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Airvolt Aircraft Electric Propulsion Test Stand 

Aamod Samuel1 and Yohan Lin2 
NASA Armstrong Flight Research Center, Edwards, CA 93523-0273 

Development of an electric propulsion test stand that collects high–fidelity data of motor, 
inverter, and battery system efficiencies; thermal dynamics; and acoustics independent of 
manufacturer reported values will improve understanding of electric propulsion systems to 
be used in future aircraft. A buildup approach to this development reveals new areas of 
research and best practices in testing, and attempts to establish a standard for testing these 
systems.  

Nomenclature 
BIT = built in test 
CAN = controller area network 
EMI = electromagnetic interference 
FEM = finite element method 
GPS = Global Positioning System 
Grms = root mean square of g-force 
GUI = graphical user interface 
LED = light emitting diode 
NASA = National Aeronautics and Space Administration 
NC = normally closed 
NI = National Instruments 
NO = normally open 
P/S = power supply 
PTZ = pan, tilt, zoom 
PWM = pulse width modulation 
PXI = PCI (peripheral component interconnect) extension for instrumentation 
RAID = redundant array of independent disks 
S/s = samples per second 
TDMS = Technical Data Management Solution 
UPS = uninterruptible power supply 
VDC = volts direct current 

I. Introduction 
s battery and motor technologies advance, the realm of powered flight is expanding to include electric propulsion. 
It is beneficial to gain a better understanding of such propulsion systems from electrical, aerodynamics, and 

structural perspectives. Steps toward that understanding are being implemented at the National Aeronautics and Space 
Administration (NASA) Armstrong Flight Research Center (Edwards, California) in the form of a modular electric 
propulsion test stand called Airvolt. The Airvolt test stand is designed to accommodate small systems on the order of 
100kW motors and propeller diameters up to 6 ft (1.8 m). Data acquisition systems monitor thrust and torque; currents 
and voltages between power sources, inverters, and motors; as well as vibrations, temperatures, and acoustic levels of 
the system. Measurement capabilities up to 2 million samples per second and bit resolution of 14 bits provide a 
valuable and unique capability and allow for better understanding of the system under test. The modularity of the 
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stand also allows for testing a variety of motor and inverter systems. The stand is designed to provide a means of 
accurately calculating efficiencies, reveal unknown dependencies between subsystems, and develop methods of 
verification and validation for new electric propulsion technologies. An overall layout of the Airvolt test stand can be 
seen in Fig. 1. 

 

 
 

Figure 1. Airvolt test stand architecture. 

II. System Development Process 

A. Test Article 
In the ideation phase of Airvolt, research into commercially available electric propulsion systems was performed. 

After beginning to understand the current state of the industry, requirements were set forth to determine the best way 
to test such systems, while allowing for flexibility and growth potential. As test stand development began, having an 
existing commercially available electric propulsion system provided a method by which the stand capabilities of the 
Airvolt test stand could be validated. Furthermore, having a known test article could help with troubleshooting and 
validating subsystems. The Airvolt test stand uses a Pipistrel Electro Taurus (Pipistrel, Ajdovscina, Slovenia) plug 
and play propulsor (See Bibliography item 1), which was selected for its high power to weight ratio. The specification 
of the system can be seen in Table 1, and the components of the system can be seen in Table 2. Three of these systems 
were purchased, which included the motor, inverter, and batteries. 

 
Table 1. Pipistrel Electro Taurus Specifications.

 
Electric motor Permanent magnet, air cooled, synchronous 3-phase 

PWM 40kW (53hp max) 30kW continuous  
Max RPM 2200 RPM 
Battery voltage 270V 
Battery capacity 7.10kW 
System weight 75 kg (165 lb) 
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Table 2. Pipistrel system components. 
 

4 batteries 
Inverter 
ESYSMAN V2 – Pipistrel’s cockpit interface to control 
the system 
High voltage module – measures the high voltage 
CAN bus1 communication module 
Battery charger 
Electric motor 

 

B. Sensors 
Research of commercially available systems and the Green Flight Café Challenge (See Bibliography item 2) led 

to specific sensor requirements. One of the main goals of the test stand is to measure efficiencies throughout the 
system, including motor and inverter efficiency. This efficiency can be derived by measuring the electrical power into 
and out of the inverter and the mechanical power coming out of the motor (Eq. (1) and Eq. (2)). 
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Inverter Efficiency

(2) 

 
Power can be determined by using the following sensors: 
 Voltage sensors (LEM CV 3-500); 
 Hall effect current sensors (LEM LF 305-S); 
 Load cells (Honeywell Model 45 and 47 for thrust and torque); and 
 RPM feedback from the motor controller. 

 
These high-bandwidth voltage and current sensors were selected due to the expected high frequency content 

resulting from pulse width modulation (PWM) the inverter uses to spin the motor. The load cells were selected because 
of their high measuring accuracy at the expected forces (േ500	lbf (2224 N) at 0.04% accuracy). 

Other measurements include: 
 Vibration through two tri-axial accelerometers installed near the motor mount interface; 
 Temperatures of motor, inverter, batteries and data acquisition system; 
 Atmospheric conditions (ambient temperature, static and dynamic pressure, wind speed, humidity); and 
 Acoustic signature measured by microphone arrays. 

 
The accelerometers are used as a safety measure to detect any excessive vibration or loading during motor and 

propeller operation. Similarly, the temperature sensors monitor the temperatures of the motor, inverter, and batteries 
to ensure that the temperatures do not exceed the safety limits set forth by the manufacturer. Measuring the temperature 
in the air-conditioned data acquisition rack allows assurance of data integrity. Since the data acquisition cards have 
specifications to operate within a preset temperature range, knowing the temperature during the test is necessary for 
post-processing. 

After sensor selection, sampling rates were determined based on the parameter measured. The determined sampling 
rates can be seen in Table 3. A high sampling rate is especially necessary for the three phases coming from the inverter 
since the inverter uses transistors to switch current on and off to control motor speed. For the inverter selected, this 
switching happens at frequencies near 10 kHz; we chose sampling rates well over twice that rate. 
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Table 3. Data sampling rates. 
 

Sensor Sampling ate (S/s) 
Voltage  250,000 
Current  250,000 
Thrust 250,000 
Torque  250,000 
Temperatures  1,000 
Microphones 96,000 
Pressure 1000 

 

 
A diagram of electrical sensor locations can be seen in Fig. 2. 

 

 
Figure 2. Sensor diagram. 

C. Testing 
Following preliminary decisions of the test article and sensor suite, a test plan was implemented to begin 

incremental testing of the system as it was put together. Figure 3 lays out the Airvolt test flow.  
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Figure 3. Test flow diagram.

 
This type of buildup approach efficiently integrates and verifies hardware and software prior to final installation. 

Two tasks, motor bench testing and test stand fabrication, took place in parallel. For motor bench testing a cart was 
used to support the motor and electronics (controller, inverter, and high-voltage module) shown in Fig. 4. Another cart 
was used as a battery cart as shown in Fig. 5. Two safety devices were implemented to ensure that power to the inverter 
could be quickly removed in case of an emergency. A box containing an emergency stop button and the lever on the 
enclosed switch box (Fig. 5) were used as safety devices. The first goal of the bench testing was to ensure the hardware 
worked using Pipistrel’s pilot interface control (ESYS-MAN). Bench Testing also provided a way for NASA engineers 
to become familiar with the power system before controlling it using our software. 
 

 

Figure 4. Bench testing cart 1. 
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Figure 5. Bench testing cart 2. 

D. Data Acquisition and Control 
Concurrent with testing was buildup of the data acquisition and control software and hardware. Two computers 

are used for data acquisition and control. One computer in the control room (client) is used to call up the software of 
the computer used for data acquisition (server). The client also serves to display the data to the users in the control 
room and allows control of the article under test. The software used to program the client and server computers is 
National Instruments (NI) (Austin, Texas) LabVIEW (See Bibliography item 3). A list of the National Instruments 
data acquisition and control cards used can be seen in Table 4. The 6133 cards were selected for their high 
simultaneous sample rates (8 simultaneous samples at up to 2.5 million samples per second), and the 6289 card was 
selected for its large number of inputs and is used for data that do not require high sample rates. 

 
Table 4. Data acquisition cards. 

 
Card number Data 

NI PXI-6683  GPS signal 
NI PXI-6289 (18 bit sampling) -Sensor excitation 

feedback 
-Pressures 

NI PXI-6133 (14 bit sampling) Voltage and current 
NI PXI-6133 (14 bit sampling) Microphones 
NI PXI-6133 (14 bit sampling) Accelerometers 
NI PXI-6133 (14 bit sampling) Temperatures 
NI PXI-6133 (14 bit sampling) Temperatures 
NI PXI-6133 (14 bit sampling) Thrust and torque 
NI PXI-8512 CAN bus 

 

 
The data acquisition racks are two standard 19-inch racks that house the following: 
 National Instruments data acquisition hardware; 
 Storage drives; 
 Sensor power supplies; 
 Uninterruptible power supply (UPS); 
 Signal conditioning circuits; 



7 
American Institute of Aeronautics and Astronautics 

 

 Test article manual operation hardware; and 
 Air conditioning unit.  

 
These racks are located close to the test stand to minimize cable lengths from the sensors to any signal conditioning 

and data acquisition cards. Data coming to the racks are stored as raw data (not converted to engineering units) at their 
full sample rate in a redundant array of independent disks (RAID) in Technical Data Management Solution (TDMS) 
format. The data is then converted to engineering units to compare with the user defined safety limits and sent to the 
control room at a slower rate. During development of the data acquisition code, it was noticed that requiring the data 
acquisition rack to transmit data to the control room at the full rate of sampling often meant that the data seen at the 
control was not near real time. Since the primary purpose of the data visualization at the control room is that of safety, 
not having near real time data is unacceptable. As a result, the data acquisition computer software is programmed to 
look at each data set it receives, find the data point that is closest to any safety limit, and transmit that point. The 
shortfall of choosing not to transmit at the full rate is the inability to see waveforms generated by the inverter in real 
time, which might aid in determining test points on the fly. Figure 6 shows an overview of the data acquisition and 
control flow. 

 
 

 
Figure 6. Data flow diagram. 

 
After bench testing was complete, the control software being developed was ready for controller area network 

(CAN) bus1 functionality testing. The ESYS-MAN interface (Table 2) utilizes the vendor’s proprietary CAN bus1 
protocol to control and monitor the system. Power, battery life, RPM, and system temperature status are visible to the 
user on the interface. The ability to mimic these functions was required by the software so that a user inside a control 
room can remotely command and monitor the article under test. RPM commands can be sent through the control 
software via a graphical user interface (GUI) slider interface, or by executing a preprogrammed file that contains time 
based RPM commands for precise control. This type of command was made possible with the CAN bus1 message 
protocol provided by Pipistrel. For this test the control software interfaced with the bench test configuration using a 
National Instruments CAN bus1 interface card (Table 4). Initial testing only included reading the CAN bus1 messages 
in order to validate correct message interpretation. Some representative instrumentation was also incorporated so that 
the software could be tested for proper sensor data acquisition. Motor, inverter, and battery voltages and currents were 
measured. Following successful CAN bus1 monitoring, RPM control was demonstrated through a GUI. A jumper 
cable allowed for quick switching between ESYS-MAN control and software control for troubleshooting purposes. 

E. Sampling Synchronization 
Since one of the primary goals of having the test stand is to measure efficiencies accurately, it is necessary to 

gather data simultaneously. This simultaneous sampling is especially true when it comes to the output of the inverter, 
which switches current in the kHz range. In order to accurately determine power at a given moment, voltage and 
current need to be sampled at precisely the same time. Gathering all data in a synchronized manner also provides a 



8 
American Institute of Aeronautics and Astronautics 

 

better picture of what is happening at any given moment. As mentioned before, the 6133 cards are configured for 
simultaneous sampling of up to 8 channels. However, when gathering data from multiple different cards and 
microphone data from a separate data acquisition system, it is necessary to synchronize the data to a common 
reference. It was determined that the best reference for this task is Global Positioning System (GPS) time. As software 
development progressed it was evident that the 6133 and 6289 cards had different limitations on their ability to access 
the peripheral component interconnect (PCI) extension for instrumentation (PXI) back plane and GPS time tag of all 
of the data. As a solution, the clocks of all the data acquisition cards are replaced by the GPS time clock and a start 
trigger signal is sent through a dedicated timing circuit in the backplane of the PXI chassis. Since the GPS time is 
recorded when triggered and then the GPS clock is used to sample the data, it is acceptable to use the initial GPS 
recorded time and the change in time (delta T) of the data acquisition cards to time tag the data during post processing.  

F. Stand 
Parallel with the data acquisition development was design and fabrication of the stand that supports the test article, 

sensors, and interconnecting cables. Initial iteration of the test stand was a truss-braced structure. Further consideration 
helped determine that the acoustic signature coming from air passing over the trusses, along with the aero loads by 
the cylindrical structures would cause errors in some of the measurements. As a result, the next and current iteration 
is a structure using square steel tubes with fairings to reduce the effects of aero forces on the structure. Figure 7 shows 
the dimensions and overall design of the stand. 

 

 
Figure 7. Test stand dimensions. 

 
Another aspect of the stand that went through design iterations is the interface between the motor under test and 

the stand itself. Initial designs used a thin walled torque tube with strain gauges in order to better measure the torque 
of the motor and propeller. It was determined that the overhang weight of the motor acting at the end of the tube would 
create too large of a moment arm and a new iteration of the design resulted. The new design uses two load cells on 
either side of the motor with levers from the arm pushing and pulling on the load cells to derive torque. This 
configuration can be seen in Fig. 8. In this configuration, bearings are used to provide axial translation and rotational 
freedom while constraining all other degrees of freedom. Measuring thrust was initially thought to be more 
straightforward. A rod was used to connect the thrust load cell to the motor assembly. This assembly consisted of a 
motor adapter ring, a lever arm ring, and a pillow block for added stability. 
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Figure 8. Motor/stand interface. 
 
The modularity of the stand was also taken into consideration during the design. In order to allow for dynamic 

pressure testing of systems, the top section of the stand is a separate unit. An image of the upper section can be seen 
in Fig. 9. The wiring of the stand is also modular by having segmented wiring for each portion of the stand. 
Furthermore, the upper section of the stand can be mounted onto a cart, while the battery pack and the data acquisition 
racks are permanently mounted onto carts. This modularity allows for easier transportation of the various segments 
and in turn enables outdoor testing while protecting the equipment from adverse weather when not in use. 

 

 
 

Figure 9. Test stand upper section. 
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G. Safety 
Testing of electric propulsion systems often means dealing with electrical power and physical hazards that need to 

be mitigated before testing. The largest mitigation executed by the Airvolt team was to locate the test pad in a remote 
location and to physically separate the test stand and the control room. The control room is located in a small building 
a hundred feet from the actual test stand. The control room provides physical safety for test personnel while using 
cameras and microphones to provide situational awareness of the test stand. Fiber optic cables from the test stand data 
acquisition racks provide data to the control room. 

Electrical safety is improved by having three sets of safety contacts that must be activated before power can go to 
the motor. If any of the three safety mechanisms are tripped, power between the batteries and the inverter will be 
cutoff. The first safety switch is a lever switch located on an electrical shutoff box on the cart housing the batteries 
(Fig. 10). This switch connects the large conduits in the electrical shutoff box. The box also contains a high power 
contactor that needs to be closed to connect the path between the batteries and the inverter. This contactor is normally 
opened and closes its contact only when powered. The power supply to accomplish this is located in the control room 
in a Manual Power Relay Control box (Fig. 10). This box contains both a key switch and an emergency stop button. 
When the key is in the “on” position and the emergency stop button is in the disengaged position, power from the 
power supply is routed to the high power contactor through a relay in the data acquisition rack. Finally, the relay in 
the data acquisition rack is controlled through software and when engaged sends power from the power supply in the 
manual power relay control box to the high power contactor, which is then engaged and along with the manual lever 
switch on the electrical shutoff box, closes the circuit between the batteries and the inverter. A diagram of this setup 
can be seen in Fig. 10. 
 

 
 

Figure 10. Safety interlock diagram. 
 
To enhance the safety of the equipment once the test has begun, 2 triaxial accelerometers are used to measure 

vibrations in the three axes. These values are monitored and if they exceed user defined Grms (root mean square of 
G-force) limits, they will automatically open the software controlled relay and stop the test. This form of automated 
shutdown also exists on other safety critical parameters such as: 

 Battery voltage; 
 Battery current; 
 Battery temperature; and  
 Motor temperature. 
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In case of power loss to the control room or the data acquisition racks, two UPSs are used. One UPS for the data 
acquisition racks and one for the control room computer. These power supplies allow for enough backup power to 
safely shutdown the system in the event of facility power loss. 

H. Software 
National Instruments LabVIEW is used for the data acquisition and control of the system under test. These 

functions are done largely using the concept of queues. In LabVIEW, queues are used to organize data or processes 
in sequence. In this context, it is used to take data from multiple sources and pipeline them for processing and 
streaming. Although better architectures might exist, queues were selected initially to make the software robust against 
changing parameters and sensor suites. The software logic diagram for the server computer in the data acquisition rack 
can be seen in Fig. 11. 

 

 
Figure 11. Software logic diagram for server. 



12 
American Institute of Aeronautics and Astronautics 

 

III. Data Collection 
The software collection section executes the following: 
 Collect a set of data 50 times a second. 
 Simultaneously store data in a TDMS file format, and use sensor identifiers to put the data in a shared 

queue. 

IV. Data Analysis 
The data analysis portion runs simultaneous instances of the following: 

 Take one set of data from the queue. 
 Use the sensor identifier to determine which sensor collected the data. Use that information to determine 

the calibration equation for that piece of data. 
 Use the calibration equation to convert the data into engineering units. 
 Use the sensor identifier to determine the safety limits and compare the data to the limits. 
 Find the data point that is closest to any safety limit. 
 Use the proximity to a safety limit to determine a color gradient between green and red. If the data point 

has passed the red safety limit, initiate emergency shutdown. 
 Send the sensor identifier, color gradient value, and data point to a queue that goes to the streaming section 

of the code (if emergency shutdown is not initiated). 

V. Data Streaming 
The data is streamed by taking a value from the queue and sending it to the control room computer which is also 

running a separate set of LabVIEW code. The receiving computer takes the bundle information and puts it in a queue 
that is sent out for parsing. The software logic for the receiving computer in the control room can be seen in Fig. 12. 

 
 

 
 

Figure 12. Software logic diagram for client. 

VI. Data Dissemination 
User-defined information and the sensor identifiers are used to determine which of the three monitors receives the 

data. Since the streaming function brings in the data in the order it was received, the software looks at each piece of 
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data and determines its final destination. Once the data is received by the portion of code that is dedicated for each 
monitor, the code then uses the sensor identifier to determine which specific display object the data point needs to go 
to.  

VII. Data Display 
Once the data is sent to the display object, the object displays the data point and also updates a color light attached 

to the display object. The intent is to provide better situational awareness to the user by providing large color light 
that show a gradient between green and red. The color lights are used for each display object so that a non-green color 
will draw the user’s attention quickly to the sensor in question and also let the user know how close a parameter is to 
the safety limit. An example of a display can be seen in Fig. 13. 

 

 
Figure 13. Display of sensor data. 

VIII. Software Control 
Software control is executed in a similar fashion by using queues to send commanded values to the data acquisition 

rack, which uses software to convert the commands to CAN Bus1 messages that go to the inverter or go directly to NI 
cards to control the relays. Figure 14 shows the software logic for control. 
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Figure 14. Software logic diagram for control. 

 
Automated Emergency shutdowns are conducted by running a piece of code on the data acquisition side that opens 

all the relays and then gracefully reverts the running software to a safe configuration. Emergency shutdowns 
commanded by the user are done by simultaneously doing the following: 

 Putting the emergency shutdown command at the front of the queue going to the data acquisition rack. 
 Remotely starting the emergency shutdown code at the data acquisition rack. 

 
If the data acquisition rack notices that the connection with the control room computer has been severed, it 

automatically performs an emergency shutdown as well. 
The capability to run the motor along a pre-determined RPM profile also exists. By selecting a file that contains the 
RPM commands and the duration times, the software can execute a precise test profile. 

IX. Built in Test (BIT) 
The software also contains the capability to conduct a built in test (BIT). This BIT is not performed on the article 
under test directly. Instead the software itself is evaluated to ensure: 

 Integrity of the calibration coefficients file; 
 Real time data display; 
 Reported values within the safety limit without motor power; and 
 Reported values within the safety limit with the motor running a benign test profile. 

A. Testing the Airvolt Stand 
After initial fabrication of the upper section of the stand (Fig. 9), further testing and hardware/software integration 

was conducted in the lab. This testing included software functionality and accuracy testing. Refer to Fig. 3 for the test 
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flow. The motor, thrust and torque assembly, and sensors were installed onto the upper section. Full-length cables 
were connected to ensure testing included actual wire lengths of the final configuration (Fig. 15).  

 

 
 

Figure 15. Upper section configuration. 
 
During initial integration in the lab, the motor on the upper section was placed in close proximity to the test racks 

containing the signal conditioning and data acquisition cards. Upon energizing the motor, large noise spikes of 
0.5 VDC were observed on almost all sensor channels with the exception of CAN Bus1 data. Grounds and cables were 
inspected, to ensure that all twisted shielded wires were properly terminated and tied to earth ground. No cable 
fabrication issues, or ground loops were found. After some troubleshooting, it was decided to move the 
motor/gooseneck 20 feet away from the data acquisition racks, so that the test rack was behind the motor. This step 
noticeably reduced the large noise levels in the data, but did not completely eliminate the noise that exists while the 
motor is powered on.  

The software and hardware testing included verifying automated motor shutdown functions upon exceeding critical 
parameter limits, as well as software checksum integrity, display color changes, sensor excitation voltages, and the 
overall health of the system. All GUI objects and functions were verified, such as the throttle slider for setting motor 
RPM and the ability to load in preprogrammed RPM commands for precise automated testing. Another test performed 
was the accuracy of each data acquisition input channel. A source voltage was provided using an accurate calibrator, 
and a 6 digit voltmeter was used to verify that each input channel was reporting values within the manufacturer’s 
specification. 

Since it was not possible to safely operate the system with the propeller rotating inside an electronics lab, a simple 
test setup was devised to apply known load to the thrust and torque load sensors while monitoring the values through 
the LabVIEW3 software. For thrust, a threaded rod was connected to a calibrated force gauge on one end and fastened 
to the propeller mounting holes via a circular adapter. The force gauge assembly was rigidly secured using two beams 
connected to the side of the stand (Fig. 16). By manually rotating the motor, the threaded rod would impart known, 
pure thrust loads onto the motor and thrust/torque force balance assembly. This method allowed for testing of the 
configuration of the thrust load cell. Calibration loads were applied in 10 lbf increments. It was discovered that the 
pillow block, which is a secondary support structure for added rigidity, was causing binding on the thrust 
measurements. The pillow block was removed and the thrust error decreased to about 6% for the configuration. 
Probable causes were friction in the total system, as well as inaccuracies with the lead screw alignment with the rest 
of the test apparatus. 
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Figure 16. Thrust load cell testing. 
 
For testing the torque assembly, two long lever arms were fabricated and attached to the motor adapter ring. On 

one arm a calibrated force gauge was mounted to a rigid lift table. On the other arm, calibrated weights were hung at 
the same radial distance as the calibrated scale (Fig. 17). Ten-pound weight increments were added to one side of the 
arm and the rigid lift table was lifted until the calibrated force gauge was applying equal, but opposite vertical loading. 
This method provided a pure torque loading while eliminating vertical force. Torque testing showed accuracies within 
the required +/- 1%. 

 
 

Figure 17. Torque load cell testing. 
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Further testing with this setup included combinations of applied thrust, torque, and vertical forces to investigate 
potential mechanical crosstalk in the system. Mechanical crosstalk refers to unforeseen forces experienced by a load 
cell that differ from the applied forces. This crosstalk comes from the mechanical force balance that is created to 
isolate the loads. Investigations of this manner reveal problems in the setup or changes in calibration that can be 
applied to remove the effects of mechanical crosstalk. 

After load cell testing was completed, the upper section was ready to be mated to the tripod legs for a fit check. 
The mechanical fit check was done in the flight structures high bay and allowed the engineers and mechanics to 
develop the most efficient approach for lifting the neck onto the legs. Straps were installed on lift points located on 
the stand, and a forklift was used to lift the gooseneck onto the legs. When the fit check was completed, the gooseneck 
was removed, and final software testing was performed.  

B. Control Room and Test pad 
With the software ready, the control room and pad site were prepared. The control room is configured with 4 

monitors and one large LED TV screen. The monitors are used by the client computer for control and monitoring of 
critical data, and the LED screen is used for displaying video of the pad for situational awareness. A 20 ft by 20 ft 
concrete pad was poured at the test site to provide a solid foundation to mount the test stand. Pad construction also 
included putting in a ground ring and two ground terminals to which the system can be grounded. One point, tilt, and 
zoom (PTZ) camera allows the area to be surveyed and monitored. A fixed black and white camera is used to focus 
on the motor. The video is fed back to the control room using video baluns that allow long cable lengths without 
significant loss of picture quality. A dynamic microphone is used to monitor the motor for audible situational 
awareness. The dynamic mic signal goes through a preamplifier circuit and is transmitted via a balun to a receiver and 
a pair of speakers in the control room. Due to the seasonal winds in the area, a synthetic fur based windscreen is used 
to effectively cut down on wind noise. 

C. Pad Integration and Testing 
The upper section and tripod legs were assembled at the pad, and a ground vibration test was performed to 

determine the natural modes of the structure. This test helps impose restrictions on motor RPM dwell time if the 
fundamental frequencies are excited and also helps gather data for the finite element method (FEM) modeling so that 
when new motor assemblies are integrated and tested, natural modes can be obtained through simulation instead of 
requiring additional testing. The stand was tested using shakers positioned at strategic mechanical interface points 
with the Pipistrel test article in place. The motor assembly was then removed as shown in Fig. 18. 

 

 
Figure 18. Test stand ground vibration testing. 
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For full stand functionality testing, the test article system was exercised without the propeller, and the motor was 

taken to 2200 RPM. Electromagnetic interference (EMI) was encountered during motor power on, and created enough 
noise to set off automated shutdown prematurely. It was decided that testing would continue using manual monitoring 
and by explicitly going into a special debug mode in the software that bypasses the auto shutdown. The software was 
demonstrated to work as long as the automated shutdown logic was disabled. While not a permanent fix, it allowed 
testing to continue. Additional checks such as manual lever switch and power relay shutdown were tested, as well as 
certain failure modes such as the facility power loss simulation which verified the uninterruptable power supply 
functionality at the test rack and control room. 

Following the failure modes and effects checkout, the propeller was installed in order to provide loading to the 
thrust and torque sensors.  

Figure 19 shows the pad setup with the propeller and the relative distance of the data acquisition racks and the 
stand (~25 to 30 ft). From testing, it was evident that EMI noise can cause the sensors to be excessively noisy or 
biased. As part of the troubleshooting, the test rack was placed in various positions to attempt mitigating the EMI 
problem. Further testing is being performed at NASA Armstrong Flight Research Center to fully check the Airvolt 
sensor suite in order to validate the test stand and further learn how to mitigate the EMI issue. 

 

 
 

Figure 19. Test stand with propeller at test pad. 

X. Lessons Learned  

A. Test Approach 
Following a test approach of building up and testing pieces independently aided in successful final integration, 

troubleshooting in a subsystem/component level helped identify and resolve issues before integrating the whole 
system. This build up method improved chances of success of the final product and also enabled personnel to become 
more knowledgeable of the system. Using hardware representative of the final configuration in a lab setting, allowed 
issues to be revealed early in the development process. 

B. Software 
Along with testing the hardware early at a subcomponent level, it was beneficial to test the software as it was being 

developed. Testing software with components of the hardware aided in learning to interface the software and hardware. 
Using representative hardware also revealed issues relating to the automated shutdown in terms of electrical noise 
pollution. 
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C. Electromagnetic Interference 
Although EMI mitigation strategies were considered at the initial stages of design, including standard electrical 

connection practices and instrument shielding, preliminary testing data indicates the presence of large EMI. Current 
investigations are focused on methods of EMI mitigation. 

D. Load Cell Testing 
Load cell testing conducted in the lab was valuable in identifying errors in reported values. Although the load cells 

themselves were calibrated, it was necessary to do a test to investigate mechanical cross talk between the load cells. 
This testing was also beneficial in identifying areas of friction that were absorbing some of the load and not transferring 
it directly to the load cell. This investigation led to the removal of the pillow block and improved measurements. 

XI. Conclusion 
The availability of a high fidelity test stand is necessary to better understand electric propulsion systems. The 

Airvolt test stand attempts to establish a standard for testing these systems. Investigating state of the art electric 
propulsion systems and developing a test stand to accommodate future discoveries creates a foundation for the stand. 
Incremental testing of sensors and software, paired with incremental integration and testing can lead to a more 
successful final product. Electromagnetic interference is an issue that needs to be investigated in depth and mitigated 
in the early stages when dealing with electric propulsion systems. The magnetic fields generated by the motors and 
high power systems can cause many measurement problems and can be higher than expected even with standard EMI 
mitigation practices in place. The Airvolt electric propulsion test stand still needs to resolve issues relating to EMI 
and will begin collecting data on these systems. Data collected using the stand will be used to aid in more complex 
architectures, and in developing strategies and processes for integrating and instrumenting these systems on aircraft.  
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