at the rear (ASESNSR1000), at the leading and trailing edge of the left wing 

(ASESNSR400 and ASESNSR600), and of the right wing (ASESNSR1100 and ASESNSR1300).  

 
Figure 3. Sensors and actuators deployment in the X-56A MUTT vehicle 

 

A set of 495 models were generated at M = 0.16 on grid points of a 2D parameter space across the flight envelope. 

The two parameters are KEAS (“knots equivalent airspeed”) and fuel weight, which, respectively, range from 50 

KEAS to 150 KEAS in 2 KEAS increments and from 0 lb to 78 lb in 10 lb increments (the last weight has an 8 lb 

increment). The models have 44 states corresponding to the 2nd-order sensors (22 in total), 12 rigid body states, 14 

elastic structural modes and 14 derivatives (modal velocity), 60 aerodynamic lag states, and 36 states for the third 

order actuators (12 control surfaces). According to the V-g and V-f plots of the X-56A baseline model at M = 0.16 

[12] the normalized flutter frequencies for SBFF (symmetric body freedom flutter), SWBTF (symmetric wing 

bending torsion flutter), and AWBTF (anti-symmetric wing bending torsion flutter) modes are, respectively, at 1, 

3.68, and 3.912 (that is, all the flutter frequencies are normalized by the one for SBFF). The target normalized 

frequency range  for X-56A model reduction is determined to be 0.01 <  < 5.36 to ensure full coverage of the 

interesting flutter behavior and system response. The sparsity pattern of A matrix is illustrated in Figure 4. The 
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physical meaning of the states and their corresponding entries in A is utilized to guide the MOR process for 

constructing ROMs. According to [13], the body (BFL and BFR) and the outer most flaps (WF4L and WF4R) are 

mainly used as control means for stabilization and damping augmentation. Therefore the sensors to be used for 

observation include the roll (p), pitch (q), and yaw (r) rate sensor, and the accelerometers at the body center 

(ASESNSR1000) and the trailing edge (ASESNSR600 and ASESNSR1000) of wing tips. 

  
Figure 4. Sparsity pattern and partition of A 

matrix 

Figure 5. Flow chart for MOR process and main 

techniques used in the present effort 

 

For the X-56A state-space model, we used truncation and residualization to eliminate the states associated with 

sensors, actuators, aerodynamic states, rigid body states, and elastic states, which was followed by transformation-

based MOR (modal reduction and balanced realization and truncation). The transformation matrices of the local 

ROMs are then orthogonalized via SVD and state transformation, and then reprojected onto common subspace to 

render the model ready for interpolation. Figure 5 summarizes the flow chart of our MOR procedure and the main 

techniques being used.  

V. Results and Discussion 

Case studies were carried out to verify and demonstrate the MOR framework and X-56A ROM. The ROM was 

compared against the full-order X-56A MUTT state model provided by NASA/AFRC in terms of input/output 

behavior and system response in the frequency domain. Various aspects of the X-56A ROM were interrogated, 

including sequential MOR, effects of ROM dimensions, model robustness (or susceptibility to flight parameters), 

and ROM interpolation. Recall that the body (BFL or bfl_cmd_deg) and the outer most surface controls of the left 

wing (WF4L or wf4l_cmd_deg) were studied as a control means for stabilization and damping augmentation. The 

sensors in observation include the roll (p), pitch (q), and yaw (r) rate sensor, and the accelerometers at the body 

center (ASESNSR1000) and the trailing edge of both wing tips (ASESNSR600 and ASESNSR1300). The full-order 

X-56A state-space model at the operating condition of 100 KEAS with fuel weight of 10 lbs served as the 

benchmark/baseline case. 

A Sequential Model Order Reduction (MOR) 

We first conducted the sequential MOR on the benchmark case following the flow chart in Figure 5. It consists 

of (1) sensor reduction: 32 states of the sensors that are of no interest to observation were truncated. Then the rest 

12 states for the sensors in observation were fully residualized to match the DC gain of the full-order model, leading 

to a local ROM with 136 states; (2) actuator reduction: the 30 states corresponding to 10 actuators that are not the 

object of our ASE study were truncated. The 3rd states of bfl_cmd_deg (BFL) and wf4l_cmd_deg (WF4L) were 

residualized, leading to 104 states in the model; (3) aerodynamic lag reduction: in distinct contrast to the trial-and-

error method in the previous work [4] we only retained the first 30 aerodynamic states (out of 60 states) that span a 

broader frequency range. We relied on the modal reduction step downstream to further filter out unnecessary states 

at high frequency and refine the ROM. The aerodynamic lag reduction yields a ROM with 74 states; (4) rigid body 

state reduction: the rigid-body states u, h, , , q, , p, r, and  for the X-56A model were kept in the phugoid 

mode, which is adequate to generate consistent ROM performance across the entire flight envelope and resolve the 

dynamic behavior subject to stabilization and damping augmentation. This step results in a ROM with 71 states; (5) 
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elastic state reduction: the first six elastic states in the modal displacement and modal velocity (12 in total) were 

retained in the ROM, yielding a ROM of 55 states; (6) modal reduction: the 55-state ROM was translated into a 

block diagonal modal form with eigenvalue sorted in an ascending order according to their magnitudes. 12 states at 

the high end of the eigenvalue magnitude were truncated, yielding a ROM with 43 states; and (7) balanced 

truncation: through balancing transformation, the states in the model are sorted according to the significance of 

their corresponding Hankel singular values, 22 states with smaller Hankel singular values were truncated, yielding a 

ROM with 21 states. There are two salient aspects markedly distinguishing our MOR approaches from prior efforts 

[4] on X-56A model reduction: (1) instead of applying a single transformation matrix across the entire flight 

envelope to preserve consistent physical meanings of states among local ROMs, each local ROM in our process was 

built using the locally optimal transformation. Therefore our local ROM is able to more accurately approximate the 

original, full-order X-56A state-space models at the grid points; and (2) the method of common subspace 

reprojection effectively addresses the issue of inconsistent state representation and model interpolation among local 

ROMs (see Section D below).  

The sequential MOR and resulting model sizes are summarized in Table 1. Figure 6a shows the comparison of 

the magnitude and phase in the frequency domain between the full-order X-56A model and our ROM with 21 states 

from both inputs BFL (bfl_cmd_deg) and WF4L (wf4l_cmd_deg) to the target outputs, including p 

(pb_gyro_200_dps), q (qb_gyro_200_dps), r (rb_gyro_200_dps), ASESNSR600 (loaz_200_g), ASESNSR1000 

(caz_200_g), and ASESNSR1300 (roaz_200_g). It demonstrates that ROM accurately matches the full-order model 

for dynamics in all input-output channels within the desired frequency range while the number of states is reduced 

by almost 10X. This confirms the accuracy and efficiency of our MOR approaches and salient applicability for 

robust ASE controller synthesis. 

 

Table 1. Sequential model reduction and resulting model sizes 
Reduction Original Sensor Actuator Aerodynamic Rigid-

Body 

Elastic Modal Balanced Trunc. 

Model Size 180 136 104 74 71 55 43 21 

 

 
Normalized Frequency 

 

(a-1) From Inputs to q and p 

 
Normalized Frequency 

 

(b-1) From Inputs to q and p 
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Normalized Frequency 

 

(a-2) From Inputs to r and ASESNSR600 

 
Normalized Frequency 

 

(b-2) From Inputs to r and ASESNSR600 

 
Normalized Frequency 

 

(a-3) From Inputs to ASESNSR1000 and 

ASESNSR1300 

 
Normalized Frequency 

 

(b-3) From Inputs to ASESNSR1000 and 

ASESNSR1300 

Figure 6. Comparison in magnitude and phase in the frequency domain between the full-order X-56A model 

(180 states) and the ROM. From Inputs: bfl_cmd_deg (BFL) and wf4l_cmd_deg (WF4L); To outputs: 

qb_gyro_200_dps (q), pb_gyro_200_dps (p), rb_gyro_200_dps (r), loaz_200_g (ASESNSR600), caaz_200_g 

(ASESNSR1000), and roaz_200_g (ASESNSR1300). (a) ROM with 21 states (left panel); and (b) ROM with 

19 states (right panel).  
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B Effect of ROM Dimensions 

We also carried out a study to investigate the effect of ROM dimensions on the performance in approximating 

the vehicle dynamics across the frequency range of interest. Specifically, in the balanced truncation above, 24 states 

with the smallest Hankel single values were truncated, yielding a ROM only with 19 states. Figure 6b shows that 

even 19-state ROM can predict very well the dynamic behavior among all the input-output pairs, while the 

discrepancy is more appreciable in the high frequency regime relative to the 21-state ROM. This is within 

expectation as more controllable and observable information would be lost given lower ROM dimensions.  

C ROM with Different Flight Parameters 

A desired feature that will saliently enhance the utility of MOR for aircraft ASE analysis and controller synthesis 

is its robustness and consistence of model configuration parameters regardless of the flight conditions. A thorough 

study to investigate the effect of varying flight parameters (KEAS and fuel weights) on MOR performance was also 

carried out. In the MOR analysis below, models with different flight parameters (KEAS = 70 or fuel weight of 78 

lbs) from the benchmark case (100 KEAS and fuel weight of 10 lbs) were interrogated. Note that all the modeling 

configuration parameters (number of states/dimensions to keep or truncate) at each step remained the same as the 

case study in Section A above. Figure 7 illustrate the overall comparison of the magnitude and phase in the 

frequency domain between the full-order X-56A model and the ROM with 21 states for the non-benchmark cases. It 

shows that the ROMs at the new flight conditions are still able to accurately capture the dynamics in all input-output 

channels in the entire frequency range of interest for control design. The minor deviation of ROM from the full-

order model only occurs at the middle-to-high frequency regime. The excellent ROM performance at various flight 

conditions substantiates pronounced robustness and utility of our MOR methods. 

 

 
Normalized Frequency 

 

(a-1) From Inputs to q and p 

 
Normalized Frequency 

 

(b-1) From Inputs to q and p 
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Normalized Frequency 

 

(a-2) From Inputs to r and ASESNSR600 

 
Normalized Frequency 

 

(b-2) From Inputs to r and ASESNSR600 

 
Normalized Frequency 

 

(a-3) From Inputs to ASESNSR1000 and 

ASESNSR1300 

 
Normalized Frequency 

 

(b-3) From Inputs to ASESNSR1000 and 

ASESNSR1300 

Figure 7. Comparison in magnitude and phase in the frequency domain between the full-order X-56A model 

(180 states) and the ROM. From Inputs: bfl_cmd_deg (BFL) and wf4l_cmd_deg (WF4L); To outputs: 

qb_gyro_200_dps (q), pb_gyro_200_dps (p), rb_gyro_200_dps (r), loaz_200_g (ASESNSR600), caaz_200_g 

(ASESNSR1000), and roaz_200_g (ASESNSR1300). (a) 70 KEAS and fuel weight of 10 lbs; and (b) 100 KEAS 

and fuel weight of 78 lbs.  
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D ROM Interpolation 

The consistent state representation and ROM interpolation based on common subspace reprojection and linear 

matrix interpolation as formulated above was also investigated. Figure 8 portrays the comparison of the ROMs at 

KEAS = 102 attained by two means: the first one (labeled as “ROM”) was constructed by directly reducing the 

original, full-order X-56A model at KEAS = 102, and the second (labeled as “Interp ROM”) by interpolating two 

ROMs obtained at KEAS = 100 and 104. Both ROMs agree with each other very well in predicting the vehicle 

dynamics. Figure 8b exhibits minor difference between the two ROMs in the channel from the BFL actuator to the 

yaw rate sensor (r) at the middle-to-high frequency regime. It may be attributed to the nonlinear dependence of 

system matrices on the flight parameters or the unbalanced input/output channels, and will be investigated in future.  

 
Normalized Frequency 

 

(a) From Inputs to q and p 

 
Normalized Frequency 

 

(b) From Inputs to r and ASESNSR 600 

 
Normalized Frequency 

 

(c) From Inputs to ASESNSR1000 and ASESNSR1300 

Figure 8. Comparison in magnitude and phase in the frequency domain between ROM obtained by MOR of 

the full-order X-56A model and the interpolated ROM. From Inputs: bfl_cmd_deg (BFL) and wf4l_cmd_deg 

(WF4L); To outputs: qb_gyro_200_dps (q), pb_gyro_200_dps (p), rb_gyro_200_dps (r), loaz_200_g 

(ASESNSR600), caaz_200_g (ASESNSR1000), and roaz_200_g (ASESNSR1300).  
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VI. Conclusion 

This paper presented a holistic model order reduction (MOR) framework for constructing high-quality linear 

parameter-varying aeroservoelastic reduced order models (ASE-ROMs) of flexible aircraft. Key MOR modules of 

sequential model reduction, consistent model representation, and model interpolation have been established to 

streamline the workflow. A suite of proven model reduction techniques, including truncation and residualization, 

modal reduction, and balanced realization and truncation have been developed to determine optimal ROMs at grid 

points across the flight envelope. A novel method combing singular value decomposition and common subspace 

projection has been developed to unify the state representation for the ROMs obtained from non-orthonormal 

transformation-based MOR. Parameter-weighted matrix interpolation has been carried out to construct a globally 

functional LPV ASE ROM. The developed MOR technology has been applied to the X-56A MUTT vehicle with 

flexible wing to examine its capability of generating reliable ROMs for control design. Our studies demonstrate that 

the X-56A ROM was able to accurately describe vehicles dynamics and input/output response at various flight 

conditions in the practically important frequency regime while the number of states in ROM was reduced by 10X. 

The technology enables robust ASE controller synthesis for aircraft and novel vehicle design for flutter suppression 

and gust load alleviation 
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