Human Factors Throughout the Life Cycle: Lessons Learned from the Shuttle Program

Human Factors in Ground Processing

Barbara G. Kanki, PhD.
NASA Ames Research Center
Moffett Field, California USA
barbara.g.kanki@nasa.gov
Human Factors in Ground Processing

● Introduction
 ➢ Managing risk in human systems
 ➢ Contributing risks: design, environment, process

● Example: STS-93 wire anomaly
 ➢ Design risks
 ➢ Environment risks
 ➢ Process risks
 ➢ Human systems issues

● Summary
Managing Risk in Human Systems

- **HUMAN SYSTEMS**
 - Individual / Teams
 - Skills & knowledge
 - Leadership
 - Team complement
 - Work practices
 - Organizations
 - Training
 - Controls
 - Resources
 - Workforce

- **DESIGN RISK**
 - Hardware / Software

- **ENVIRONMENT RISK**
 - Workplace / Conditions / Hazards

- **PROCESS RISK**
 - Procedures / Policies / Resources

Focus on the human interfaces
Managing Risk in Human Systems

- **DESIGN**
 - Is damage visible?
 - Is there access to the work area?

- **ENVIRONMENT**
 - Is there adequate space, lighting?
 - Is PPE required?

- **PROCESS**
 - Are resources, controls adequate?
 - Are work procedures usable, up-to-date?
 - Do teams communicate/coordinate appropriately?
Five seconds after lift-off, one of two redundant main engine controllers on two of the three engines shut down due to power fluctuation (later found to be due to wire arcing).

OUTCOME: The redundant controllers on those two engines -- center and right main engines -- functioned normally allowing them to fully support Columbia’s climb to orbit.
A damaged wire found during wiring inspections in Columbia's payload bay following STS-93, caused a short circuit in two separate main engine controllers on launch.
Wiring In-Flight Anomaly: Basic Findings

- Inspection revealed a single 14 ga. polyimide wire had arced to a burred screw head; located in the aft left-hand mid-body bay #11 lower wire tray.
- Wiring in the mid-body payload bay normally covered; records indicate covers last removed during Orbiter Maintenance Down Period (OMDP) 4 years earlier in the Palmdale depot facility.
Wiring In-Flight Anomaly: Root Cause

- Root cause
 - Work-induced collateral damage
 - No evidence of generic chafing exists (not simply fair wear-and-tear)
 - Wire protection specification applied inconsistently
- Therefore, assessments focused on maintenance practices.
Wiring In-Flight Anomaly: Assessments

- Review the Space Shuttle systems and maintenance practices… look at NASA practices, Shuttle anomalies, and civilian and military experience. (NASA)

- Identify strengths and weaknesses in shuttle processing, compare shuttle processing to commercial aviation best practices, make suggestions to reduce Ground-Processing-Induced In-Flight Anomaly (GPI-IFA) risk (USA)

http://www.hq.nasa.gov/osf/shuttle_assess.html
HUMAN SYSTEM Issues

- **INDIVIDUAL RISKS**: Ground personnel expected to perform “error-free” and in compliance with procedures
 - Not aware of the in-fight consequences of ground-processing-induced “errors”
 - Downsized workforce under strain
- **TEAM-LEVEL RISKS**: KSC team and Palmdale processing teams have different standards
 - Wire inspection criteria need redefinition
TECHNICAL Issues: Wiring System

- **DESIGN RISKS**
 - Maximum feasible separation of redundant systems (e.g., redundancy of circuits compromised by placement in same wire bundle)
 - Identification of single point failures
 - Over time and modifications, additional wire protection for critical systems (e.g., wire tray covers become hard to close)
TECHNICAL Issues: Wiring System

WORK ENVIRONMENT RISKS
- Extensive wiring inspection, repair
- High traffic area?
- Access to work area?
- Damage visible?
TECHNICAL Issues: Wiring System

● PROCESS RISKS

- Managed through certification, skill, procedural control, inspection, teaming and continuous reinforcement of safety awareness
- Little emphasis on error reporting, management, and understanding of why workmanship errors occur
- Line employees should be aware of relationship between workmanship/test errors and GPI-IFAs
Summary

● Risk Management in Human Systems applies to:
 ➢ Individuals
 ➢ Teams
 ➢ Organizations

● Risk Contributors to Human Systems are:
 ➢ Design risks
 ➢ Work Environment risks
 ➢ Process risks
Summary

- Apply Lessons Learned to future programs
 - Maintain a realistic attitude toward risky operations
 - Develop a better understanding of the risk of Ground-Processing-Induced In-Flight Anomalies
 - Expand corrective actions beyond specific, technical fixes
 - Fit solutions to the risks: design risks are not well-solved by process solutions
Thank You