Remote Sensing of Cloud Top Heights using the Research Scanning Polarimeter

Kenneth Sinclair, Bastiaan van Diedenhoven, Brian Cairns, John Yorks, Andrzej Wasilewski

Advances in Atmospheric Aerosol and Cloud Characterization II
AGU Fall Meeting

December 17th, 2015
Acknowledgements

• Support for this work is provided by NASA grant #NNX15AD44G (ROSES ACCDAM).
• Facilities and equipment provided in part by NASA GISS.

• Natural Sciences and Engineering Research Council of Canada (NSERC)

• Columbia University’s Department of Earth and Environmental Engineering
Motivation

- Cloud top height (CTH) is critical for the Research Scanning Polarimeter (RSP) when studying:
 - cloud thermodynamic phase
 - particle size distributions
 - asymmetry parameter
- Interested in exploring the RSP’s ability to sense multiple cloud layers
- Models indicate that cloud height increases in a warming climate result in a positive cloud-height feedback
- Global-scale observations of CTH changes have yielded uncertain results

IPCC, 2013
Research Scanning Polarimeter

• Prototype for Aerosol Polarimetry Sensor on the Glory satellite (2011)
• Along track scanning - 152 viewing angles per scene (±60°)
• 14 mrad field of view (~280 m on ground from 20 km alt.)
• Polarimetric and full intensity measurements in the visible and shortwave infrared over 9 bands:
 • 410, 470, 555, 670, 864, 960, 1593, 1880, 2263 nm for aerosols and clouds
 • 1880 nm for high-altitude measurements
Measurements

- **RSP:** using 2 channels: 1880 nm & 670 nm
- **Cloud Physics Lidar (CPL)**
 - 30 m vertical resolution
 - Accurate up to an optical depth of ~3.0
- Data products used: cloud top height, cloud bottom height, extinction, layer classification (aerosol, cloud, PBL)
- Data used in this analysis was collected over 9 days during the NASA SEAC^4RS experiment
 - August 6\(^{th}\), 21\(^{st}\) and September 2\(^{nd}\), 4\(^{th}\), 11\(^{th}\), 13\(^{th}\), 16\(^{th}\), 18\(^{th}\) and 22\(^{nd}\) 2013

Photo credits (top): Carla Thomas
• Uses the concept of *parallax*.
• Distance from a stationary object is related to the displacement when observed from different viewing angles.
• Accurate knowledge of the geometry of the instrument and position of the aircraft is essential for stereo reconstruction.
RSP Measurements

Viewing Angle

Time
Multilayer Sensing

- Take a set of consecutive measurements
- Calculate the correlation between this set and equal sized sets at other viewing angles
Multilayer Sensing

• Take a set of consecutive measurements
• Calculate the correlation between this set and equal-sized sets at other viewing angles
• Calculate the same correlation for aggregated offsets ranging from 0-20 km
Multilayer Sensing

- Take a set of consecutive measurements
- Calculate the correlation between this set and equal sized sets at other viewing angles
- Calculate the same correlation for aggregated offsets ranging from 0-20 km
Multilayer Sensing

- Take a set of consecutive measurements
- Calculate the correlation between this set and equal-sized sets at other viewing angles
- Calculate the same correlation for aggregated offsets ranging from 0-20 km
Multilayer Sensing

• Take a set of consecutive measurements
• Calculate the correlation between this set and equal-sized sets at other viewing angles
• Calculate the same correlation for aggregated offsets ranging from...
Results

1880 nm channel
Results

670 nm channel
Results

Dual channel
Results

Differences and Cloud Height

- Abs RSP CLH Difference [km]
 - CPL CTH

- Number of Points
 - CPL CTH [km]

Legend:
- Layer 1
- Layer 2
- Layer 3
- 1880 nm band
- 670 nm band
- Dual band
Correlation for 1st and 2nd peaks
Results

1880 nm band

- Correlation cutoff: 0.0, 0.35, 0.60
- 5-17 km
 - 1st peak median error: 0.43 km
 - 2nd peak median error: 1.71 km
 - 3rd peak median error: 2.49 km
670 nm band

• Correlation cutoff: 0.0, 0.45, 0.60
• 1-13 km
 • 1st peak median error: 0.57 km
 • 2nd peak median error: 2.16 km
 • 3rd peak median error: 3.02 km
Results

Dual band

- Correlation cutoff: 0.0, 0.25, 0.60
- 1-15 km
 - 1st peak median error: 0.45 km
 - 2nd peak median error: 1.67 km
 - 3rd peak median error: 2.66 km
Summary

• Possible to use the RSP to retrieve multilayered cloud scenes
• Method works well for optically thin clouds (<0.05)
• The 1880 nm, 670 nm and dual bands consistently retrieve primary layer heights
• The dual band method is the most robust at determining multilayered scenes

Future Work
• Study the effect of using less angular measurements and degrading the spatial resolution
• Determine the magnitude of the effect of the object changing shape or position during the overpass (~3 minutes)
Thresholds

<table>
<thead>
<tr>
<th>Threshold</th>
<th>1880 nm</th>
<th>670 nm</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud Top or Middle</td>
<td>Middle</td>
<td>Middle</td>
<td>Middle</td>
</tr>
<tr>
<td>Minimum COT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Minimum cloud height</td>
<td>5.0 km</td>
<td>1.0 km</td>
<td>1.0 km</td>
</tr>
<tr>
<td>Maximum cloud height</td>
<td>17.0 km</td>
<td>13.0 km</td>
<td>15.0 km</td>
</tr>
<tr>
<td>1st Peak Minimum Static Correlation</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2nd Peak Minimum Static Correlation</td>
<td>0.35</td>
<td>0.45</td>
<td>0.25</td>
</tr>
<tr>
<td>3rd Peak Minimum Static Correlation</td>
<td>0.50</td>
<td>0.60</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Performance

<table>
<thead>
<tr>
<th></th>
<th>1880 nm band</th>
<th>670 nm band</th>
<th>Dual Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Median Error [km]</td>
<td>0.43</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>Np</td>
<td>105467</td>
<td>107476</td>
</tr>
<tr>
<td>2nd</td>
<td>Median Error [km]</td>
<td>1.71</td>
<td>2.16</td>
</tr>
<tr>
<td></td>
<td>Np</td>
<td>74170</td>
<td>75310</td>
</tr>
<tr>
<td>3rd</td>
<td>Median Error [km]</td>
<td>2.49</td>
<td>3.02</td>
</tr>
<tr>
<td></td>
<td>Np</td>
<td>40307</td>
<td>30805</td>
</tr>
</tbody>
</table>
Cloud Top vs Cloud Middle

<table>
<thead>
<tr>
<th></th>
<th>1880 nm band</th>
<th></th>
<th>670 nm band</th>
<th></th>
<th>Dual Band</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
<td></td>
<td>2nd</td>
<td></td>
<td>3rd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CPL Cloud Top</td>
<td>CPL Cloud Middle</td>
<td>CPL Cloud Top</td>
<td>CPL Cloud Middle</td>
<td>CPL Cloud Top</td>
<td>CPL Cloud Middle</td>
</tr>
<tr>
<td>Median Error [km]</td>
<td>0.52</td>
<td>0.47</td>
<td>0.63</td>
<td>0.58</td>
<td>0.53</td>
<td>0.48</td>
</tr>
<tr>
<td>Mean Error [km]</td>
<td>1.07</td>
<td>1.00</td>
<td>1.67</td>
<td>1.52</td>
<td>1.19</td>
<td>1.08</td>
</tr>
<tr>
<td>Np</td>
<td>87447</td>
<td>87447</td>
<td>76262</td>
<td>76262</td>
<td>86223</td>
<td>86223</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>2.03</td>
<td>1.91</td>
<td>2.91</td>
<td>2.83</td>
<td>2.28</td>
<td>2.18</td>
</tr>
<tr>
<td>Corr. Coeff.</td>
<td>0.86</td>
<td>0.86</td>
<td>0.79</td>
<td>0.79</td>
<td>0.85</td>
<td>0.86</td>
</tr>
</tbody>
</table>
Number of Cloud Layers

Table 1: 1880 nm band RSP cloud scene fractions compared with CPL

<table>
<thead>
<tr>
<th>RSP Scenes</th>
<th>Fraction</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 layer</td>
<td>0.32</td>
<td>0.1</td>
<td>0.46</td>
<td>0.27</td>
<td>0.12</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>2 layer</td>
<td>0.30</td>
<td>0.06</td>
<td>0.41</td>
<td>0.30</td>
<td>0.15</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>3 layer</td>
<td>0.37</td>
<td>0.05</td>
<td>0.40</td>
<td>0.31</td>
<td>0.16</td>
<td>0.07</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 2: 670 nm band RSP cloud scene fractions compared with CPL

<table>
<thead>
<tr>
<th>RSP Scenes</th>
<th>Fraction</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 layer</td>
<td>0.37</td>
<td>0.11</td>
<td>0.48</td>
<td>0.25</td>
<td>0.11</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>2 layer</td>
<td>0.36</td>
<td>0.10</td>
<td>0.44</td>
<td>0.27</td>
<td>0.13</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>3 layer</td>
<td>0.27</td>
<td>0.04</td>
<td>0.41</td>
<td>0.31</td>
<td>0.15</td>
<td>0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table 3: Dual band RSP cloud scene fractions compared with CPL

<table>
<thead>
<tr>
<th>RSP Scenes</th>
<th>Fraction</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 layer</td>
<td>0.31</td>
<td>0.12</td>
<td>0.53</td>
<td>0.23</td>
<td>0.08</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>2 layer</td>
<td>0.31</td>
<td>0.09</td>
<td>0.43</td>
<td>0.28</td>
<td>0.13</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>3 layer</td>
<td>0.38</td>
<td>0.05</td>
<td>0.40</td>
<td>0.31</td>
<td>0.16</td>
<td>0.07</td>
<td>0.02</td>
</tr>
</tbody>
</table>