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Abstract 29	

Exposure to ionizing radiation can cause rapid mineral loss and increase bone-resorbing 30	

osteoclasts within metabolically-active, cancellous-bone tissue leading to structural deficits. To 31	

better understand mechanisms involved in rapid, radiation-induced bone loss, we determined the 32	

influence of total-body irradiation on expression of select cytokines known both to stimulate 33	

osteoclastogenesis and contribute to inflammatory bone disease. Adult (16wk), male C57BL/6J 34	

mice were exposed to either 2Gy gamma rays (137Cs, 0.8Gy/min) or heavy ions (56Fe, 600MeV, 35	

0.50-1.1Gy/min); this dose corresponds to either a single fraction of radiotherapy (typical total 36	

dose is ≥10Gy) or accumulates over long-duration, interplanetary missions. Serum, marrow, and 37	

mineralized tissue were harvested 4hrs-7d later. Gamma irradiation caused a prompt (2.6-fold 38	

within 4hrs) and persistent (peaking at 4.1-fold within 1d) rise in the expression of the obligate 39	

osteoclastogenic cytokine, receptor activator of nuclear factor kappaB-ligand (Rankl) within 40	

marrow cells over controls. Similarly, Rankl expression peaked in marrow cells within 3d of iron 41	

exposure (9.2-fold). Changes in Rankl expression induced by gamma irradiation preceded and 42	

overlapped with a rise in expression of other pro-osteoclastic cytokines in marrow (e.g., 43	

monocyte chemotactic protein-1 increased 11.9-fold, tumor necrosis factor-alpha increased 1.7-44	

fold over controls). Marrow expression of the RANKL decoy receptor, osteoprotegerin (Opg), 45	

also rose after irradiation (11.3-fold). The ratio Rankl/Opg in marrow was increased 1.8-fold, a 46	

net pro-resorption balance. As expected, radiation increased a serum marker of resorption 47	

(tartrate resistant acid phosphatase) and led to cancellous bone loss (16% decrease in bone 48	

volume/total volume) through reduced trabecular struts. We conclude that total-body irradiation 49	

(gamma or heavy-ion) caused temporal, concerted regulation of gene expression within marrow 50	

and mineralized tissue for select cytokines which are responsible for osteoclastogenesis and 51	
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elevated resorption; this is likely to account for rapid and progressive deterioration of cancellous 52	

microarchitecture following exposure to ionizing radiation.  53	

 54	

55	
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Introduction 56	

During spaceflight beyond the Earth’s protective magnetosphere, astronauts are exposed 57	

to a complex mixture of ionizing radiation (Durante and Cucinotta 2011), including low linear-58	

energy-transfer (LET) gamma-rays and protons, as well as more damaging high-LET radiation. 59	

Exposure to simulated space radiation is characterized by relatively low doses (≤2Gy) of ion 60	

species due to Solar Particle Events (SPEs) (Parsons and Townsend 2000), (Shurshakov and 61	

others 1999) or galactic cosmic rays (Hassler and others 2014; Zeitlin and others 2013). 62	

Simulated space radiation at these doses can cause acute and adverse effects within the skeletal 63	

tissue of the rodent (Hamilton and others 2006), (Kondo and others 2010), (Yumoto and others 64	

2010), (Alwood and others 2010), (Lloyd and others 2012). Doses in the range of 1-2 Gy also are 65	

relevant to radiotherapy; total therapeutic doses can vary, but total body doses of 10-15 Gy 66	

typically are fractionated into single doses of ~2Gy which ultimately can lead to increased 67	

fracture incidence (Baxter and others 2005). Radiation exposure, in particular, to high-LET 68	

particles, may exacerbate the deleterious effects of musculoskeletal disuse (Keyak and others 69	

2009; Lang and others 2004; Lang and others 2006; LeBlanc and others 2000), which occurs 70	

during prolonged bed rest or spaceflight.  71	

Bone-resorbing osteoclasts are thought to cause the rapid (Kondo and others 2009), 72	

(Willey and others 2010), (Turner and others 2013), (Alwood and others 2012) cancellous strut 73	

losses following simulated space-irradiation (≤ 2Gy). Radiation increases the numbers of 74	

osteoclasts and the extent of cancellous surfaces covered by osteoclasts. However, the role that 75	

receptor activator of nuclear factor kappa-B ligand (RANKL), the principal osteoclastogenic 76	

cytokine, plays in concert with other pro-osteoclastic inflammatory cytokines (Takayanagi 2007), 77	

(Boyce and Xing 2008), (Kim and others 2006) is not fully understood with respect to the 78	
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rapidity of cancellous bone loss (Kondo and others 2009). Therefore, we examined the temporal 79	

expression within both marrow and mineralized tissue of Rankl and select pro-osteoclastogenic 80	

cytokines implicated in various models of inflammatory bone loss (Braun and Schett 2012), 81	

following low- and high-LET space-like radiation exposure. 82	

We hypothesized that radiation exposure induces expression of pro-osteoclastogenic 83	

genes related to inflammation within both marrow and mineralized tissue compartments, 84	

increases markers of bone resorption, and is likely to contribute to later cancellous bone loss. 85	

This work shows an acute and time-dependent elevation of Rankl, osteoprotegerin (Opg), 86	

monocyte chemotactic protein-1 (Mcp1), and tumor necrosis factor alpha (Tnf) gene expression 87	

in the marrow and skeletal compartments due to low- or high-LET irradiation; these changes 88	

precede (before 3 days) manifestation of bone loss (3-7 days) following iron irradiation at a dose 89	

relevant to fractionated radiotherapy or space missions. 90	

 91	

Materials and Methods 92	

Animals  93	

Post-pubescent (16 weeks ± 4 days at time of irradiation), male, C57BL/6J mice (Jackson 94	

Labs) were individually housed and provided food (LabDiet 5001, St. Louis, MO) and water ad 95	

libitum, as described elsewhere (Yumoto and others 2010). Animals were euthanized by CO2 96	

inhalation or anesthetized with isoflurane followed by blood draw via cardiac puncture. The 97	

Institutional Animal Care and Use Committees for NASA Ames Research Center and 98	

Brookhaven National Lab approved all procedures. 99	

 100	

Experiment Design and Radiation Exposure 101	
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Experiments were conducted to determine the temporal changes in the levels of key 102	

genes and circulating proteins related to bone resorption in the latency period prior to the onset 103	

of overt structural loss. To evaluate heavy-ion effects, conscious mice were exposed to high-LET 104	

iron ions (56Fe, 600 MeV/ion, 5cGy or 2Gy, 5 or 0.50 - 1.10 Gy/min, respectively) at the NASA 105	

Space Radiation Lab, Brookhaven National Lab or were sham-irradiated as previously described 106	

(n=6-8/group). Mice were euthanized and tissues harvested 3 or 7 days after exposure. To 107	

evaluate gamma radiation effects, conscious mice were irradiated with low-LET 137Cs gamma 108	

rays (2Gy, 0.80 Gy/min, as described in detail in (Kondo and others 2010)), or were sham-109	

irradiated. Euthanasia and tissue harvest took place 4 hours or 1 day (± 2 hours), 3 days, or 7 110	

days after exposure (n=5-7/group). 111	

 112	

Bone Microarchitecture 113	

Bone volume and microarchitecture of the proximal tibial metaphysis were quantified by 114	

microcomputed tomography (6.8 µm pixel size, 3500 ms integration time, 50 kV, Skyscan 1174, 115	

Bruker microCT, Kontich, Belgium), similar to (Kondo and others 2009). Briefly, a 1.0 mm–116	

thick region located 0.24 mm distal to the proximal growth plate of the tibia was selected and 117	

semi-autonomously contoured to include cancellous tissue. To assess bone loss, the bone volume 118	

to total volume fraction (BV/TV, %), trabecular thickness (mm), and trabecular number (TbN, 119	

1/mm) were calculated and reported following the convention of Bouxsein, et al (Bouxsein and 120	

others 2010). 121	

 122	

qRT-PCR for Gene Expression within Marrow and Skeletal Tissue 123	
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Femora and tibiae were dissected, cleaned of soft tissues, flushed of bone marrow with 124	

PBS, and stored in RNALater (Qiagen, Valencia, CA) at -80C. Bone marrow cells were lysed 125	

and preserved with guanidine-thiocyanate-containing RLT buffer (Qiagen, Valencia, CA) with 126	

1% beta-mercaptoethanol at -80C. RNA was extracted from homogenized bone or marrow 127	

lysates using Trizol (Ambion, Carlsbad, CA, USA), QIAshredder, and RNeasy mini kit (Qiagen, 128	

Inc., Valencia, CA, USA). For each tissue, RNA was treated with RNase-free DNase Set (Qiagen, 129	

Inc., Valencia, CA, USA) in accordance to manufacturer’s instructions. RNA quality and 130	

quantity were determined using a spectrophotometer (NanoDrop, Wilmington, DE, USA).  The 131	

RNA quality was confirmed by electrophoresis using the 2100 Bioanalyzer (Agilent 132	

Technologies, Santa Clara, CA, USA). 133	

Following manufacturer’s recommendations, RNA was reversed transcribed and 134	

simultaneously used for qPCR using GoTaq® Probe 1-Step RT-qPCR System (Promega, 135	

Madison, WI, USA). Portions of the following mouse gene sequences were amplified using 136	

Taqman gene expression assays (Applied Biosystems, Inc., Foster City, CA, USA): receptor 137	

activator of nuclear factor kappa-B ligand (Rankl, assay ID: Mm00441906_m1), Osteoprotegerin 138	

(Opg, assay ID: Mm01205928_m1), Tumor necrosis factor alpha (Tnf, assay ID: 139	

Mm00443260_g1), monocyte chemotactic protein-1 (Mcp1, assay ID: Mm00441242_m1), 140	

interleukin-6 (Il6, assay ID Mm00446190_m1), tartrate-resistant acid phosphatase (Acp5, assay 141	

ID: Mm00475698_m1), cathepsin-K (Ctk, assay ID: Mm00484039_m1), nuclear factor of 142	

activated T-cells, cytoplasmic 1 (Nfatc1, assay ID: Mm00479445_m1), and colony stimulating 143	

factor 1 (Csf1, assay ID: Mm00432686_m1). We standardized expression levels to mitochondrial 144	

ribosomal protein L19 (L19, assay ID: Mm02601633_g1) to facilitate comparison among 145	

samples. Hypoxanthine-guanine phosphoribosyltransferase (Hprt1, assay ID: Mm01545399_m1) 146	
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and transmembrane protein 40 (Tmem40, assay ID: Mm00460636_m1) were analyzed as 147	

alternate housekeeping genes. The reactions were performed in the 7300 RT-PCR System 148	

(Applied Biosystems, Foster City, CA) or SmartCycler Real-Time PCR System (Cepheid, 149	

Sunnyvale, CA, USA). 150	

We analyzed multiple candidate housekeeping genes for normalization, including L19, 151	

Hprt1, and Tmem40. Gamma radiation exposure did not modulate levels of the gene L19 at the 152	

various time points, but transiently and modestly increased gene expression of Hprt1 (-0.4 cycles, 153	

1.4-fold) and Tmem40 (-1 cycle, 2.3 fold). Following iron irradiation, L19 (as well as Hprt1) 154	

showed small increases in cycle number due to treatment (-0.4 cycles, 1.4 fold for L19). As these 155	

differences housekeeping genes were small relative to those of cytokine and resorption marker 156	

levels, gene expression results reported were normalized relative to L19 for both gamma and iron 157	

irradiation experiments. 158	

 159	

Serum TRACP 5b 160	

 Blood was collected from the heart at the time of euthanasia and serum was separated and 161	

stored at -80°C until processed. Enzyme immunoassays were performed for measurement of	162	

tartrate-resistant acid phosphatase 5b (TRACP 5b), a biomarker for osteoclast-mediated bone 163	

resorption, using a commercial kit (Immunodiagnostic Systems, Fountain Hills, AZ) and 164	

according to the manufacturer protocol.   165	

 166	

Statistics 167	

All data are reported as mean ± standard deviation. To determine significant differences 168	

compared to sham-irradiated controls, a one-way analysis of variance (or t-test when only two 169	
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groups), or Welch’s test with heteroscedastic data, was used, followed by Dunnett’s post-hoc test, 170	

with p ≤ 0.05 accepted as significant. 171	

 172	

Results 173	

Cancellous Microarchitecture Following Iron Irradiation 174	

 To determine the extent of bone loss over the short term, mice were irradiated with 56Fe 175	

ions (600 MeV) or were sham irradiated (0 Gy controls), then 7 days later bones were harvested 176	

and cancellous microarchitecture in the proximal tibia quantified ex vivo using 3D 177	

microcomputed tomography. Body weights of irradiated and control animals at the time of tissue 178	

harvest did not differ (data not shown). Consistent with previous results, irradiation with 2Gy 179	

reduced the ratio of bone volume to total volume (BV/TV) by 16% and trabecular number (TbN) 180	

by 15% compared to controls (Figure 1), but did not affect trabecular thickness (not shown). A 181	

lower dose of 5 cGy iron failed to elicit changes in bone structural parameters compared to 182	

control and is therefore below the threshold dose for causing bone loss (data not shown). These 183	

results validate the model of ionizing radiation-induced cancellous bone loss. 184	

 185	

Marrow Gene Expression Following Iron Irradiation 186	

 To determine if irradiation regulates expression of various pro-osteoclastogenic genes, 187	

mRNA levels in bone marrow cell lysates were measured using quantitative real-time RT-PCR 188	

three days after high-LET iron irradiation and in sham-irradiated controls. Within 3 days of 189	

exposure, iron irradiation increased expression of the Rankl gene 9.2-fold compared to sham-190	

irradiated controls (Figure 2). At this time point, transcripts of Opg and Mcp1 were not detected 191	

in the marrow (data not shown). Radiation exposure did not alter Tnf expression (Figure 2). In 192	
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contrast, a lower dose of iron (5 cGy) did not elicit changes in gene expression (data not shown). 193	

These data demonstrated that high-LET particulate irradiation with 2 Gy elicited a pro-194	

osteoclastogenic cytokine expression in the bone marrow. 195	

 196	

Gene Expression of Skeletal Tissue Following Iron Irradiation 197	

To determine if ionizing radiation regulated expression of select genes related to 198	

osteoclastogenesis (Rankl, Opg) and osteoclast-mediated bone resorption (Ctk, Acp5) in cells of 199	

within the mineralized compartment of skeletal tissue, RNA was purified from bone after 200	

removal of the marrow (leaving predominantly osteocytes). Within 3 days, iron irradiation 201	

increased expression of Rankl by 1.9-fold, Acp5 by 1.5-fold, and Ctk by 2.1–fold over sham 202	

controls, as shown in Figure 3. Expression levels of Opg did not change. The ratio of Rankl/Opg 203	

expression increased 2.8-fold, which provides a relative index that, on balance, cytokine levels 204	

favored increased bone resorption.  205	

 206	

Marrow Gene Expression Following Gamma Irradiation 207	

 To determine whether irradiation up-regulated osteoclastogenic and inflammatory genes, 208	

mRNA expression was measured in bone marrow at 4 hours or 1, 3, or 7 days after low-LET 209	

gamma irradiation and in sham-irradiated controls. Within 4 hours, 2Gy gamma-irradiation 210	

elevated Rankl in bone marrow 2.6-fold over the sham, whereas gene expression of Opg was 211	

undetectable regardless of treatment (data not shown). Subsequently, the expression of each gene 212	

of interest measured in bone marrow (Rankl, Opg, Csf1, Nfatc1, Tnf, Mcp1, and Il6) transiently 213	

increased within 1 day and subsequently declined towards sham-levels, see Figure 4. Expression 214	

of Csf1, and Tnf remained elevated through day 3 post-irradiation, while high Rankl expression 215	
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persisted through day 7 post-irradiation. At their peak, pro-osteoclastogenic genes Rankl and 216	

Csf1, and the osteoclast-related transcription factor Nfatc1, increased by 4.1-fold, 4.2-fold, and 217	

2.0-fold, respectively (Fig 4a, 4d, 4e); the Rankl-decoy receptor Opg increased by 11.3-fold (Fig 218	

4b); pro-inflammatory genes Tnf, Mcp1, and Il6 increased by 1.7-fold, 11.9-fold, and 1.6-fold, 219	

respectively (Fig 4f, 4g, 4h) relative to controls. The ratio of Rankl / Opg increased by 1.8-fold at 220	

day 7 after irradiation (Fig 4c). These data show the temporal nature of cytokine regulation in the 221	

marrow following radiation exposure. 222	

 223	

Gene Expression of Skeletal Tissue Following Gamma Irradiation 224	

Following gamma irradiation, mRNA levels of flushed femora was quantified at 3 and 7 225	

days after irradiation or sham using qRT-PCR normalized to the housekeeping gene, L19, as 226	

shown in Figure 5. Within 3 days, gamma radiation exposure up-regulated the expression of 227	

Rankl (2.3-fold), Acp5 (2.2-fold) and Ctk (2.3-fold). Expression of Tnf, Opg, and the Rankl/Opg 228	

ratio was not changed (Figure 5). These data suggest embedded and/or lining cells contribute to 229	

osteoclast stimulation and provide gene expression evidence of increased resorption in the 230	

skeletal tissue. 231	

 232	

Serum TRACP 5b Following Gamma Irradiation 233	

 To determine if temporal changes in skeletal gene expression (Figure 3,5) coincide with 234	

changes in a protein biomarker of resorption, the circulating levels of osteoclast-specific TRACP 235	

5b were measured at 1, 3, and 7 days after gamma irradiation and in sham-controls. Gamma 236	

irradiation increased TRACP 5b serum levels by 34% on day 1 and 17% on day 3, compared to 237	

sham, with a subsequent gradual decline towards control levels by day 7 (data not shown). Thus, 238	
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circulating TRACP 5b levels showed a similar time course, though lower in magnitude, 239	

compared to skeletal gene expression for Rankl and other pro-osteoclastogenic cytokines. 240	

 241	

Discussion 242	

To better understand the mechanisms underlying radiation-induced stimulation of bone 243	

resorption, we investigated molecular signals within the latency period between radiation 244	

exposure and the manifestation of cancellous tissue loss. In summary, the results show that 245	

exposure to either gamma or heavy ion radiation up-regulates gene expression for the canonical, 246	

osteoclastogenic factor RANKL, as well as other pro-osteoclast cytokines (Mcp1, Tnf, Il6); this 247	

occurs in cells that reside in the marrow cavity and within mineralized tissue. Further, radiation-248	

induced changes in cytokine expression are temporally related to changes in several indices of 249	

bone resorption, including gene expression (Ctk, Acp5, Nfatc1) and a serum biomarker 250	

(TRACP5b levels).  Gene expression changes at the molecular scale (as early as 4 hrs or 1 day) 251	

precede measurable structural losses, which manifest here by day 7 after the 2 Gy iron exposure, 252	

although in some cases such as gamma irradiation and lower doses of iron, decrements in 253	

cancellous bone volume can be observed as early as 3 days after exposure (Kondo and others 254	

2009), (Yumoto and others 2010). A dose threshold was observed, as 5 cGy iron exposure failed 255	

to elicit changes in cytokine gene expression or cancellous bone structure  (data not shown), 256	

providing additional indirect evidence in support of the hypothesis that early induction of 257	

osteoclastogenic cytokine gene expression by biologically effective doses of radiation leads to 258	

cancellous bone loss.   259	

Together, the results demonstrate radiation-induced structural changes are associated with a 260	

marrow environment favoring osteoclast differentiation and stimulation by both RANKL and 261	
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other inflammation-related cytokines as follows. Radiation increased gene expression levels for 262	

pro-osteoclastogenic signaling molecules (Csf1, Rankl, Tnf), as well as anti-osteoclastogenic 263	

molecules (Opg), in the marrow and mineralized tissue of irradiated mice compared with sham-264	

controls. Iron irradiation elevated the ratio of Rankl/Opg in both the marrow and skeletal tissue 265	

by day 3, while after gamma irradiation, the ratio was elevated in the marrow at 4 hours and then 266	

again at day 7. A rapid stimulation of RANKL in the marrow and bone compartment, potentially 267	

from haematopoietic-lineage cells (Pacifici 2012), (Fumoto and others 2014), (Pacifici 2010) or 268	

stromal-lineage cells (Suda and others 1999),(Boyle and others 2003), after irradiation is 269	

consistent with studies that used radio-therapeutic doses and regimens. In young mice, a single 270	

dose of 5 or 10 Gy increased Rankl/Opg in whole femora within 3 days (Han and others 2014). 271	

Using mice deficient in the global anti-oxidant transcription factor Nrf2, radiation exposure at 272	

high dose (20Gy) increased RNA expression for Rankl in cultured osteoblasts grown ex vivo, but 273	

this was not observed in cells from wild-type mice (Rana and others 2012). These findings 274	

suggest Nrf2-mediated regulation of antioxidant expression may dampen bone resorption 275	

responses to radiation.  Further, when a macrophage cell line (RAW264.7) capable of 276	

differentiating into osteoclast-like cells after RANKL treatment is exposed to ionizing radiation 277	

(2 Gy gamma), gene expression levels rise for β3 integrin, an adhesion receptor that is important 278	

for osteoclast differentiation, as well as receptor activator of nuclear factor kappa-B (RANK), the 279	

receptor for RANKL on osteoclasts (Yang and others 2012). In other in vitro work, irradiation at 280	

2 or 4 Gy up-regulates Rankl in differentiated, MC3T3-E1 osteoblast-like cells (Yang and others 281	

2013). Our work is the first to demonstrate the time course of changes in osteoclastogenic gene 282	

expression following 2Gy exposure (both low- and high-LET) with subsequent bone loss, and 283	

within the upper range of space-relevant doses and types of radiation. 284	
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Ionizing radiation also increased expression of pro-inflammatory, osteoclastogenic ligands 285	

Mcp1, Tnf and Il6, which are all factors generally thought to stimulate osteoclast activity 286	

(Takayanagi 2007) in the presence of RANKL (Kostenuik and Shalhoub 2001), (Yu and others 287	

2004), (Kim and others 2005), (Sul and others 2012), (Kim and others 2006), (Liu and others 288	

2013). In some reports, TNF may act independently of RANKL to stimulate osteoclastogenesis 289	

(Kobayashi and others 2000). Our results are consistent with other work showing that in vivo 290	

exposure to ionizing radiation leads to rapid, complex, and interrelated sequence of signals 291	

constituting an immune-related, cytokine response in bone marrow (Willey and others 292	

2011),(Schaue and others 2012; Schaue and McBride 2010), (Buchwald and Aurora 2013). At 293	

very high dose (10Gy), which is sufficient to ablate the bone marrow of haematopoietic cells, 294	

radiation causes bone loss related to elevated fractalkine expression by vascular endothelial cells, 295	

inflammatory cytokines Tnf, interleukin 1 beta, and interferon gamma, and recruitment of pre-296	

osteoclasts (CD11b) (Han and others 2014). Additionally, the time course of cytokine and 297	

resorption-related gene expression shown in this study coincides with that of marrow cell death 298	

and repopulation (Kondo and others 2010), (Otsuka and others 2008), suggesting a possible 299	

relationship between an expanded population of marrow macrophages clearing apoptotic cells 300	

and debris after irradiation, the differentiation of macrophages into osteoclasts, and increased 301	

resorption activity.  302	

Taken together, these data lead us to propose a three-stage process for radiation-induced 303	

osteoclastogenesis: first, radiation-induced gene expression of inflammatory cytokines lead to 304	

enrichment of the marrow with osteoclast precursors (monocyte-macrophage, myeloid lineage 305	

cells); second, the marrow and skeletal microenvironment drives osteoclast differentiation; and, 306	

third, inflammatory signals co-stimulate differentiating and mature osteoclasts. 307	
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As a functional measure of active osteoclasts, we provide evidence that 2Gy gamma 308	

irradiation elevates circulating levels of osteoclast-specific TRACP 5b protein, indicative of 309	

increased bone resorption. In our work, the radiation-induced elevation in serum TRACP 5b 310	

returned to control levels by day 7 following exposure, These results are consistent with those 311	

reported by Willey et al. showing that X-irradiation (2Gy) of female mice increases circulating 312	

TRACP 5b levels 1, 3, and 7 days after irradiation (Willey and others 2011), (Willey and others 313	

2010).  314	

Radiation-induced decrements in cancellous tissue observed in these experiments were 315	

consistent with our previous results. Acute cancellous bone loss temporally manifests on day 3 at 316	

a dose as low as 10 cGy iron (Yumoto and others 2010). Persistent structural decrements (lasting 317	

>1 week) manifest at doses above ~50 cGy iron (Yumoto and others 2010) and 1 Gy gamma 318	

exposure (Hamilton and others 2006), (Kondo and others 2010) before being overtaken, in the 319	

case of gamma irradiation, by age-related bone loss (Alwood and others 2012). Taken together, 320	

given the observed time course of skeletal gene expression and serum resorption markers, we 321	

conclude the structural deficits arose from a spike in osteoclastogenic cytokine expression that 322	

follows exposure to ionizing radiation (Kondo and others 2009),(Willey and others 2010).  323	

Limitations of this work include the dose rate used to model space radiation. It is an open 324	

question whether lower dose rate exposures that constitute true space radiation stimulate 325	

osteoclasts and bone loss to the same extent as the exposures used here. In addition, other 326	

signaling molecules, including various other cytokines not studied here, are likely also to play a 327	

role in regulating bone resorption after challenge with ionizing radiation. 328	
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In conclusion, an improved understanding of the molecular response to radiation 329	

exposure may aid the development of biological treatments to mitigate potentially deleterious 330	

skeletal consequences during space flight. 331	
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 341	

Figure Legends 342	

 343	

Figure 1 344	

2 Gy iron irradiation caused acute bone loss in the tibial metaphysis by 7 days via removal of 345	

trabecular struts. A) Bone volume fraction (BV/TV) and B) trabecular number (TbN). Data are 346	

mean ± SD, with * denoting p<0.05 vs. sham. 347	

 348	

Figure 2 349	

2 Gy iron irradiation effects on cytokine gene expression in tibial marrow cells on day 3. 350	

Radiation exposure increased the gene expression levels of A) Rankl. Gene expression levels of 351	

B) Tnf were unchanged. Data are mean ± SD, with ** denoting p<0.01 vs. sham. 352	
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 353	

Figure 3 354	

2 Gy iron irradiation effects on gene expression in mineralized tibial tissue (marrow flushed) by 355	

day 3. Comparison of expression levels of A) Rankl, B) Opg, C) Rankl / Opg, D) Acp5, and E) 356	

Ctk genes after iron irradiation compared to controls. Data are mean ± SD, with ** denoting 357	

p<0.01 vs. sham. 358	

 359	

Figure 4 360	

2 Gy gamma radiation regulated expression of pro-osteoclastic and resorption-related genes in 361	

pooled tibial and femoral marrow and lining cells. Time course (+1, +3, and +7 days post-362	

irradiation) for the following genes compared to sham control: A) Rankl, B) Opg, C) Rankl/Opg, 363	

D) Csf1, E) Nfatc1, F) TNF, G) Mcp1, and H) Il6. Data are mean ± SD, with * denoting p<0.05 364	

and **p<0.01 vs. sham. 365	

 366	

Figure 5 367	

2 Gy gamma irradiation regulated gene expression in flushed femoral and tibial tissue by day 3. 368	

Comparison of expression levels of A) Rankl, B) Opg, C) Rankl/Opg, D) Acp5, E) Ctk, and F) 369	

Tnf, genes after iron irradiation compared to controls. Data are mean ± SD, with * denoting 370	

p<0.05 and ** denoting p<0.01 vs. sham. 371	

 372	

373	
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