A SUMMARY OF
THE LATERAL CUTOFF ANALYSIS AND RESULTS FROM NASA’S
FARFIELD INVESTIGATION OF NO-BOOM THRESHOLDS

20th International Symposium on Nonlinear Acoustics

2nd International Sonic Boom Forum

Lyon, France
July 3, 2015

Presented by:
Larry J. Cliatt, II

Authors:
Larry J. Cliatt II, Michael A. Hill, Edward A. Haering, Jr., Sarah R. Arnac

NASA Armstrong Flight Research Center
Farfield Investigation of No-Boom Thresholds (FAINT)
Aeronautics Flight Research

- Over 60 years of flight research (NACA Muroc Flight Test Unit)
- Edwards Air Force Base (EAFB)
- Remote Location
- 350 Testable Days Per Year
- Extensive Range Airspace
- Supersonic Corridor
TOPICS OF DISCUSSION

• Motivation & Objectives
• Test Set-up & Execution
• Analysis
 – Metrics for lateral cutoff acoustics
 – “Acoustic lateral cutoff”
 – Transition region & shadow zone measurements and analysis
 – Numerical prediction comparisons
• Summary & Considerations
• Future Work
MOTIVATION & BACKGROUND

- **Need:** Understanding of entire sonic boom envelope
- **Limitations to common numerical predictions:**
 - Based on geometrical acoustics
 - Complex/unreliable solutions at carpet edge
 - No solutions in shadow zones
PRIMARY OBJECTIVES

- Study lateral evolution of pressure signatures
 - Finely spaced measurements
 - Attenuation and increase in signature length
 - Evanescent decay in shadow zone

- Analyze noise beyond common numerical predictions
- Define audible extent of sonic boom noise region
- Build database
Test Setup and Execution

- **Flight Conditions**
 - F-18B airplane
 - Mach 1.22 – 1.29 and 35000 – 41000 ft (10.7 – 12.5 km) pressure altitude

- **7375 ft (2.2 km), 125 ft (38 m) spaced linear microphone array at 2300 ft (0.7 km) MSL**
 - 60 microphones

- **Initial PCBoom\(^1\) used for flight planning**

\(^1\) PCBoom was developed by Wyle (El Segundo, California)
• Overpressure alone not sufficient for sonic boom analysis
• Familiar metrics less applicable for waveforms near lateral cutoff due to variable duration and impulsiveness
• **Perceived Sound Exposure Level (PL\text{SEL})**
 – 99% energy windowing
 – Sound Exposure Level (SEL) 1-second normalized integration (ISO 1996)
 – Stevens’ Mark VII Perceived Level weighting
MEASURED DATA VS. NUMERICAL PREDICTIONS

• Five cases where PCBoom predicts lateral cutoff on the microphone array, most likely due to:
 – Inability to model shadow zone
 – In-flight adjustments to measure evanescent waves
 – Expected reduction in accuracy beyond 70% of predicted carpet width

• Considerable noise 1 – 2 nm (1.9 – 3.7 km) beyond numerical predictions

• Predicted PL_{SEL} typically higher than measured (4 out of 5 cases)
“Acoustic Lateral Cutoff”

- Lateral cutoff definition: The lateral extent of geometrical acoustics, where ray tracing becomes tangent to the ground.
- “Acoustic lateral cutoff” definition: The lateral extent of considerable sonic boom noise.
 - Ambient noise floor of $58.6 \text{ dB } PL_{SEL}$
 - At four times the acoustic energy ($+6 \text{ dB}$) of the ambient noise, sonic boom waveform characteristics are consistently discernable.
 - $\geq 65 \text{ dB } PL_{SEL}$
• Considerable noise beyond predicted lateral cutoff
• Exponential-like decay
• Data supports 65 dB PL_{SEL} as an “acoustic lateral cutoff”
Temperature Inversion Effects

- Measurements taken during strong temperature inversions showed higher variability
- Strong, distinct oscillations

Higher noise levels
- 80 dB at 6.6 nm (12 km)

Indistinct decay
- <60 dB expected at 8 nm (15 km)
SUMMARY

• Conclusions
 – PL_{SEL} shown to be a more consistent and applicable metric for sonic boom measurements near lateral cutoff
 – Acoustic lateral cutoff defined as 65 dB PL_{SEL}
 – Temperature inversions may cause significantly higher noise levels than expected
 – Current definition of lateral cutoff does not adequately represent a sonic boom’s noise region
 • Common sonic boom numerical predictions may not capture 2 nm of considerable noise

• Future considerations
 – Downwind lateral cutoff measurements
 – Vertical measurements near lateral cutoff
 – Varying strengths of temperature inversions
FUTURE WORK

• Database for research validation:
 – Analytical theories
 • ex. Coulouvrat: effects of crosswinds
 – Shadow zone computer codes
 • ex. Lossy Nonlinear Tricomi Equation (LNTE)
• Beamforming
• Mach cutoff analysis
QUESTIONS?