Thermodynamics and Cloud Radiative Effect from the First Year of GoAmazon

Allie Marquardt Collow
Mark Miller and Lynne Trabachino

December 7, 2015
Motivation

Deforestation in the Amazon can:

• Alter precipitation rates
 (Chue et al., 1994, Cauduro Dias de Paiva and Clarke, 1995, D'Almeida et al, 2007)

• Decrease the albedo
 (Giambelluca et al., 1997)

• Decrease the world’s oxygen
 (Fernside, 1985)

• Impact LW budget (CO₂)

• Scientific interest in the 80s and 90s however there has been a gap in observations despite land surface changes

• Dry/Wet Seasons lead to varying cloud conditions → great for radiation studies
Goals

• Assess seasonal changes in thermodynamics and how these changes impact the radiation budget
 – Relationship between LCL and cloud fraction
 – Column radiative flux divergence (RFD) and cloud radiative effect (CRE)

• Evaluate the height of the LCL and regional radiation budget in context of the Modern Era Retrospective Analysis for Research and Applications – Version 2 (MERRA-2)
Outline

• Background
 – MERRA-2, CERES
 – Climate in the Amazon

• Results from GoAmazon 2014
 – Thermodynamic structure
 – Relationship between LCL, CAPE, cloud fraction, and precipitation
 – Influence of land surface on LCL height
 – Radiation budget and Cloud Radiative Effect (CRE)
MERRA-2

• Developed by NASA GSFC’s Global Modeling and Assimilation Office
• Data available every hour at a spatial resolution of 0.625° longitude x 0.5° latitude
• Incorporates numerous satellite observations that are not used in MERRA
• Reduces trends and jumps from changes in observing systems seen in MERRA
• Aerosols are assimilated (first and only reanalysis product to do so)
• Tight constraint on the water budget

Now Available at GES DISC!
Clouds and the Earth's Radiant Energy System (CERES)

- Near polar orbit on Terra and Aqua
- Data available 2 times every day (one nighttime, one daytime)
- 20 km resolution
Fig. 1. Mean long-term rainfall (solid line) compared with the mean for the years covered by the ABRACOS data (dashed line). The dotted lines are plotted at plus and minus one standard deviation from the long-term mean. (Culf et al., 1998)
Results: Thermodynamics
Observations from the ARM Mobile Facility

Error bars denote +/- one standard deviation
Thermodynamic Profile Time Series from 6-hourly Radiosonde Launches

(a) Height (km)
(b) Temperature (°C)
(c) Mixing Ratio (g kg⁻¹)
(d) Relative Humidity (%)
Thermodynamic Time Series from 6-hourly Radiosonde Launches
Back Trajectories from HYSPLIT

1000 m airmass is over the ocean 5 days prior

1000 m airmass is over land 5 days prior

Ascending Air mass

Descending Air mass
Precipitation in the Amazon

- Rains nearly every day in the wet season
- Dry season has fewer days with rain but a larger percent of days with rain have more intense precipitation
- Literature suggests dry season is more convective (Culf et al, 1998, Machado et al., 2004)
- Although convection is common, Amazonia sees fewer intense storms than other tropical land regions
- Deep convection disappears in the dry season but increase in high level clouds
- Decrease in CF around 5 km
CAFE and LCL vs Cloud Fraction and Precipitation

Weak/no relationship to CAPE: in agreement with other studies in the tropics

- Thick red line = line of best fit
- Thin red lines = 95% confidence interval
A Closer Look at LCL Height with MERRA-2
Results: Radiation Budget and Cloud Radiative Effect from GoAmazon 2014
Cross Atmosphere Radiative Flux Divergence (RFD) =
net radiation into column - net radiation out of column

• positive values imply radiative heating
• negative values imply radiative cooling

\[RFD_{SW} = I_o - SWU_{TOA} + SWU_{surface} - SWD_{surface} \] (1)

\[RFD_{LW} = LWU_{surface} - LWD_{surface} - LWU_{TOA} \] (2)

\[RFD_{Net} = RFD_{SW} + RFD_{LW} \] (3)
TOA Radiative Fluxes from CERES and MERRA-2

- MERRA-2 overestimates outgoing SW: known problem, seen in other regions
- Little variation in OLR – column saturated with vapor
- Impact of clouds seen in SW
Surface Radiative Fluxes from the AMF and MERRA-2

- Good agreement in the LW
- MERRA-2 underestimates upwelling SW and does not match the observed SW variability
Radiative Flux Divergence

Graph (a) shows the comparison between observed (Obs) and MERRA2 SW RFD (W/m2) from January to December 2014.

Graph (b) depicts the LW RFD (W/m2) for day and night conditions, also from January to December 2014.

Graph (c) illustrates the Net RFD (W/m2) for the same periods and conditions.
Cloud Radiative Effect

TOA SW CRE

$\text{SW Cloud Radiative Effect (CRE)}$

Surface SW Cloud Radiative Effect (CRE)

SHORTWAVE

Uniqueness: Can be analyzed in combination with detailed cloud observations
Cloud Radiative Effect (W m$^{-2}$)

SW

LW

Net

Surface SW CRE

Surface LW CRE

Surface Net CRE

TOA SW CRE

TOA LW CRE

TOA Net CRE

Atmos. SW CRE

Atmos. LW CRE

Atmos. Net CRE

Obs

MERRA2

Day

Night

2014
Top of the Atmosphere Cloud Radiative Effect

Surface CRE has a similar spatial pattern
Top of the Atmosphere Cloud Radiative Effect

Surface CRE has a similar spatial pattern.
Conclusions

• A northward shift in the Hadley circulation creates a drying of the middle troposphere during the dry season
 – Dry season sees a reduction in cloudiness and precipitation but an increase in high clouds and the percentage of intense precipitation events
• There is a negative correlation between LCL height and the fraction of clouds below 5 km
• Land surface influences the height of the LCL and therefore low clouds
• Dry season clouds have double the impact on the surface shortwave CRE than wet season clouds in other tropical regions
• Abundant water vapor saturates the longwave budget year-round throughout the region
• Clouds are very reflective – the majority of warming within the column due to clouds is in the longwave