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Abstract 

This paper presents analytical techniques for aiding system 
designers in making aircraft engine health management sensor 
selection decisions. The presented techniques, which are based 
on linear estimation and probability theory, are tailored for gas 
turbine engine performance estimation and gas path fault 
diagnostics applications. They enable quantification of the 
performance estimation and diagnostic accuracy offered by 
different candidate sensor suites. For performance estimation, 
sensor selection metrics are presented for two types of 
estimators including a Kalman filter and a maximum a 
posteriori estimator. For each type of performance estimator, 
sensor selection is based on minimizing the theoretical sum of 
squared estimation errors in health parameters representing 
performance deterioration in the major rotating modules of the 
engine. For gas path fault diagnostics, the sensor selection 
metric is set up to maximize correct classification rate for a 
diagnostic strategy that performs fault classification by 
identifying the fault type that most closely matches the 
observed measurement signature in a weighted least squares 
sense. Results from the application of the sensor selection 
metrics to a linear engine model are presented and discussed. 
Given a baseline sensor suite and a candidate list of optional 
sensors, an exhaustive search is performed to determine the 
optimal sensor suites for performance estimation and fault 
diagnostics. For any given sensor suite, Monte Carlo 
simulation results are found to exhibit good agreement with 
theoretical predictions of estimation and diagnostic accuracies. 

Introduction 
Aircraft operators rely on engine performance estimation 

and gas path fault diagnostics to ensure the safe and efficient 
operation of their gas turbine engine assets. Performance 
estimation enables the estimation and trending of gradual 
performance deterioration that the engine will experience over 
time due to fouling, corrosion, and erosion of turbomachinery 
components. Gas path fault diagnostics enables the detection 
and isolation of gas path system faults affecting engine 

performance, which are typically relatively rapid or abrupt in 
nature (Refs. 1 and 2). A notional illustration of the observed 
measurement shifts caused by gradual deterioration compared 
to an abrupt fault is shown in Figure 1.  

Although performance estimation and gas path fault 
diagnostics typically apply different algorithmic approaches, 
both are conducted using the same engine sensor measurement 
data—primarily data acquired from the available engine 
control sensor suite. In general, adding additional engine 
sensors will improve performance estimation and diagnostic 
accuracy, but this does add to the overall engine life cycle 
cost. Therefore, the decision to add sensors should be made 
judiciously.  

Several researchers have presented sensor selection 
approaches for engine health management applications. 
Mushini and Simon (no relation to the author) proposed a 
sensor selection approach for Kalman filter-based 
performance estimation applications (Ref. 3). In this work, a 
performance metric was defined as a function of the steady 
state error covariance and the cost of the selected sensors. 
Three separate metrics were considered for searching for the 
optimal sensor suite, including a random search, a genetic 
algorithm search, and an exhaustive search. The study by 
Mushini and Simon assumed that the estimation problem was 
over-determined (i.e., there are more sensors than unknown 
parameters to be estimated), which is usually not the case for 
engine performance estimation applications. Borguet and 
Léonard approached the problem of sensor selection for 
engine performance estimation within the scope of linear 
information theory (Ref. 4). They defined performance 
metrics based on the Fisher information matrix, and an 
exhaustive search was conducted to identify the best sensor 
suite. Sowers et al. introduced a systematic framework for 
automating sensor selection decisions for diagnostic 
applications. This framework enables incorporation of factors 
of merit commonly considered in the sensor selection process 
including diagnostic accuracy, diagnostic criticality, and cost 
(Ref. 5). The framework relies on the end user to specify the 
merit function used by the optimal search algorithm. 
Kamboukos et al. proposed sensor selection for performance 
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Figure 1.—Gradual versus rapid performance shifts. 

 
estimation applications based on the condition number of the 
influence matrix that relates changes in health parameters to 
changes in sensed measurements (Ref. 6). Here, a determined 
health parameter estimation problem was considered where 
there are as many sensors as parameters to be estimated.  

The contribution of this paper will be to introduce separate 
sensor selection metrics for performance estimation and fault 
diagnostic applications. In terms of performance estimation, 
the problem is assumed to be underdetermined (i.e., fewer 
sensors than unknown health parameters to be estimated), and 
two separate estimators will be considered—one applying a 
Kalman filter designed for processing dynamic sensed 
measurement information, and a second applying a maximum 
a posteriori estimator for processing quasi-steady-state 
measurement data. In terms of fault diagnostics, a single fault 
diagnostic strategy applying a weighted least squares 
hypothesis test will be considered.  

The remainder of this paper is organized as follows. First, 
metrics are defined through analytical derivations of the 
performance estimation accuracy and gas path fault diagnostic 
accuracy based on linear system theory. These analytical 
functions can be directly used to theoretically predict the 
estimation or diagnostic accuracy offered by a given sensor 
suite. Next, example application of the sensor selection 
techniques is presented by applying the approaches to a linear 
engine model. Theoretically predicted results are calculated 
and compared against empirical results obtained through 
Monte Carlo simulation analysis. This is followed by 
discussions and conclusions.  

Nomenclature 
A, Axh, Axq, B, Bxh, Bxq, 
C, Cxh, Cxq, D, L, M 

system matrices 

CCR correct classification rate 

C-MAPSS40k Commercial Modular Aero-Propulsion 
System Simulation 40k 

DM Mahalanobis distance 
FPR false positive rate 
H influence coefficient matrix relating 

changes in health parameters to changes 
in sensed measurements 

Hf fault influence coefficient matrix relating 
faults to changes in sensed measurements 

I identity matrix 
MAP maximum a posteriori 
N number of fault types 
PMC probability of misclassification 
Ph health parameter covariance matrix 
R measurement noise covariance matrix 
SSEE sum of squared estimation errors 
T fault detection threshold 
TPR true positive rate 
V* transformation matrix relating h to q 
WSSE weighted sum of squared errors 
WSSM weighted sum of squared measurements 
h health parameter vector 
f fault vector 
k number of additional sensors to add 
m number of tuning parameters 

n Number of additional sensors to choose 
from 

p number of health parameters 
q reduced order tuning parameter vector 
u actuator command vector 
v measurement noise vector 
wk, wh,k, wxh,k process noise vectors 
x state vector 
y measurement vector 
Γ gamma function 
γ lower incomplete gamma function 

ε residual vector (estimate minus its 
expected value)  

Φ standard normal distribution function 
λ mean value of the WSSM signal 
μi mean value of ith sensed measurement 
Subscripts  
a fault type index 
b misclassified fault type index 
k sample index 
xh augmented state vector (x and h) 
xq reduced order state vector (x and q) 
Superscripts  
† pseudo-inverse 
^ estimated value 
~ error value 
– mean value 
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Operators  
E[•] expected value of argument 
tr{•} trace of a matrix 

Sensor Selection Metrics 
As previously mentioned, aircraft engine performance 

estimation and gas path fault diagnostics pose different 
problem formulations. Analytical formulations of each are 
introduced below along with derivations of performance 
estimation and diagnostic accuracy for a given sensor suite. 
The performance estimation problem assumes the application 
of two separate estimators—a linear Kalman filter and a 
maximum a posteriori estimator, while the gas path fault 
diagnostic problem assumes the application of a single fault 
isolator applying a weighted least squares hypothesis test.  

Kalman Filter-Based Health Parameter Estimation 

In the aircraft engine community, Kalman filters are 
commonly applied for on-board performance estimation or 
post-flight analysis of full-flight streaming measurement data. 
In this subsection, Kalman filter health parameter estimation 
accuracy is discussed following a derivation previously 
introduced by Simon and Garg as part of an optimal tuner 
selection methodology for Kalman filter-based performance 
estimation applications (Ref. 7). This optimal tuner selection 
methodology is designed to minimize the Kalman mean 
squared estimation error in the parameters of interest when 
facing underdetermined estimation problems, but can readily 
be extended to also calculate the mean squared estimation 
error offered by different sensor suites, as was shown in 
Reference 8.  

The formulation begins by considering the following 
discrete linear time-invariant state space equations 
representing engine dynamics about an operating point 

 
kkkkk

kkkkk

vhMuDxCy
whLuBxAx

+∆+∆+∆=∆
+∆+∆+∆=∆ +1  (1) 

where k is the sample index, x is the vector of state variables, u 
is the vector of control inputs, and y is the vector of measured 
outputs. The vector h, where h ∈ p, represents the engine 

health parameters, which induce shifts in other variables as the 
health parameters deviate from their nominal values. The Δ 
symbols denote parameter deviations relative to the linear 
operating point trim condition. The vectors w and v are 
uncorrelated zero-mean white noise input sequences. The  
 
 

matrices A, B, C, D, L, and M are of appropriate dimensions. 
Through algebraic manipulation, Equation (1) can be rewritten 
such that h is concatenated with x to form an augmented state  
vector, xxh, as shown in Equation (2). Since engine 
performance deterioration is very slowly evolving relative to 
other engine dynamics, h is here modeled without dynamics. 
Here, and throughout the remainder of this section, the ∆ 
symbols are omitted for simplicity.  
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 (2) 

The vector wxh is zero-mean white noise associated with the 
augmented state vector, [xT hT]T. wxh consists of the original 
state process noise, w, concatenated with the process noise 
associated with the health parameter vector, wh. 

Once the h vector is appended to the state vector as shown 
in Equation (2), it may be directly estimated by applying a 
Kalman filter as long as the system is observable. However, 
the number of health parameters that can be estimated is 
limited to the number of sensors, the dimension of y (Ref. 9), 
and typically an aircraft gas turbine engine has fewer sensors 
than health parameters. To enable Kalman filter formulation 
for an underdetermined estimation problem, a reduced-order 
state space model is constructed. This is accomplished by 
defining a model tuning parameter vector, q, which is a linear 
combination of all health parameters, h, given by 

 hVq *=   (3) 

where q ∈ m, h ∈ p, m < p, and V* is an m × p 

transformation matrix of rank m, which relates h to q. Given 
an estimate of q (i.e., q̂ ), an approximation of the health 

parameter vector, ĥ , can be obtained as 

 qVh ˆˆ *†=  (4) 

where V*† is the pseudo-inverse of V*. Substituting Equation (4) 
into Equation (2) yields the following reduced-order state space 
equations, which may be used to formulate a Kalman filter 
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 (5) 

The reduced-order equations introduced in Equation (5) will 
enable a Kalman filter to be formulated that can estimate the 
augmented state vector, [xT qT]T. The resulting Kalman filter-
produced tuner parameter vector estimate, q̂ , can be inserted 
into Equation (4) to produce an estimated health parameter 
vector, ĥ  However, this does not circumvent the 

underdetermined nature of the ĥ  estimation problem, and the 

fact that the produced ĥ  estimates will contain errors is 
unavoidable. However, estimation accuracy is directly 
dependent on the available sensor suite and the selection of the 
transformation matrix, V*. This gives rise to an optimization 
problem of selecting the best sensor suite and the 
corresponding V* that minimizes the estimation error in the 
parameters of interest. For a given sensor suite, an optimal 
iterative search can be conducted to select a V* matrix that 
minimizes the theoretical mean sum of squared estimation 
errors (SSEE) in the parameters of interest 

 ( )
pmV

VSSEE
×∈R

*
*

minarg  (6) 

where the above statement indicates the V* matrix that 
minimizes the SSEE function. Once V* is obtained, it can be 
inserted into Equation (5) to construct the reduced-order state 
space equations. Here, it is important to emphasize that the V* 
matrix and q vector are unique to each sensor suite considered. 
Therefore, Equation (6) is individually applied to each sensor 
suite, and the suite that provides the lowest SSEE is identified 
as optimal. 

Due to page limitations, a complete derivation of the 
Kalman filter SSEE metric is not provided in this document. 
However, readers are referred to Reference 7 for this 
derivation. Some notable aspects regarding the derivation are 
that it focuses on linear Kalman filter estimation accuracy 
under steady-state operating conditions, and that the error of 
each estimated parameter comprises mean squared bias and 
variance terms. Additionally, the derivation incorporates user-
specified a priori knowledge regarding the health parameter 

covariance matrix reflecting the expected distribution in the 
health parameters to be estimated. While this paper will only 
consider Kalman filter health parameter estimation accuracy, 
the technique can be readily extended to optimize the 
estimation accuracy of any unmeasured performance 
parameters such as thrust, airflows, or metal temperatures.  

Maximum A Posteriori Health Parameter Estimation 

Maximum a posteriori (MAP) estimation is commonly 
applied for ground-based aircraft engine gas path analysis. It is 
based on quasi-steady-state engine snapshot measurements 
acquired in flight (Refs. 2 and 10). Unlike the Kalman filter, 
which is a recursive estimator designed to process dynamic 
measurement data, the MAP estimator provides a point 
estimate based on an assumed quasi-steady-state measurement 
process. The MAP estimator incorporates a priori knowledge 
regarding the distribution of the parameters to be estimated, 
which enables it to provide an estimate when facing 
underdetermined estimation problems. To introduce the MAP 
estimator, consider the following linear steady-state 
measurement process 

 vhHy +∆=∆  (7) 

where H is an influence coefficient matrix that relates the 
effects of the health parameter vector changes, Δh, to changes 
(i.e., residuals) in the sensed measurement vector, Δy. Here, v, 
is zero-mean white noise with covariance R. As with the 
previously introduced Kalman filter equations, the Δ symbols 
denote parameter deviations relative to the operating point 
trim condition at which Equation (7) was generated. For 
simplicity, the Δ symbols are omitted throughout the 
remainder of this section on the MAP estimator and the terms 
y and h are used to indicate measurement and health parameter 
changes, respectively. The maximum a posteriori (MAP) 
estimator follows the closed form expression 

 
( )

yGh

yRHHRHPh

h

G

TT
h

h

=

+= −−−−

ˆ

ˆ 1111
  

 (8) 

where Ph is a matrix containing a priori knowledge of the 
expected health parameter covariance. As with the Kalman 
filter introduced above, the MAP estimator produces a biased 
estimate due to the underdetermined nature of the estimation 
problem. However, its accuracy depends on the available 
sensor suite, thus giving rise to a sensor selection problem. As 
with the Kalman filter, the MAP health parameter estimation 
error will be defined in terms of the sum of squared estimation 
errors (SSEE), which consists of the sum of two components: 
mean squared bias and variance, as defined below. 
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MAP Estimation Mean Squared Bias 

The bias of an estimator is the expected difference between 
the estimator’s estimated value and the true value of the 
parameter being estimated. For the MAP estimator, the 

estimated health parameter bias vector, h
~

, is defined as 
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where the operator E[●] represents the expected value of the 
argument, and the expected value properties E[h]=h and 
E[v]=0 are leveraged in Equation (9). The estimation error 
bias equation given in Equation (9) is a function of an 
arbitrary health parameter vector h. The mean sum of squared 
biases across a fleet of engines is given as  
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where tr{●} represents the trace (sum of the diagonal 
elements) of the matrix. Here, the E[hhT] reduces to the health 
parameter covariance matrix, Ph, which is leveraged in 
Equation (10). 

MAP Estimation Variance 

The variance of the MAP estimate is found by constructing 
the estimation covariance matrix, hPˆ , which is defined as 

 [ ]( ) [ ]( )
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where the vector ε is the residual between ĥ  and its expected 
value. By combining Equation (7) and Equation (8), ε can be 
written as 
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Then, by substituting Equation (12) into Equation (11) the 
covariance matrix of the MAP estimate becomes 
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Diagonal elements of hPˆ  will reflect the variance of 

individual health parameter estimates, while off diagonal 
elements reflect the covariance between estimates.  

The overall sum of squared estimation errors (SSEE) can be 
obtained by combining the estimation mean squared bias and 
variance information as  

 ( ) ( ) ( ){ } { }T
hh

T
hhh RGGtrIHGPIHGtrhSSEE +−−=ˆ

 (14) 

Mean squared bias and variance are equally weighted in the 
above equation. However, end users may weight them 
differently if they so choose. 

Weighted Least Squares Single Fault Diagnostic 
Approach 

Gas path fault diagnostics poses a different problem than 
that of performance estimation. Unlike performance 
deterioration, which is assumed to occur gradually and affect 
all health parameters simultaneously and somewhat 
independently, gas path faults are assumed to primarily occur 
abruptly and in isolation. In other words, it is rare to have 
multiple unrelated gas path system faults occurring 
simultaneously. Applying the single fault assumption 
transforms gas path fault diagnostics from an underdetermined 
to an over-determined estimation problem. This subsection 
will present a single fault isolator that applies a weighted least 
squares hypothesis test to diagnose faults. Additionally, the 
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accuracy offered by this diagnostic approach is analytically 
derived. 

The fault diagnostic approach considered in this study, like 
the previously described MAP estimation approach, is ground-
based, and designed to process snapshot engine measurements 
acquired in flight. To introduce the diagnostic approach, first 
assume the following linear steady-state sensor measurement 
process  

 vfHy f +=∆∆  (15) 

where ΔΔy is a vector of residuals reflecting recent shifts in 
engine sensor measurements, for example, the change 
measurements have undergone within the past one or two 
flights. Also shown in Equation (15) is f, a vector of gas path 
fault magnitudes, and Hf, a fault influence coefficient matrix 
relating fault magnitudes to sensor measurement residuals. 
Furthermore, v denotes zero-mean normally distributed sensor 
measurement noise of covariance R. The measurement 
residuals, ΔΔy, are regularly updated as new snapshot data 
become available. They are referred to as “delta-delta” 
measurement shifts, as they will reflect fault induced shifts 
relative to the gradual deterioration induced shifts the engine 
has experienced up until the time of fault initiation (Ref. 2). 
Since faults are assumed to occur abruptly and cause relatively 
large measurement shifts, the ΔΔy residuals will be small in 
the case of no fault, and larger once a fault has occurred (see 
Fig. 1). For simplicity, the ΔΔ symbols are omitted throughout 
the remainder of this section and the term y is used to indicate 
recent observed shifts in the sensor measurements. Given 
Equation (15), a fault detection and classification (isolation) 
approach can be formulated. Here, it is assumed that fault 
detection is performed by calculating and monitoring a 
weighted sum of squared measurement (WSSM) signal: 

 yRyWSSM T 1−=  (16) 

If the WSSM signal exceeds an established detection threshold 
(T), a fault is assumed to be present and the diagnostic logic 
proceeds in attempting to isolate the most plausible single 
fault root cause for the fault. Here, fault classification is 
performed by applying a weighted least squares approach. 
Each possible gas path fault type is evaluated individually, and 
the hypothesized fault whose signature best matches the 
observed measurement residuals in a weighted least squares 
sense is classified as the fault. For the lth fault type, the 
estimated fault magnitude is calculated as 

 ( ) yRHHRHf T
lflf

T
lfl

1
,

1
,

1
,

ˆ −−−=  (17) 

where Hf,l is the column of the Hf matrix corresponding to the 
lth fault type, and the scalar lf̂  is the estimated magnitude of 
the lth fault type that produces the best match of the observed 
vector of sensor measurement residuals, y, in a weighted least 
squares sense. The resulting lf̂  estimate is then combined 
with Hf,l to produce an estimated measurement residual vector, 

lŷ , for the lth fault type: 

 fHy lfl
ˆˆ ,=  (18) 

The difference between lŷ  and y defines the estimation error 

vector for the lth fault type, ly~ , defined as 

 yyy ll −= ˆ~  (19) 

The weighted sum of squared errors for the lth hypothesized 
fault type is calculated as 

 l
T
ll yRyWSSE ~~ 1−=  (20) 

After WSSE’s are calculated for each potential fault type 
they are compared, and the hypothesized fault type that 
produces the minimum WSSE is classified as the fault cause. 
Theoretical predictions of fault detection and fault 
classification performance for the single fault isolator are 
given below. 

Fault Detection Performance 

For any diagnostic system, fault detection performance is 
directly related to the applied fault detection threshold. Larger 
thresholds will result in fewer false alarms in the absence of a 
fault (false positives), but will also result in fewer true 
detections when a fault is actually present (true positives), 
while the opposite is true for smaller thresholds. In order to 
facilitate a common basis of comparison, each sensor suite 
considered in this study applies a WSSM fault detection 
threshold, T, necessary to achieve a user-specified target false 
positive rate (FPR). The FPR of a system monitoring a WSSM 
signal for fault detection purposes can be approximated if it is 
assumed that all sensed measurements are independent in 
addition to being zero mean and normally distributed. With 
this simplification, the distribution of the WSSM signal under 
the no-fault case will be the sum of the squares of k 
independent standard normal random variables, which is a chi 
square distribution with k degrees of freedom. The cumulative 
distribution function of a chi square distribution is given as 
(Ref. 11) 
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where Γ(·) is the gamma function and γ(·) is the lower 
incomplete gamma function. The above equation reflects the 
probability that a random sample of the WSSM signal is less 
than the threshold, T, when no fault is present (i.e., the true 
negative rate). Therefore, the false positive rate is given as  
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When a fault occurs, the WSSM signal will be distributed as 
a non-central chi-squared distribution. This distribution will be 
a function of: 1) the detection threshold, T; 2) the number of 
sensors, k; and 3) the mean value of the WSSM signal. The 
mean value of the WSSM signal for a fault of given type and 

magnitude is defined as λ, where ∑
=

µ=λ
k

i
i

1

2 , where μi is the 

mean value of the ith sensor in the presence of the fault. Given 
this information, the true positive rate (TPR) can be calculated 
from the cumulative distribution function of the non-central 
chi-square distribution as (Ref. 11):  
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The above equation reflects the probability that a random 
sample of the WSSM signal is greater than the threshold, T, 
when a fault of magnitude λ is present. Given Equations (22) 
and (23), overall FPR and TPR for individual fault types can 
be approximated for any given sensor suite.  

Fault Classification Performance 

In this study an approximation of the theoretical 
misclassification rate is produced by considering the 
probability of misclassification between fault pair 
combinations (i.e., making the assumption that only two fault 
classes exist) given that a fault has been correctly detected. 
The two-class misclassification rate results across all fault 
pairs are then summed to estimate an overall misclassification 
rate. Calculating the two-class misclassification rate is readily 

tractable compared to multi-class misclassification rate given 
three or more faults. While this simplification does not enable 
an exact calculation of the overall misclassification rate for a 
given fault type, it is effective for identifying fault pairs at 
high risk of misclassification. Let us consider a fault of a 
given type, a, and magnitude, fa. From Equation (15), the 
expected sensed measurement vector under this condition 
becomes ya = Hf,a fa. The probability that a sensor 
measurement vector observation, y, collected when fault fa is 
present is misclassified as fault type b (assumed to be of 
equivalent probability and resulting in equivalent sensor 
measurement covariance as fault type a) is given as (Ref. 12) 

 





 ⋅Φ−= Mab DPMC

2
11|  (24) 

where PMCb|a is the probability of misclassifying fault type a 
as b, Φ is the standard normal distribution function, and DM is 
the Mahalanobis distance defined as 
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(25) 

The above expression accounts for the fact that the least 
squares estimation approach is able to produce bi-directional 
fault estimates of either a positive or negative magnitude. The 
sign that produces the minimum distance will have the largest 
contribution to the misclassification rate. In Equation (25), yb 
is the expected sensor measurement vector for fault type b, 
scaled to be the same weighted length as yb as shown in 
Equation (26) 

 
b

T
b

a
T
a

bb
HRH

yRy
Hy

1

1

−

−
=  (26) 

The above equations allow the probability of misclassification 
PMCb|a for each fault pair to be calculated. The overall 
probability of misclassification for fault type a can be 
approximated by summing all fault pair combinations: 

 ∑
≠
=

=
N

ab
b

aba PMCPMC
1

|  (27) 

where N is the number of different fault types. Once PMCa is 
obtained, an approximation of the correct classification rate 
(CCR) for fault type a of the considered fault magnitude can 
be found by combining the fault’s TPR (given by Eq. (23)) 
and its PMC (given by Eq. (27)) as 
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 ( )aaa PMCTPRCCR −×= 1  (28) 

The average CCR for the diagnostic system considering all 
fault types thus becomes 

 ∑
=

=
N

a

a
N

CCRCCR
1

 (29) 

where CCRa is the correct classification rate for the ath fault 
type, and N is the total number of fault types. The CCR shown 
in Equation (29) serves as a metric that can be used to estimate 
and compare the diagnostic performance offered by different 
candidate sensor suites.  

Linear Turbofan Engine Model Example 
In this section, an example application of the previously 

introduced metrics is given. This is done by applying the 
metrics to a linear point model and linear influence coefficient 
matrices extracted from the NASA Commercial Modular 
Aero-Propulsion System Simulation 40k (C-MAPSS40k) 
turbofan engine simulation (Ref. 13) at standard day sea level 
static conditions (i.e., air temperature = 59 °F, altitude = 0, and 
Mach = 0) and an intermediate power setting. The linear 
model, which is used for Kalman filter estimation, and is of 
the format shown in Equation (1), has seven state variables 
and three control inputs (actuator commands), as shown in 
Table 1, and ten health parameters, as shown in Table 2. The 
linear model has six baseline sensors, and four additional 
(optional) sensors, which are shown in Table 3 along with 
their corresponding standard deviations. Here, the sensor noise 
is assumed to be uncorrelated, zero-mean and normally 
distributed. The linear influence coefficient matrix to be used 
in MAP estimation (i.e., the H matrix given in Equation (7)), 
and the linear fault influence coefficient matrix to be used in 
gas path fault diagnostics (i.e., the Hf matrix given in Equation 
(15)), are generated from C-MAPSS40k at the same operating 
point as the linear model. However, these matrices are 
generated assuming that fan speed is held constant. As such, 
fan speed (Nf) is replaced by fuel flow (Wf) as one of the six 
baseline sensors when performing MAP estimation or gas path 
fault diagnostics.  

The optional sensors shown in Table 3 are evaluated for the 
estimation accuracy or diagnostic improvement they provide if 
added individually or in combination to the baseline sensor 
suite. Given a set of n additional sensors to choose from, and a 
target number, k, of additional sensors, the total number of 
sensor suite combinations will be:  

 ( )!!
!

knk
n

k
n

−
=








 (30) 

Therefore, the number of sensor combinations when adding 1, 
2, 3, or 4 sensors to the baseline 6 sensors are: 
 
• Baseline sensors 1 combination 
• Baseline + 1 sensor (n = 4, k = 1) 4 combinations 
• Baseline + 2 sensors (n = 4, k = 2) 6 combinations 
• Baseline + 3 sensors (n = 4, k = 3) 4 combinations 
• Baseline + 4 sensors (n = 4, k = 4) 1 combinations 
• Total sensor combinations 16 combinations 
 
TABLE 1.—STATE VARIABLES AND CONTROL INPUTS 

State variables 
(x) 

Control inputs  
(u) 

Nf – fan speed Wf – fuel flow 
Nc – core speed VSV – variable stator vane 
Hs_LPC – LPC metal temperature VBV –variable bleed valve 
Hs_HPC – HPC metal temperature  
Hs_burner – burner metal temperature  
Hs_HPT – HPT metal temperature  
Hs_LPT – LPT metal temperature  
 

TABLE 2.—HEALTH PARAMETERS (h) 
1 ηFAN Fan efficiency 
2 γFAN Fan flow capacity 
3 ηLPC Low pressure compressor (LPC) efficiency 
4 γLPC Low pressure compressor (LPC) flow capacity 
5 ηHPC High pressure compressor (HPC) efficiency 
6 γHPC High pressure compressor (HPC) flow capacity 
7 ηHPT High pressure turbine (HPT) efficiency 
8 γHPT High pressure turbine (HPT) flow capacity 
9 ηLPT Low pressure turbine (LPT) efficiency 

10 γLPT Low pressure turbine (LPT) flow capacity 

 
TABLE 3.—SENSED OUTPUTS AND STANDARD DEVIATION 

AS PERCENT OF OPERATING POINT TRIM VALUES 
 Sensed output Standard deviation 

Baseline 
sensors 

Nfa – fan speed (rpm) 0.360 rpm 
Nc – core speed (rpm) 1.23 rpm 
Ps30 – HPC exit static pressure 0.333 psia 
T30 – HPC exit total temperature 0.273 °R 
P50 – LPT exit total pressure 0.021 psia 
T50 – LPT exit total temperature 0.259 °R 

Additional 
(optional) 
sensors 

P14 – Bypass duct total pressure 0.022 psia 
T14 – Bypass duct total temperature 0.117 °R 
P25 – HPC inlet total pressure 0.031 psia 
T25 – HPC inlet total temperature 0.132 °R 

aNote: For the MAP estimator and gas path fault diagnostics, fan 
speed (Nf) serves as the engine power reference parameter and is 
replaced in the list of six baseline sensors by fuel flow (Wf), which 
has a standard deviation of 9.03 pounds per hour (pph) 

 
The subsections below will present and discuss results from 

the application of the sensor selection metrics for performance 
estimation and gas path fault diagnostics. 
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Sensor Selection for Performance Estimation 

Performance estimation accuracy is assessed based on the 
health parameter mean squared estimation error offered by 
different sensor suites. The linear engine model contains 10 
health parameters as shown in Table 2, which represent 
efficiency and flow capacity scalars associated with each 
major rotating module of the engine. In this study, deviations 
in all health parameters are assumed to be uncorrelated, and 
randomly shifted from their trim conditions with a standard 
deviation of ±2 percent. Since a parameter’s variance is equal 
to its standard deviation squared, the health parameter 
covariance matrix, Ph, is defined as a diagonal matrix with all 
diagonal elements equal to 4.0. The subsections below will 
present health parameter estimation results first assuming 
application of a Kalman filter estimator and then the MAP 
estimator. 

Kalman Filter Sensor Selection Results 

For each of the 16 candidate sensor suites, the Kalman filter 
SSEE metric shown in Equation (6) is applied to calculate the 
theoretical health parameter SSEE offered by each of the 16 
candidate sensor suites. Additionally, a Monte Carlo 
simulation analysis is conducted to verify the theoretically 
predicted results. This is based on 200 health parameter vector 
combinations randomly selected in accordance with the 
defined health parameter covariance matrix, Ph. These random 
health parameter vectors and random measurement noise, v, 
are substituted into Equation (1) to produce sensed 
measurement test cases used for Monte Carlo evaluation. The 
resulting mean squared estimation error results are shown in 
Table 4. The top half of the table shows theoretically predicted 
results while the bottom half shows results obtained via the 
Monte Carlo simulation analysis. Each row corresponds to one 
of the 16 candidate sensor suites. In the cases of Baseline + 1, 
+2, or +3 optional sensors, the sensor suite that provides the 
minimum SSEE is highlighted in bold font. In general, adding 
sensors reduces the SSEE. The results also show that specific 
additional sensors are highly beneficial in improving the 
estimation accuracy of individual health parameters. For 
example, adding sensors such as P14 or T14 improves the 
estimation accuracy of fan efficiency (ηFAN) and fan flow 
capacity (γFAN), while adding P25 improves estimation 
accuracy of LPC flow capacity (γLPC). It is also encouraging to 
note that the theoretical and simulation results exhibit good 
agreement. The overall estimation accuracy is very similar and 
the combination of sensors identified as optimal is identical 
(theoretical vs. Monte Carlo simulation) for each candidate 
number of sensors. Minor differences between theoretical and  
 

 

Monte Carlo results are likely due to the number of Monte 
Carlo trials conducted. If the number of trials were increased, 
the differences between analytical and simulation results 
should diminish. Based on this analysis, the sensor selection 
decisions for Kalman filter estimation accuracy would be: 
 
• Baseline + 1 sensor, choose: T25 
• Baseline + 2 sensors, choose: T25 and P25 
• Baseline + 3 sensors, choose: T25, P25, and P14 

MAP Estimator Sensor Selection Results 

Next, sensor selection is conducted assuming that a MAP 
estimator is applied for health parameter estimation. Here, the 
metric previously introduced in Equation (14) is used to 
theoretically predict the health parameter SSEE accuracy 
offered by each of the candidate sensor suites. Additionally, a 
Monte Carlo simulation study is performed to verify the 
theoretical results. Here, 400,0001 health parameter vectors 
are randomly generated in accordance with Ph. These health 
parameters along with random sensor measurement noise are 
substituted into Equation (7) to produce sensed measurement 
test cases, which are then processed to produce health 
parameter estimates using Equation (8). The resulting 
theoretical and Monte Carlo simulation health parameter mean 
squared estimation errors are shown in Table 5. Here, the 
theoretical and Monte Carlo simulation results exhibit very 
good agreement, which is expected given the large number of 
Monte Carlo trials runs. The sensor suites identified as optimal 
for the MAP estimator agree with those previously identified 
in Table 4 for the Kalman filter. Furthermore, the mean 
squared estimation errors of individual health parameters and 
the overall health parameter SSEE for most sensor suites 
exhibit fairly good agreement between the MAP estimator and 
the Kalman filter. This is not unexpected since both estimators 
are designed to minimize the mean sum of squared estimation 
errors, and in this study both incorporate the same a priori 
knowledge regarding health parameter covariance, Ph, and 
make the same assumptions regarding sensor measurement 
covariance, R. 

                                                      
1 The disparity in the number of Monte Carlo trials conducted for the 
MAP estimator versus the Kalman filter is due to the nature of the 
two estimators. The MAP estimator only requires a single steady-
state sample for each random health parameter vector considered. 
Conversely, the Kalman filter, which is a dynamic recursive 
estimator, requires a sufficient quantity of measurement data at each 
health condition to ensure convergence to a steady-state solution. 
This limited the practical number of Monte Carol trials for the 
Kalman filter. 
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TABLE 4.—KALMAN FILTER PERFORMANCE ESTIMATION ACCURACY 
No.  

sensors 
Sensors added to 

baseline 
Theoretical Health Parameter Mean Squared Estimation Errors  

(% squared) 

P14 T14 P25 T25 ηFAN γFAN ηLPC γLPC ηHPC γHPC ηHPT γHPT ηLPT γLPT SSEE 

6     2.53 1.66 3.34 3.07 0.26 1.51 0.95 0.04 1.00 2.85 17.21 
7 x    0.23 0.15 3.43 3.29 0.25 1.47 0.96 0.04 1.02 2.83 13.66 
7  x   0.17 0.20 3.47 3.22 0.26 1.48 0.95 0.04 1.01 3.01 13.81 
7   x  2.54 1.67 3.23 0.05 0.26 0.70 0.83 0.04 0.86 2.65 12.83 
7    x 2.50 1.65 1.94 0.69 0.22 1.29 0.80 0.04 0.83 2.62 12.58 
8 x x   0.15 0.15 9.09 0.34 0.74 2.25 1.52 0.04 1.62 6.54 22.45 
8 x  x  0.23 0.15 3.33 0.05 0.27 0.73 0.82 0.04 0.86 2.67 9.14 
8 x   x 0.24 0.15 1.94 0.69 0.22 1.29 0.79 0.04 0.82 2.60 8.78 
8  x x  0.13 0.16 3.83 0.05 0.31 0.82 0.94 0.04 0.99 3.18 10.44 
8  x  x 0.14 0.17 2.07 0.74 0.23 1.37 0.82 0.04 0.87 2.82 9.27 
8   x x 2.51 1.66 0.03 0.05 0.01 0.06 0.80 0.04 0.83 2.64 8.60 
9 x x x  0.16 0.15 3.43 0.05 0.27 0.74 0.99 0.04 1.05 3.19 10.07 
9 x x  x 0.16 0.16 0.64 0.27 0.08 0.44 0.80 0.04 0.84 2.72 6.13 
9 x  x x 0.24 0.15 0.03 0.05 0.01 0.06 0.79 0.04 0.83 2.61 4.79 
9  x x x 0.14 0.17 0.03 0.05 0.01 0.06 0.81 0.04 0.85 2.80 4.95 

10 x x x x 0.16 0.16 0.02 0.05 0.01 0.06 0.70 0.04 0.76 2.51 4.47 
 

No.  
sensors 

Sensors added to 
baseline 

Monte Carlo Health Parameter Mean Squared Estimation Errors  
(% squared) 

P14 T14 P25 T25 ηFAN γFAN ηLPC γLPC ηHPC γHPC ηHPT γHPT ηLPT γLPT SSEE 

6     2.26 1.48 3.48 2.90 0.28 1.55 1.06 0.04 1.14 3.18 17.35 
7 x    0.23 0.15 3.52 2.95 0.27 1.46 1.04 0.04 1.11 3.17 13.94 
7  x   0.17 0.20 3.48 3.18 0.27 1.52 1.08 0.04 1.14 3.37 14.44 
7   x  2.29 1.51 3.34 0.05 0.27 0.73 0.99 0.04 1.05 2.92 13.19 
7    x 2.26 1.49 1.99 0.70 0.23 1.33 0.91 0.04 0.96 2.98 12.90 
8 x x   0.15 0.15 8.16 0.87 0.74 3.04 1.77 0.04 1.89 6.92 23.74 
8 x  x  0.23 0.15 3.46 0.05 0.28 0.75 0.98 0.04 1.03 2.97 9.94 
8 x   x 0.24 0.15 2.03 0.72 0.23 1.35 0.90 0.04 0.94 3.00 9.60 
8  x x  0.13 0.16 3.91 0.05 0.31 0.84 1.14 0.04 1.21 3.67 11.47 
8  x  x 0.15 0.17 2.05 0.73 0.23 1.36 0.93 0.04 0.98 3.20 9.84 
8   x x 2.30 1.52 0.03 0.05 0.01 0.06 0.91 0.04 0.96 3.04 8.90 
9 x x x  0.16 0.15 3.30 0.05 0.26 0.71 1.20 0.04 1.28 4.52 11.66 
9 x x  x 0.16 0.15 0.84 0.34 0.10 0.57 0.93 0.04 0.98 3.18 7.29 
9 x  x x 0.24 0.15 0.03 0.05 0.01 0.06 0.91 0.04 0.95 3.03 5.45 
9  x x x 0.14 0.17 0.03 0.05 0.01 0.06 0.95 0.04 1.00 3.30 5.75 

10 x x x x 0.16 0.15 0.02 0.05 0.01 0.06 0.80 0.04 0.86 2.84 4.98 
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TABLE 5.—MAP ESTIMATOR PERFORMANCE ESTIMATION ACCURACY 
No.  

sensors 
Sensors added to 

baseline 
Theoretical Health Parameter Mean Squared Estimation Errors  

(% squared) 

P14 T14 P25 T25 ηFAN γFAN ηLPC γLPC ηHPC γHPC ηHPT γHPT ηLPT γLPT SSEE 

6     2.45 1.64 2.81 3.09 0.27 1.35 0.88 0.04 1.06 2.78 16.35 
7 x    0.48 0.15 2.81 3.08 0.27 1.34 0.88 0.04 1.04 2.78 12.86 
7  x   1.12 1.23 2.81 3.07 0.27 1.34 0.88 0.03 1.02 2.78 14.54 
7   x  2.45 1.64 2.75 0.04 0.27 0.91 0.75 0.04 0.90 2.62 12.36 
7    x 2.45 1.64 1.92 0.64 0.22 1.31 0.71 0.04 0.86 2.57 12.36 
8 x x   0.15 0.14 2.81 3.04 0.27 1.33 0.87 0.02 0.97 2.77 12.38 
8 x  x  0.48 0.15 2.75 0.04 0.27 0.90 0.74 0.03 0.89 2.62 8.87 
8 x   x 0.48 0.15 1.92 0.63 0.22 1.31 0.71 0.03 0.85 2.57 8.87 
8  x x  1.12 1.23 2.75 0.04 0.27 0.90 0.74 0.03 0.86 2.61 10.55 
8  x  x 1.12 1.23 1.92 0.63 0.22 1.31 0.71 0.03 0.82 2.57 10.55 
8   x x 2.45 1.64 0.02 0.04 0.01 0.05 0.71 0.04 0.86 2.57 8.40 
9 x x x  0.15 0.14 2.75 0.02 0.27 0.89 0.74 0.02 0.80 2.61 8.39 
9 x x  x 0.15 0.14 1.92 0.61 0.22 1.29 0.70 0.02 0.76 2.56 8.39 
9 x  x x 0.48 0.15 0.02 0.04 0.01 0.05 0.71 0.03 0.85 2.57 4.91 
9  x x x 1.12 1.23 0.02 0.04 0.01 0.05 0.71 0.03 0.82 2.57 6.59 

10 x x x x 0.15 0.14 0.02 0.02 0.01 0.03 0.70 0.02 0.76 2.56 4.43 
 

No.  
sensors 

Sensors added to 
baseline 

Monte Carlo Health Parameter Mean Squared Estimation Errors  
(% squared) 

P14 T14 P25 T25 ηFAN γFAN ηLPC γLPC ηHPC γHPC ηHPT γHPT ηLPT γLPT SSEE 

6     2.46 1.64 2.81 3.10 0.27 1.34 0.88 0.04 1.06 2.78 16.36 
7 x    0.48 0.15 2.81 3.09 0.27 1.33 0.88 0.04 1.04 2.78 12.86 
7  x   1.13 1.23 2.81 3.08 0.27 1.34 0.88 0.03 1.02 2.78 14.55 
7   x  2.46 1.64 2.75 0.04 0.27 0.91 0.75 0.04 0.90 2.62 12.37 
7    x 2.46 1.64 1.91 0.64 0.22 1.31 0.71 0.04 0.86 2.57 12.36 
8 x x   0.15 0.14 2.81 3.05 0.27 1.32 0.87 0.02 0.97 2.77 12.38 
8 x  x  0.48 0.15 2.75 0.04 0.27 0.90 0.74 0.03 0.89 2.62 8.86 
8 x   x 0.48 0.15 1.91 0.63 0.22 1.30 0.71 0.03 0.85 2.57 8.86 
8  x x  1.12 1.23 2.75 0.04 0.27 0.90 0.74 0.03 0.86 2.62 10.55 
8  x  x 1.12 1.23 1.91 0.63 0.22 1.30 0.71 0.03 0.82 2.57 10.54 
8   x x 2.46 1.64 0.02 0.04 0.01 0.05 0.71 0.04 0.86 2.57 8.41 
9 x x x  0.15 0.14 2.75 0.02 0.27 0.88 0.74 0.02 0.80 2.61 8.38 
9 x x  x 0.15 0.14 1.91 0.61 0.22 1.29 0.70 0.02 0.76 2.56 8.38 
9 x  x x 0.48 0.15 0.02 0.04 0.01 0.05 0.71 0.03 0.85 2.57 4.91 
9  x x x 1.12 1.23 0.02 0.04 0.01 0.05 0.71 0.03 0.82 2.57 6.60 

10 x x x x 0.15 0.14 0.02 0.02 0.01 0.03 0.70 0.02 0.76 2.56 4.43 
 
 
Gas Path Fault Diagnostics Sensor Selection Results 

For the gas path fault diagnostics sensor selection problem 
setup, it is assumed that the engine may encounter eight 
different gas path fault types consisting of turbomachinery 
faults (implemented via health parameter perturbations) and 
actuator biases. The eight faults along with the parameter 
perturbations applied within C-MAPSS40k to generate the 
fault influence coefficient matrix are shown in Table 6. For 
this study, all faults are assumed to occur in isolation and to be 
of equivalent probability of occurrence.  

TABLE 6.—GAS PATH FAULTS 
Fault ID Fault type Health parameters and actuator biases 

1 Fan fault ηFAN = –1%, γFAN = –2% 
2 LPC fault ηLPC = –1%, γLPC = –2% 
3 HPC fault ηHPC = –1%, γHPC = –2% 
4 HPT fault ηHPT = –2%, γHPT = +1% 
5 LPT fault ηLPT = –2%, γLPT = +1% 
6 Wf bias Wf bias = –2% 
7 VSV bias VSV bias = –1° stroke 
8 VBV bias VBV bias = +20% 
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For each of the 16 candidate sensor suites, the correct 
classification rate metric given in Equation (29) is applied to 
calculate the theoretical correct classification rate offered by 
each candidate sensor suite. In making this assessment, the 
applied WSSM signal fault detection threshold is set to give a 
theoretical false positive rate of 0.01 (1 percent) as defined via 
Equation (22). This threshold will change based on the 
number of sensors included in each candidate sensor suite. 
Additionally, a Monte Carlo simulation analysis was 
conducted to verify the theoretically predicted CCR results. 
This is done using Equation (15) to generate 80,000 no fault 
cases and 10,000 fault cases for each individual fault type, all 

corrupted by random measurement noise, v. This data set is 
then analyzed by applying the single fault diagnostic logic 
shown in Equations (16)-(20) to detect and classify the 
occurrence of any faults. Initial diagnostic analysis revealed 
that even the baseline 6 sensor measurement suite performed 
extremely well in diagnosing the gas path faults considered. 
Therefore, in order to present a more interesting sensor 
selection problem, the sensor measurement noise was 
increased by a factor of four and the diagnostic assessment 
was repeated. The ensuing correct classification rate results 
are shown in Table 7. The top half of the table shows 
theoretically predicted results while the bottom half shows  

 
TABLE 7.—GAS PATH FAULT DIAGNOSTIC ACCURACY 

No.  
sensors 

Sensors added to 
baseline 

Theoretical Correct Classification Rate (CCR) % 

P14 T14 P25 T25 Fan LPC HPC HPT LPT Wf VSV VBV No Fault Fault CCR 
6     73.3 74.4 99.2 100.0 98.8 92.1 60.6 78.4 99.0 84.6 
7 x    80.6 74.6 99.2 100.0 99.8 90.6 60.7 78.6 99.0 85.5 
7  x   81.6 75.2 99.2 100.0 99.9 90.6 60.8 79.5 99.0 85.8 
7   x  76.3 87.1 99.9 100.0 98.8 90.6 70.4 88.8 99.0 89.0 
7    x 77.0 94.2 99.9 100.0 98.8 90.6 73.3 98.8 99.0 91.6 
8 x x   86.3 75.4 99.2 100.0 100.0 89.0 60.7 79.7 99.0 86.3 
8 x  x  82.9 87.2 99.9 100.0 99.8 89.1 70.1 88.9 99.0 89.7 
8 x   x 83.5 94.3 99.9 100.0 99.8 89.1 72.9 98.8 99.0 92.3 
8  x x  83.8 87.6 99.9 100.0 99.9 89.1 70.1 89.3 99.0 90.0 
8  x  x 84.4 94.3 99.9 100.0 99.9 89.1 72.9 98.8 99.0 92.4 
8   x x 77.5 95.9 99.9 100.0 98.8 89.1 76.3 98.8 99.0 92.0 
9 x x x  88.0 87.7 99.9 100.0 100.0 87.5 69.7 89.4 99.0 90.3 
9 x x  x 88.4 94.4 99.9 100.0 100.0 87.5 72.4 98.8 99.0 92.7 
9 x  x x 83.9 95.9 99.9 100.0 99.8 87.5 75.7 98.8 99.0 92.7 
9  x x x 84.7 96.0 99.9 100.0 99.9 87.5 75.8 98.8 99.0 92.8 

10 x x x x 88.7 96.0 99.9 100.0 100.0 86.0 75.2 98.8 99.0 93.1 
               

No.  
sensors 

Sensors added to 
baseline 

Monte Carlo Correct Classification Rate (CCR)% 

P14 T14 P25 T25 Fan LPC HPC HPT LPT Wf VSV VBV No Fault Fault CCR 
6     77.3 79.2 99.3 100.0 98.8 92.1 78.1 82.5 99.0 88.4 
7 x    83.7 79.5 99.3 100.0 99.8 90.5 77.2 82.5 99.0 89.1 
7  x   83.9 80.0 99.3 100.0 99.8 90.4 77.1 82.9 99.0 89.2 
7   x  77.3 87.8 99.9 100.0 98.8 90.4 79.6 89.3 99.0 90.4 
7    x 77.7 94.7 100.0 100.0 98.8 90.3 80.4 98.9 98.9 92.6 
8 x x   87.8 80.2 99.3 100.0 100.0 89.1 76.3 83.1 99.0 89.5 
8 x  x  84.0 88.1 99.9 100.0 99.8 89.1 78.7 89.3 99.0 91.1 
8 x   x 84.1 94.7 100.0 100.0 99.8 89.0 79.4 98.9 98.9 93.2 
8  x x  84.0 88.6 99.9 100.0 99.8 89.0 78.5 89.6 99.0 91.2 
8  x  x 84.3 94.8 100.0 100.0 99.8 89.0 79.6 99.0 99.0 93.3 
8   x x 77.5 96.0 100.0 100.0 98.8 88.9 80.6 98.9 99.0 92.6 
9 x x x  88.1 88.7 99.9 100.0 100.0 87.5 77.9 89.7 99.0 91.5 
9 x x  x 88.3 94.8 100.0 100.0 100.0 87.7 78.8 99.0 99.0 93.5 
9 x  x x 84.2 96.0 100.0 100.0 99.8 87.5 80.0 98.9 99.0 93.3 
9  x x x 84.3 96.1 100.0 100.0 99.8 87.4 80.0 99.0 99.0 93.3 

10 x x x x 88.3 96.1 100.0 100.0 100.0 86.0 79.3 99.0 99.0 93.6 
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results obtained via the Monte Carlo simulation analysis. 
Here, the theoretical results slightly underpredict the correct 
classification rates found via Monte Carlo analysis. This is due 
to the simplification made in deriving the theoretical correct 
classification rate, which essentially establishes a theoretical 
lower bound on this rate. Based on the theoretical analysis, the 
sensor selection decisions for gas path fault diagnostics would 
be: 

 
• Baseline + 1 sensor, choose: T25 
• Baseline + 2 sensors, choose: T25 and T14 
• Baseline + 3 sensors, choose: T25, T14, and P25 

 
The Monte Carlo simulation analysis shows the same 

optimal sensor suites except for the Baseline + 3 sensor case, 
where P14 would be substituted in place of P25.  

Discussion 
The sensor selection metrics introduced in this paper were 

shown to perform well in identifying optimal sensor suites 
from a performance estimation and diagnostic accuracy 
perspective. Although not specifically shown in this paper, the 
resulting sensor suites identified to be optimal are expected to 
change if different assumptions are made regarding the design 
inputs such as sensor measurement noise, health parameter 
covariance, fault types and magnitudes, and the engine model 
that the metrics are applied to. 

A notable finding in this work was the relative agreement 
between the Kalman filter and MAP estimator in terms of the 
predicted SSEE results and the sensor suites identified to be 
optimal. As previously noted, this is not unexpected given that 
both estimators are set up to minimize mean squared 
estimation error and, in the given example application, both 
incorporate the same a priori knowledge regarding health 
parameter covariance and sensor measurement noise 
covariance. However, an advantage of the MAP estimator 
metric is that it offers a closed-form solution while the 
Kalman filter SSEE metric requires solution of the V* 
transformation matrix via an optimal iterative search. As such, 
the Kalman filter metric can be prone to convergence to local 
minima. To guard against such occurrences, a recommended 
approach is to cross-check Kalman filter results using the 
MAP metric to ensure that similar sensor suites and SSEE 
values are predicted.  

The performance estimation metrics exhibited very good 
agreement between their theoretically predicted estimation 
accuracy and that obtained via Monte Carlo simulation 
analysis. However, the theoretical gas path fault diagnostic 
metric was found to underpredict the CCR found via Monte 
Carlo analysis. This is due to the two-fault class 
misclassification assumption made in deriving the metric. 

While this simplification does make the derivation tractable, it 
can lead to inaccurate results, especially when faults are prone 
to misclassification as more than one fault type. Another 
simplification made in this derivation is to assume that all 
sensor residual measurements are independent. This 
assumption does not usually hold for gas turbine engine 
applications, as some amount of covariance usually exists 
between sensor residual measurements. For example, they are 
corrected using the same parameters and generated using the 
same reference model. An approach to address this is to define 
sensor measurement probability density functions in multi-
parameter space and then perform multidimensional 
integration to assess detection and classification performance. 
However, this would add much more complexity. The given 
metric based on the properties of the chi square distribution 
and the non-central chi square distribution is more simplistic, 
but should be verified by additional analysis such as the 
Monte Carlo simulation analysis conducted in this paper.  

A couple of recommendations for follow-on work are 
suggested. First, the presented analytical metrics are based on 
linear theory while aircraft engines exhibit nonlinear behavior. 
As such, a recommendation to extend the analysis to full-
envelope engine operation would be to repeat the analysis at 
different engine operating points to assess how this affects 
sensor selection results. Furthermore, equal importance is 
placed on each parameter to be estimated and each fault type 
to be diagnosed. A natural extension to the metrics is to place 
a user-specified weighting on the different parameters or faults 
based on their criticality or frequency of occurrence. Finally, 
the estimation and diagnostic accuracy is only one piece of the 
overall sensor selection decision process. Other factors of 
merit include criteria such as sensor weight, reliability, and 
overall life cycle cost. Those factors should also be considered 
as part of the sensor selection process.  

Conclusions 
The sensor selection metrics introduced in this paper 

provide analytical tools to assist engine health management 
system designers in making sensor selection decisions. The 
metrics are easy to use, and are specifically tailored towards 
estimation and diagnostic approaches commonly applied to 
aircraft engines. They can be readily applied for assessing the 
benefits of adding or removing currently available engine 
sensors, or assessing the benefits of newly developed sensors 
as they become available. Through Monte Carlo simulation 
analysis, the metrics were verified to perform well in 
identifying optimal sensor suites when evaluated using linear 
system information. For both Kalman filter and maximum a 
posteriori health parameter estimation, the corresponding 
sensor selection metrics were found to perform very well in 
satisfying their intended objective—identifying the sensor 
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suite that minimizes the mean sum of squared estimation 
errors. The gas path fault diagnostic sensor selection metric 
based on theoretical correct classification rate also performed 
well in its objective of identifying sensor suites that provide 
the best diagnostic performance. Due to a simplification made 
in the theoretical derivation, the metric was found to 
underpredict the true correct classification rate. However, it 
does provide a theoretical lower bound on correct 
classification performance offered by a given sensor suite. 
Additionally, it is effective for identifying fault pairs at risk 
for misclassification and making sensor selection decisions to 
address such risks. Recommended follow on work is to couple 
these accuracy metrics with additional figures of merit 
pertinent for sensor selection decision. This includes 
considering the individual criticality of the performance 
parameters to be estimated or the fault types to be diagnosed, 
and to also couple these metrics with additional metrics 
reflecting the life cycle cost of adding specific sensors.  
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