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Abstract 
A combined experimental and analytical approach was performed for characterizing and modeling 

triaxially braided composites with a modified subcell modeling strategy. Tensile coupon tests were 
conducted on a [0°/60°/–60°] braided composite at angles of 0°, 30°, 45°, 60° and 90° relative to the axial 
tow of the braid. It was found that measured coupon strength varied significantly with the angle of the 
applied load and each coupon direction exhibited unique final failures. The subcell modeling approach 
implemented into the finite element software LS-DYNA was used to simulate the various tensile coupon 
test angles. The modeling approach was successful in predicting both the coupon strength and reported 
failure mode for the 0°, 30° and 60° loading directions. The model over-predicted the strength in the 90° 
direction; however, the experimental results show a strong influence of free edge effects on damage 
initiation and failure. In the absence of these local free edge effects, the subcell modeling approach 
showed promise as a viable and computationally efficient analysis tool for triaxially braided composite 
structures. Future work will focus on validation of the approach for predicting the impact response of the 
braided composite against flat panel impact tests. 

Introduction 
Two dimensional (2D) triaxially braided composites are increasingly used in a wide variety of high-

performance applications which require both the improved specific stiffness and strength of carbon fiber 
composites and the delamination resistance and impact toughness of a textile reinforcement architecture 
(Ayranci and Carey 2008). This composite reinforcement is widely used in aircraft structural components 
such as the fan containment system of turbine engines for which the dynamic and impact properties of the 
composite are crucial (Roberts et al. 2009). 

These triaxially braided composites are hierarchical materials which contain several length scales. 
First, the macroscale refers to the overall final structure or component made with the braided composite. 
Second, the mesoscale refers to the length scale of the braided reinforcement architecture, whereby one 
models individual fiber tows. Lastly, the microscale refers to the length scale of the individual fiber and 
matrix components present within the fiber tow of the braid. 

Traditionally, braided composite structures are analyzed the same way as laminated composite 
structures. In finite element analysis (FEA), the composite structures are represented by solid elements or 
composite shell elements with homogenized properties established by micromechanics or by material 
testing. In this way, the mesoscale heterogeneity of the composite is ignored.  

To consider the mesoscale heterogeneity in FEA, a subcell approach has been proposed (Li et al. 2009, 
Blinzler 2012, Cheng and Binienda 2008, Xiao et al. 2011, Goldberg et al. 2010). The subcell approach has 
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several added benefits over traditional composite modeling methods. Firstly, the preservation of macroscale 
heterogeneity sets it apart from standard multiscale schemes, which typically define the macroscale as an 
orthotropic, homogeneous medium (Yuan and Fish 2008, Liu et al. 2011). These multiscale approaches are 
completely homogenized at the macroscopic scale, whereby no information of the local braided architecture 
remains. For triaxially braided composites, the braided pattern is too large to not be accounted for in the 
finite element analysis at the macroscopic scale. The subcell approach on the other hand provides continued 
heterogeneity even at the highest scale. Secondly, the semi-analytical nature of the subcell discretization 
allows for improved computational efficiency over complex representative unit cell (RUC) models of textile 
reinforced composites (Quek et al. 2004, 2006, Song et al. 2007) or the explicit mesoscale modeling of 
braided coupons (Zhang et al. 2013, 2014). Although these RUC models have high fidelity to capture local 
fiber tow interactions and matrix failures, they are prohibitively computationally expensive to scale up 
beyond single layer coupon tests. Both of these advantages are central to any modeling approach aiming to 
efficiently capture impact damage patterns shown to be dependent on the braided architecture of multi-layer 
triaxial braids (Roberts et al. 2009).  

Although the subcell approach has been investigated by several researchers, it is still in the 
development stage and a comprehensive evaluation is ongoing. In this work, a combined experimental 
and numerical approach is undertaken to verify the efficacy of the subcell modeling approach in capturing 
the characteristics of a 2D triaxially braided composite. A suite of straight sided coupon tests per ASTM 
standards was conducted for a variety of coupon angles, including 0°, 30°, 45°, 60° and 90°. Previous 
work present in the current literature has only investigated the axial (0°) and transverse (90°) directions of 
the braided composite (Littell 2008). These results will be used to evaluate the efficacy of the 
computationally efficient subcell modeling approach in capturing the experimental coupon strengths and 
failure modes as a function of the change in coupon orientation. First, the subcell model development is 
outlined. Second, the characterization processes for determining material parameters of the material 
model within the dynamic finite element package LS-DYNA are discussed. Next, the experimental results 
are presented for the off-axis coupon tests. Finally, the simulation results are presented, along with 
modified improvements and a discussion of the presented results. 

Subcell Model 
Subcell Discretization 

The subcell approach is outlined in Figure 1. First, the RUC is identified and partitioned into  
subcell regions. The four subcells shown in Figure 1 correspond to the regions where axial (0°) and 
braider (+60°/–60°) tows were both present (subcells A and C) and regions where only braider tows were 
present (subcells B and D). This partitioning follows previous subcell models (Li et al. 2009, Blinzler 
2012, Cheng and Binienda 2008, Xiao et al. 2011, Goldberg et al. 2010). In this discretization, both 
subcells A and C had identical fiber content and differed only in the arrangements of the braider tows. 
The same relation is true for subcells B and D. After the establishment of subcells, the next step is to 
discretize the subcells using a “mosaic” approach. Thus, each subcell is approximated as a unique 
composite laminate which can be modeled as a laminated composite shell. By modeling each subcell as a 
laminated composite shell, the mesoscale heterogeneity can be preserved in the macroscale FE model. 
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Figure 1.—Workflow of the semi-analytical subcell approach. The representative 

unit cell of the braided composite is partitioned into various subcells which are 
then discretized into a unidirectional (UD) ply approximation. The resulting 
subcell is modeled as a composite shell element in a finite element analysis. 

 

 
Figure 2.—The subcell UD discretization 

method for the absorbed matrix model 
(AMM) highlighting the orientation of fibers 
in the individual lamina layers. 

 
A subcell may be discretized in a number of ways. Figure 2 presents a discretization using the 

absorbed matrix model (AMM) which was found to best capture the in-plane and out-of-plane stiffness 
properties of the braided composite with notable differences from other subcell approaches (Cater et al. 
2014). First, in Figure 2, subcells A and C are modeled as unsymmetric laminate regions while subcells B 
and D are assumed to be symmetric. The asymmetry allows for the capturing of the important tension-
twist coupling of the local braided regions during tensile deformations. Additionally, in the AMM it is 
assumed that the axial (0°) plies account for only the fiber tows, whereas the braider (±60°) plies are a 
homogenized representation of the braider tows and surrounding pure matrix regions. This discretization 
was found to best capture the local fiber volume fraction in each of the subcell regions and differs from 
other subcell models which modeled pure matrix regions explicitly (Xiao et al. 2011). 

Determination of Unidirectional Ply Volume Fractions 

The calculation of subcell laminate parameters for AMM followed the approach by Cater et al. 
(2014). The first step was to compute the volume of fibers in each subcell. The second step involved 
determining the volume fractions and respective fiber volume fractions of the unidirectional plies 
comprising each subcell. 

The geometrical parameters of a braided composite system consisting of T700 Toray fibers with 
Cytec PR 520 resin, hereby referred to as PR520, are provided in Table 1. These values were used to 
approximate the volume of fibers in each subcell. The subcell widths WA and WB are measured as shown 
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in Figure 3, along with the subcell length, L. Figure 3 also shows the amount of braider tow (dashed 
yellow regions) contained within a given subcell (solid green square). It was assumed, as in Xiao (2011), 
that the lengths lbB and lbA can be used in a straight line approximation to account for all of the braider tow 
contained within the subcell. Figure 4 presents a three-dimensional view highlighting the determination of 
these braider tow lengths. 

 
TABLE 1.—GEOMETRICAL PARAMETERS USED FOR CALCULATING 

THE LAMINA THICKNESSES (T700/PR520 SYSTEM) 
Label Description Value 

W Width of RUC (mm) a 8.9 
WA Width of cell A (mm) a 4.201 
WB Width of cell B (mm) a 4.765 
h Ply thickness (mm) a 0.56 

Vf,tow Tow fiber volume fractiona 0.8 
na Number of fibers in axial tow (103)b 24 
nb Number of fibers in braider tow (103) b 12 
da Diameter of fiber filament in axial tow (μm) b 7 
db Diameter of fiber filament in the braider tow (μm) b 7 
L Length of unit cell (mm) b 5.1 
θ Braid angle (degrees) ± 60 

a Data obtained from Blinzler 2012 
b Obtained from product data sheets (http://www.toraycfa.com/pdfs/T700SDataSheet.pdf) 

 

 
Figure 3.—Two unit cells of the braided composite are shown with the widths of subcells A and 

B labeled. The green boxes represent the size of a subcell. The dotted yellow boxes 
represent the amount of a single braider tow contained within each subcell volume (each 
subcell contains two braider tows), determined by the lengths lbB and lbA. Note: For 
readability, the dimensions for subcells A are shown in subcell C (above) and it should be 
noted that both dimensions are identical. 

 
 

 
Figure 4.—Schematic of the braider fiber tow lengths 

approximated by the straight line mode for subcells A and B. 
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The volume of axial fibers and braider fibers in subcell A are given by, 
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The lowercase subscripts a or b designate axial or braider tow fibers, while the uppercase A or B 
designate the appropriate subcell. The volume of braider fibers in subcell B is given by, 
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Once the volume of fibers for both the axial and bias directions were known for the respective subcells, 
the fiber volume fraction and lamina thickness (relative to the total laminate thickness) of the UD plies 
could be found. First, the volume of the UD ply which represents the axial tow in subcell A, referred to 
here on as the axial ply, was computed according to  
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where VaA is the volume fraction of the UD lamina with respect to the total subcell volume. The equation 
utilized an assumed fiber tow volume fraction, Vf,tow, which for the braided T700/PR520 composite was 
80 percent (Blinzler 2012). The remainder of subcell A was assumed to represent the braider tow and any 
pure matrix regions. The UD ply volume fraction for this region was computed by 

 
2

1 aA
bA

VV −
=  (5)  

and is hereby referred to as a bias, or braider, ply of subcell A. For any triaxially braided composite, the 
UD braider plies representing the bias fibers and pure matrix regions in subcells B and D are always 
evenly partitioned. As mentioned previously, the axial ply was assumed to have a fiber volume fraction 
equal to that of the fiber tow. The fiber volume fractions of the braider plies, on the other hand, were 
updated according to  

 BAl
hLWV

V
V

lbl

f
bl

blf ,for, ==  (6) 

where VbB is assumed to be equal to 1. The resulting laminate configurations for subcells A and B are 
presented in Table 2, where the volume fraction of each ply layer is listed as a percentage of the laminate 
thickness. As a result of the absorbed matrix model, there are three unique unidirectional plies as 
indicated by the varying fiber volume fractions listed in Table 2 for the T700/PR520 system. 
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TABLE 2.—SUBCELL A AND B DISCRETIZATION  
FOR THE ABSORBED MATRIX MODEL 

Subcell A Lay-up Angle, 
° 

Vf, 
% 

Thickness, 
%a 

 Braider ply –60 73.3 25.5 

 Axial ply 0 80.0 49 

 Braider ply 60 73.3 25.5 

Subcell B Lay-up Angle, 
° 

Vf, 
% 

Thickness, 
%a 

 Braider ply –60 37.5 25 

 Braider ply 60 37.5 50 

 Braider ply –60 37.5 25 
a Percent of overall ply thickness 

Ply Constitutive Model 

The effective unidirectional plies were modeled using the continuum damage mechanics material 
model MAT 58 within the transient dynamic commercial finite element code LS-DYNA (Hallquist 2006). 
Based on the Matzenmiller-Lubliner-Taylor theory (Matzenmiller et al. 1995), MAT 58 was selected over 
other LS-DYNA material models as it allows for nonlinear material response as a function of elastic 
softening, can be used for the modeling of unidirectional and fabric composites and is available for use in 
laminated composite shells.  

The effective UD plies were assumed to be linear elastic in longitudinal tension and compression, 
whereas the transverse and shear directions were assumed to be nonlinear. The details for determining the 
nonlinear behavior will be discussed in the effective UD ply strengths section. As a continuum damage 
mechanics model, MAT58 employs an exponential damage law to capture the nonlinear response of the 
composite through elastic softening. The exponential parameters are determined in LS-DYNA based on 
the user input of failure strength and failure strain and the exponential damage law (Schweizerhoff et al. 
1998). The material model specifies the tensile and compressive material strengths and failure strains in 
the longitudinal (fiber), transverse (matrix) and shear directions, requiring a total of 10 parameters to 
properly characterize the material response in tension, compression and shear (five stresses and five 
corresponding strain values).  

In MAT58, either a faceted failure surface based on the Hashin failure criterion or a smooth, Tsai-Wu 
type of failure surface are available. The Hashin criterion was selected to uncouple damage in the 
transverse and shear directions since the plies do not necessarily represent true lamina and the actual 
coupling between normal and shear directions is unknown a-priori. The next sections discuss the process 
for determining the initial ply stiffness and appropriate strength properties for the material model. 

Effective Unidirectional Ply Stiffness 

Since the UD layers and their relative fiber volume fractions are based on the prescribed subcell 
discretization and not on actual lamina, there are no experimental means by which one can determine 
their elastic properties. Thus, the mechanical properties of each UD lamina must be computed using a 
bottom-up micromechanics approach. The microconstituent properties (fiber and matrix) and their relative 
volume fractions were then utilized to calculate the moduli and Poisson’s ratio of the effective UD layers 
in each of the subcells. 

The micromechanics software MAC/GMC 4.0 developed at NASA Glenn Research Center 
(Bednarcyk and Arnold 2002) based on the Generalized Method of Cells (Aboudi et al. 2012) was used to 



NASA/TM—2015-218814 7 

compute the effective properties of the UD laminate for this study. Although MAC/GMC was utilized in 
this work, any appropriate micromechanics software capable of computing effective UD properties would 
be viable. The bottom-up, micromechanics approach had been proven to be sufficient to characterize the 
elastic properties of the braided composite (Cater et al 2014, Xiao et al 2011) since the UD discretization 
of the subcell approach accurately captures the contribution of fibers in the macroscale material 
coordinate system (particularly for in-plane loading). 

The process of determining the UD lamina properties was then repeated depending on the number of 
unidirectional fiber volume fractions present in the discretization (e.g., in the current braid example there 
are three unique fiber volume fraction regions as shown in Figure 5). The constituent properties listed in 
Table 3 along with the fiber volume fractions for the three ply regions were used as input for the 
MAC/GMC homogenization process. The resulting elastic unidirectional properties for the three different 
ply regions, identified in Figure 5, are presented in Table 4 for the T700/PR520 system. 

 

 
Figure 5.—The absorbed matrix subcell 

model with the three unique UD ply 
regions highlighted. The labeled 
regions (Axial, A/C braider and B/D 
braider) are UD plies with varying fiber 
volume fractions. 

 
 

TABLE 3.—CONSTITUENT MATERIAL PROPERTIES (LITTELL 2008, BLINZLER 2012) 
Material Density, 

 g-cm-3 
E11,  
GPa 

E22,  
GPa 

ν12 G12,  
GPa 

T700 (Fiber) 1.80 230.0 15.0 0.20 27.00 
PR520 (Matrix) 1.25 4.0 4.0 0.38 1.44 

 
 

TABLE 4.—EFFECTIVE PLY PROPERTIES FOR THE THREE UNIQUE 
PLY REGIONS (VARYING FIBER VOLUME FRACTION) 

Description UD Vf, 
% 

E11,  
GPa 

E22,  
GPa 

E33,  
GPa 

G23,  
GPa 

G13,  
GPa 

G12,  
GPa 

ν12 

B-Braider 37.50 88.5 6.22 6.22 2.04 2.86 2.6 0.30 
A-Braider 73.30 169.5 9.9 9.9 3.4 8.68 7.0 0.23 
A-Axial 80 184.7 10.9 10.9 3.39 10.88 6.0 0.24 
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Effective Ply Strengths 

As a result of the subcell UD discretization, the complex behavior and failure mechanisms of the 
triaxially braided composite must now be approximated by the response of the UD plies comprising the 
four subcell regions. A bottom-up approach for computing the UD ply strengths would potentially be 
inaccurate, since the UD ply mesostructure is a gross approximation of the real tow/matrix regions which 
would have very different failure mechanisms. The determination of UD ply strengths required a top-
down approach where coupon level tests of the braided composite were used to back-out the appropriate 
ply level strengths of the UD plies in the subcell model. The intent of this top-down approach was to 
determine the necessary ply strength properties to represent and capture the known mesoscale failure 
phenomenon observed in braided coupon tests (Kohlman 2012, Littell 2008). 

Top-Down Unit-Cell Approach 

In order to establish the top-down characterization of UD ply strengths, two key assumptions needed 
to be addressed.  

The first assumption was that experimental strength values (obtained from coupon level tests) are 
intrinsic material properties unique to the braid architecture and to a specific global loading. By taking 
macroscopic experimental strengths (i.e., axial tensile strength, axial compressive strength, etc.) as an 
intrinsic material property, one could now resolve the strength determination problem to a Unit-Cell (UC) 
problem. The UC for the subcell model consisted of an RUC containing all four subcells, and periodic 
boundary conditions (PBCs) applied along the boundary to simulate the response of the braided 
composite. The application of PBCs on the Unit-Cell neglected edge effects associated with finite coupon 
dimensions, although these effects were present in the actual experiments. 

The second assumption was that the main macro- or mesoscopic failure mechanisms observed in the 
experimental tests could be linked, or approximated to failure of a particular ply. Consequently, the ply 
strengths could be found by loading the UC to the prescribed macroscopic stress state and determining the 
level of stress in the “failed” ply. For example, the axial tensile failure of the T700/PR520 braided coupon 
was dominated by axial tow failure, and the longitudinal strength of the axial plies were calibrated 
accordingly. Care had to be taken to avoid using experimental coupon tests whose failure was influenced 
by free edge effects—e.g., transverse, straight-sided tensile tests (Littell 2008) and shear tests (Kohlman 
2012) in the triaxial braid—and tests that exhibit multiple, mixed modes of failure.  

A schematic of the top-down approach is presented in Figure 6. The proposed workflow assumes that 
there are no identifiable failures in the experimental test prior to final failure. Material systems and 
experimental tests which exhibit macroscopic nonlinearity as a function of damage would require 
additional considerations to the proposed workflow. 
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Figure 6.—Workflow of the top-down approach for determining ply level strengths. 

 

 
Figure 7.—Unit-Cell (UC) used for the determination 

of ply strengths. The vertices and surfaces used 
for employing periodic boundary conditions are 
identified in the figure. 

 
The UC used for the strength determination process is shown in Figure 7. The application of periodic 

boundary conditions followed the form presented by van der Sluis et al. (2000) and is represented by 
Equations (7) below. These nodal constraints were defined in the finite element software through the use 
of linear constraint equations. The displacements of the vertex nodes are given as vxi, where x specifies the 
node and i=1,2,3 are the displacement degrees of freedom. The only independent vertices are v2 and v3. 
The variable Γxi corresponds to the displacements along the labeled surface. The first two equations in 
Equations (7) refer to constraints prescribed between periodic pairs of nodes on opposing surfaces. 
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Based on the coupon level strength results by Kohlman (2012), four experiments were selected to 
determine the necessary ply strengths in the longitudinal (fiber) direction. These were the axial tensile and 
compressive tests, notched transverse tensile test, and transverse compressive test. Figure 8 summarizes 
the identified failure mechanisms in the experimental tests, the prescribed UC loading and the assigned 
ply failure.  
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Figure 8.—Summary of experimental coupon tests used to determine the longitudinal ply strengths. 

 
A limitation of this top-down approach was that failure modes have to be singular and the material 

response linear-elastic for a given coupon test. Consequently, only coupon tests dominated by 
longitudinal tow failures could be used to determine ply strengths. The straight sided transverse tensile 
tests of the braided coupon, for example, could not be utilized; the failure was complex, shear dominated 
and the coupon response was nonlinear. Two methods were employed to determine the longitudinal ply 
strength in tension for the braider tows and both are mentioned here in detail. 

In the first approach, strength data taken from notched transverse tensile tests (Kohlman 2012) were 
used to determine longitudinal ply failure of the braider plies in tension as shown in Figure 8. Using high 
speed imagery, bias tow failures at the gage section of the transverse notched specimen were found to 
occur during global failure. The notched transverse tensile test, however, created a bi-axial strain state in 
the braided composite sections, as observed by Kohlman (2012). To utilize the notched transverse tensile 
data, the reported strains along the gage section of the composite were averaged (in both the loading and 
perpendicular directions) in order to determine an approximate biaxial tensile load to apply to the unit 
cell, as shown in the second row of Figure 8. 

Due to short comings in the characterization process from the notched transverse tests—presented and 
discussed later in this paper, a second approach to obtaining the braider ply strengths in the longitudinal 
direction was developed. In this approach, the bias ply longitudinal failure strains are set equal to the 
failure strain of the axial plies in the same material direction (1.9 percent). The modulus is then used to 
compute the appropriate strength. Thus, the bias tow tensile failure strain is assumed identical to the axial 
tow failure strain. This assumption is supported by the fact that the longitudinal failure of the tows are 
fiber dominated. It should be noted that the bias UD plies in subcells A and B differed in fiber volume 
fraction and modulus, thus these strengths were not identical, although the failure strains were set equal. 

Bias ply failures for both longitudinal tension and compression were assumed to be independent of 
their location (e.g., in subcell A or B), therefore the longitudinal bias ply strengths were assigned 
simultaneously to the braider plies in all subcells. The axial and transverse compressive strengths for the 
braided composite were obtained from Kohlman (2012) using the standard straight sided coupon tests.  

The test matrix in Figure 8 only provided two out of the five required strength data values. Neglected 
were the transverse tension/compression and shear strengths of the UD plies. These mesoscale failure 
mechanisms, however, were difficult to observe in the experimental tests (aside from the use of DIC 
strain data to capture transverse bias tow failure as in Littell (2008)). Additionally, in the standard axial 
and transverse tension/compression tests of the braided composite, transverse and shear tow failures were 
not the critical failure mode. Since these subcell ply level strengths could not be determined using the top-
down experimental approach, a numerical method was used utilizing micromechanics as discussed in the 
next section. 
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Bottom-Up Transverse and Shear Strength 

With the aim of initially populating these unknown UD strengths, the following methods/assumptions 
were utilized to obtain the three remaining strength parameters. First, bottom-up micromechanics was 
utilized to characterize the nonlinear response of the axial and braider plies in the transverse tensile and 
shear directions, the two directions dominated by the matrix response. These micromechanics predictions 
provided the input for the LS-DYNA material model. In these simulations, the fibers were considered 
linear elastic. For the matrix constitutive response, a nonlinear, strain rate dependent plasticity model 
which includes the effects of hydrostatic stress was utilized (Goldberg et al. 2003).  

First, MAC/GMC was employed using a fiber/matrix representative unit cell to represent the 
unidirectional effective ply for the three fiber volume fractions determined previously for the braided 
system (37.5, 73.3 and 80 percent). The MAC/GMC software was used to generate stress-strain curves of 
the composite ply accounting for the matrix nonlinearity in the transverse and shear directions. The output 
is shown in Figure 9(a) to (f) for the two loading directions and three fiber volume fractions. Using these 
stress-strain curves as predicted by the micromechanics, the LS-DYNA MAT 58 strength and strain 
parameters were determined via curve fitting to the micromechanics predictions.  

During the curve-fitting process, the transverse and shear ply directions were both assumed to sustain 
a constant stress upon reaching a specified strength and strain criterion. The reason for this assumption 
was the observation from experimental tests that tow splitting/shearing was not a critical failure mode, as 
the coupon could still carry significant load in the presence of axial and bias tow splits. The addition of a 
plateau stress in the transverse and shear directions would prohibit significant softening from tow splitting 
and/or shearing in the simulations. This plateau behavior was prescribed in MAT 58 by specifying a value 
of 1.0 for the parameters SLIMT2, SLIMC2 and SLIMS, which correspond to the stress limiting value for 
the transverse tensile, transverse compressive and shear directions, respectively. By comparison, the 
SLIMT1 and SLIMC1 parameters of the longitudinal directions (tensile and compressive, respectively) 
were set to 0.01. This relatively small value results in a plateau stress of 1 percent of the specified failure 
strength, essentially prescribing a brittle failure in the fiber direction. 

The appropriate stress and strain values to enter as the transverse strength and corresponding strain 
for MAT 58 were determined by choosing a point near the plateau of the outputted MAC/GMC curves. 
An example of this procedure is shown in Figure 9(a), where the dashed lines indicate the value used as 
the Mat 58 transverse strength and corresponding strain. The plateau stress can be observed in the LS-
DYNA results in Figure 9(a), as well as the nonlinear continuum damage mechanics response up to the 
specified strength.  

The failure surfaces in the transverse and shear directions in the current inputs of MAT58 were 
chosen to be uncoupled by setting the parameter of FC to –1.0. The uncoupled, or faceted failure surfaces 
allowed for the description of nonlinear shear behavior through the specification of two pairs of stress-
strain values, as shown in Figure 10. The material followed the prescribed continuum damage mechanics 
response up to the specified point TAU1/GAMMA1, after which the material will respond linearly until 
reaching SC/GMC. With a stress limiting parameter equal to 1.0, the stress will plateau and maintain the 
limiting stress value of SC. An example of the two points used for specifying the shear response is shown 
by the dashed lines in Figure 9(b). A comparison of the transverse and shear response of the 
micromechanics and resulting LS-DYNA MAT 58 material response (determined via one-element 
verification simulations) for all six cases (two directions and three ply fiber volume fractions) are 
presented in Figure 9(a) to (f). 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f) 

 
Figure 9.—Comparison of the stress-strain curves output from MAC/GMC and those recreated from one element 

verification tests in LS-DYNA. Both the transverse and shear stress-strain curves are presented for the three 
varying unidirectional fiber volume fractions (37.5, 73.3 and 80 percent). The dashed lines indicate the points along 
the MAC/GMC curves used as input for the LS-DYNA MAT58 material model. 

 
The full set of material strength and corresponding strain values for the T700/PR520 composite are 

given in Table 5. The MAC/GMC results for the transverse compressive response for all three ply fiber 
volume fractions did not produce a specific yield point, or nonlinear stress-strain curve to prescribe an 
appropriate plateau stress, even up to large applied strains of 25 to 30 percent. To overcome this 
limitation in the prescribed matrix constitutive model, a transverse compressive plateau stress was set 
equal to the shear strength, and a corresponding strain chosen, based on the transverse ply modulus. This 
is reflected in Table 5 as the strength values of TC. This assumed compressive strength was assigned to 
ensure that plies did not hold unrealistically high loads in the transverse compressive directions. It should 
be noted that this transverse compressive failure of the braider tows was not observed in any of the 
experiments and may not be a critical parameter. 
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Figure 10.—Shear stress VS strain for Mat 58 when FS=–1.0 (faceted surfaces). 

 
 

TABLE 5.—UNIDIRECTIONAL PLY PROPERTIES FOR THE T700/PR520 TRIAXIALLY 
BRAIDED COMPOSITE IN THE ABSORBED MATRIX MODEL SUBCELL APPROACH 

  

UD Ply Strength  
(MPa)   

UD Failure Strain 

LT LC TT TC SC TAU1   GAMMA1 ETT2 GMS 
Axial Plies 3599 1379 151.0 195.8 195.8 50.0   0.075 0.032 0.1475 
A/C Braider Plies 1648 696 135.0 221.0 221.0 201.0   0.084 0.032 0.16 
B/D Braider Plies 938 403 87.7 193.4 193.4 75.0    0.045 0.030 0.300 

Note: LT = Longitudinal tension, LC = Longitudinal compression, TT = Transverse tension, TC = Transverse compression,  
SC = Shear Plateau, TAU1 = First Shear Stress, GAMMA1= First Shear Strain, GMS = Plateau Shear Strain 

 

Summary 
This section summarizes the previous discussions for determining the subcell model geometry and 

material properties. First, the RUC geometry was obtained via microscopy and the necessary ply fiber 
volume fractions for the subcell discretization are determined using a simple straight line model approach. 
In the discretization scheme AMM presented here, there were three unique ply fiber volume fractions. 
Second, the micromechanics code MAC/GMC was utilized to determine the stiffness properties for the 
different ply fiber volume fractions. In addition, the micromechanics was also used to predict the stress-
strain curves in the transverse and shear directions in order to determine the appropriate strength and 
failure strain parameters for LS-DYNA’s MAT 58 material model. Lastly, a top-down approach with a 
periodic unit cell method was used to take experimental strength and failure strain data in the longitudinal 
and transverse braided coupon directions and determine the subcell, ply level longitudinal strengths.  

Experimental Setup 
Off-axis tension testing on composite specimens was conducted at the NASA Glenn Research Center 

in Cleveland, Ohio. The purpose of the testing was to provide additional material characterization of the 
braided composite as well as validation test cases for the subcell modeling approach. Testing was 
completed with off-axis orientations of 0°, 30°, 45°, 60°, and 90°. The 0° and 90° represent the standard 
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axial and transverse coupon tests used to characterize orthotropic materials. The 30° and 60° directions 
were chosen, as they are aligned perpendicular and parallel, respectively, to the bias fiber tows. The 45° 
test, similar to the 90°, is not aligned with a fiber tow. The results presented here are for the T700/PR520 
composite system. 

Mechanical Testing 
The mechanical testing was conducted on an MTS servo-hydraulic axial torsion test frame with axial 

full-scale capabilities of 220 kN. The specimens were gripped in MTS 647 wedge-style grips with 
Surfalloy coating. Mechanical stops were located on the grip wedges to ensure proper and consistent 
specimen alignment throughout the testing. For all testing, two inches of the specimens at the top and 
bottom were gripped with maximum machine grip pressure. Maximum grip pressure was used to prevent 
specimen slip in the grips during testing. No tabs or abrasive paper were used on the specimen grip areas 
during testing. All testing was completed at a crosshead displacement rate of 0.021 mm/s. A typical test 
specimen gripped in the test frame is shown in Figure 11. 

Digital Image Correlation 
Subsets of the test specimens were monitored with digital image correlation (DIC) using GOM’s 

ARAMIS system. DIC is a noncontact method for the evaluation of full-field 2D and 3D surface strains. 
For DIC measurement, a random, high contrast speckle paint pattern is applied to the surface of the 
specimens. In this work, a standard spray paint was used. The speckle pattern deforms with the specimen. 
Through the analysis of successive images, the DIC software can generate the local displacement 
distribution of the viewing field and compute strain components.  

The coupon axial strain value was determined using a 25.4 mm “virtual” axial strain gage provided 
within the ARAMIS software. This axial gage was centered on the specimen and was used to compute the 
elastic modulus and construct the stress-strain curves of the specimens. At least three specimens were 
tested; however, not all were analyzed using the full field data. A representative image of the test setup 
for the digital image correlation is shown in Figure 12. 

Besides as a strain measurement technique, the DIC measurements also provided information on the 
identification of damage initiation and evolution to failure through the use of the full field strain data. 
This data provided understanding of the progressive failure patterns and regions of localized strains.  

Figure 13 presents the representative full-field surface strain images for a 60° off-axis specimen under 
tension. The axial strain and transverse strain are pictured, where the axial direction is aligned with the 
global loading direction. 

Experimental Results 
The experimental results are organized to compare and contrast all five experimental coupon 

directions. First, the reported moduli and strength values are discussed to understand the trends in the 
macroscopic data such as the modulus and ultimate strength of the coupon based on loading orientation. 
Second, a study of the local failure morphologies for each material direction is presented to compare the 
cause of catastrophic failure in each test. Last, the full field strain data from the digital image correlation 
are presented in order to identify regions of localized cracking and damage, which may explain the 
variation of failure modes and the observed trends in measured strength with coupon orientation. 
 

 



NASA/TM—2015-218814 15 

 
 

 
Figure 11.—Typical specimen gripped in test frame. 

 
 

 
Figure 12.—Photogrammetry cameras setup to 

view typical off-axis tension test. 
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(a)    (b)  
Figure 13.—(a) Axial strain for 60° off-axis specimen and (b) transverse surface 

strain for 60° off-axis specimen under tension. 
 
 

Coupon Moduli and Strengths 

The measured moduli for the various off axis coupons are provided in Figure 14. As expected, both 
the 0° and 60° coupons exhibited the highest stiffness, since both coupons have tow continuity between 
the mechanical grips. The remaining coupons, which do not have tow continuity, had similar moduli 
values with respect to each other. Aside from the 13 percent variation between the highest and lowest 
moduli values, the material remained relatively quasi-isotropic in plane as expected due to the 0°/±60° 
braiding pattern. The stress-strain response of the 0° and 60° coupons were linear elastic until failure. The 
remaining three off-axis coupons, conversely, exhibited nonlinearity prior to failure. The stress-strain 
curves for each test angle are shown in Figure 15.  

The strengths, on the other hand, differed significantly across the off-axis angles as shown in  
Figure 15. The strength data is summarized Figure 16. The 0° coupon had the highest reported strength at 
984 MPa. The 60° coupon exhibited a 12 percent reduction. The 45° and 90° coupon had strength values 
merely a half of the axial strength of the braided coupon at 557 and 560 MPa, respectively. The 30° 
coupon was the worst performing in terms of ultimate strength, with a value of 488 MPa. The scatter in 
the measured strength values can be attributed to the variation of failure modes associated with each 
orientation. In addition, the low strength values of the 30°, 45° and 90° coupons were accompanied with 
nonlinear stress-strain behavior as seen in Figure 15. The failure morphology and failure mode for each 
test is described in the next section. 
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Figure 14.—Measured elastic moduli from the off-axis coupon tests. 

 
 
 
 
 

 
Figure 15.—Stress-strain curves for the off axis tensile coupon tests. Note: Only one experimental stress-

strain curve is displayed for each angle. 
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Figure 16.—Measured strength values from the off-axis coupon tests. 

Failure Morphology 

Coupons of the braided composite tested at different on- or off-axis orientations exhibit distinctively 
different failure morphologies. The reason for the analysis of the failure morphology was to understand 
the cause of the significant variation in mechanical properties measured in these specimens. The failure 
morphologies of the tested coupons are summarized in Figure 17.  

The 0° and 60° coupons, which exhibited the highest strengths, had the most catastrophic failure and 
exhibited a minimal residual stiffness/strength after reaching the peak load. Furthermore, the 0° and 60° 
coupons often had additional compressive failures observed near the grips, which may be a result of the 
rebounding, post-failure stress wave from the coupon gage section. In both cases, the final failure 
mechanism was identified as tensile failure of the tow lying parallel to the loading direction. In the 0° 
coupon, this was the axial tow, whereas for the 60° coupon it was the corresponding bias tow. The failure 
path in the 0° coupon was transverse to the loading direction, perpendicular to the axial tows as shown in 
Figure 17(a). The red dashed line in the figure represents the failure path. The 60° coupon failed in a path 
preferential along the axial tows (at a 60° angle), as shown in Figure 17(d). 

The 30° coupon was unique such that it exhibited the highest post-failure residual stiffness 
(qualitatively) as compared to other coupons. As seen in Figure 17(b), the only observed tow failure was of 
the bias tows lying perpendicular to the loading direction. The fractured surface is rather clean, as indicated 
by the arrow in the enlarged insert. On the other hand, the tows that did not fracture underwent shifting and 
pull-out, as seen in the axial tows and other bias tows. The failed, perpendicular bias tows were under 
compression due to the overall Poisson contraction of the coupon with the macroscopic loading. The clean 
fracture surface (unlike the frayed fiber tow ends in the tensile failures) is also indicative of compressive 
failure of these bias tows. The path of bias tow compressive failures were aligned with the axial tow, as seen 
by the dashed line in Figure 17(b), at the point of undulation for the failed bias tow. 

Unlike the previous three test cases, the 45° coupon did not exhibit a failure clearly associated with 
the tensile or compressive failure of a specific tow direction. In Figure 17(c), the bias tows near the failed 
gage section show diffuse splitting and pull-out from the edges of the coupon and several axial tow 
segments (hidden by the braider tows) had clearly fractured. Since these axial tows oriented 45° degree to 
the tensile direction, it is hypothesized that the failure of the axial tow is associated with a shear 
dominated, or a combined failure in conjunction with bias tow failures initiated from the free edge. Unlike 
the other cases, a definite failure path could not be determined for the 45° coupons.  
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(a) 0° Tensile Test 
 

Failure Notes: 
Longitudinal failure of the axial tows. Catastrophic 
failure with minimal remaining coupon strength. 
Failure path looks to be concentrated 
perpendicular to the loading and axial direction. 

 
(b) 30° Tensile Test 
 
Failure Notes: 
Compressive failure of the bias tows lying 
perpendicular to the applied loading. The failure 
path of the compressive bias tow failures are 
along the axial tows and at the point of undulation. 
The other bias and axial tows remain continuous. 

 
(c) 45° Tensile Test 
 
Failure Notes: 
No obvious failure of a specific axial or braider 
tow. Failure pattern is similar to that of the 90° 
coupon in that edge damage and shearing look to 
be a present phenomenon. Shear failure of the 
axial tow fibers were observed. 

 
(d) 60° Tensile Test 
 
Failure Notes: 
Catastrophic failure due to longitudinal failure of 
the bias tows parallel to the applied loading. The 
main failure path tends to lie along the axial tow 
path. 

 
(e) 90° Tensile 
 
Failure Notes: 
Highly edge initiated shear failure. Damage 
occurs and initially propagates along the axial tow 
path, perpendicular to the loading direction, but in 
nearly all specimens jumps to an adjacent axial 
tow path due to the local shearing of the axial 
fibers. 

 
Figure 17.—Images of the failed braided coupons along with general notes on failure mechanism. 
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The 90° coupon displayed failure morphologies consistent with those described in Kohlman (2012). 
The damage was initiated at the free edge, which caused a shear failure. The damage initially was along 
the axial tow path; however, it jumped to an adjacent axial tow path. An image of the failure is presented 
in Figure 17(e). This phenomenon is likely due to the occurrence of initial cracking at two different 
locations on the opposing free edges, documented by Kohlman as edge-initiated damage. The two regions 
met through the shear failure of an axial tow and led to the final failure, as shown by the dashed red-line 
in Figure 17(e). 

Digital Image Correlation Results 

In this section, the full field strain data from DIC are presented. Two sets of strains: the axial strain 
and transverse strain which are oriented parallel and perpendicular to the load, respectively, are shown. 
The axial and transverse strains are also labeled as Epsilon X and Epsilon Y, respectively, in the DIC 
plots. The images presented are the last frame available prior to specimen failure. The purpose of this 
investigation was to understand the influence of damage localization or edge effects prior to final failure.  

Figure 18(a) and (b) shows the axial and transverse strains for the 0° coupon. The concentrated 
regions of 2.25 to 2.75 percent strain shown in Figure 18(a) coincide with the location of bias tows at the 
surface of the specimen. The high axial strains are indicative of bias tow splitting, or microcracking of the 
matrix within the fiber tow. These cracks can also be observed visually in the post-mortem specimens. 
These cracks were observed previously in the experimental work of Littell (2008). In both Figure 18(a) 
and (b), there are no distinct high-strain regions near the edge of the coupon which would indicate any 
edge initiated damage.  

The 60° coupon, whose DIC results are shown in Figure 19(a) and (b), also show signs of bias tow 
splitting. This can be seen from the high axial strains in Figure 19(a) which coincides with the location of 
surface bias tows. In the 60° coupon, the splitting appears less diffuse as it does in the 0° coupon, 
affecting only the bias tows not aligned with the loading direction. While there may be axial tow splitting 
as well, this damage mode is not visible from visual inspections or the DIC strain data. Although some of 
the transverse strains shown in Figure 19(b) are concentrated at the edge, further observations show they 
are likely caused by localized cracking of bias tows at the free edge. This edge damage, however, does 
not play a role in the main tensile failure of the bias tows aligned with the loading direction. 

The DIC results for the 30° coupon are shown in Figure 20(a) and (b). High strain regions localized 
near the edge of the coupon in the DIC images can be seen in the axial strain, shown in Figure 20(a), and 
the transverse strain in Figure 20(b). Cracks were observed in the bias tow located above the axial tow 
and may be the source of the localized strain at the edges. Preferential cracking is seen along the axial tow 
direction in both cases, and the alignment of these high strain regions in Figure 20(a) coincide with the 
failure path observed in the coupon. It is not clear whether the observed edge cracking in the transverse 
bias tows was an initiator of premature failure. The DIC results prior to final failure do suggest, however, 
that the bias tow compressive failures were initiated at the edge. 

The DIC results are presented for the 45° coupon in Figure 21(a) and (b). Similar to the 30° coupon, 
highly localized axial strains near the free edges of the coupon indicate edge initiated damage. Bias  
tow splitting, caused by local matrix cracking within the tow, can be observed in Figure 21(a) as the 
2.1 percent strain bands oriented nearly transverse to the loading direction. This cracking can be observed 
visually as well on the top and bottom surfaces of the coupon. The failure morphology of the 45° coupon 
discussed previously indicates a possible edge shearing damage similar to that observed in the 90° tests. 
The localization of strain at the edges observed in the DIC plots supports that suggestion. 

 



NASA/TM—2015-218814 21 

 
Figure 18.—DIC Images of (a) axial strain (parallel to the labeled loading 

direction) and (b) transverse strain (perpendicular to the labeled 
loading direction) for the 0° coupon under tension prior to final failure. 

 

 
Figure 19.—DIC Images of the axial strain (a) and transverse strain 

(b) for the 60° coupon under tension prior to final failure. 
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Figure 20.—DIC Images of axial strain (a) and transverse strain 

(b) for the 30° coupon under tension prior to final failure. 
 

 
Figure 21.—DIC Images of axial strain (a) and transverse strain 

(b) for the 45° coupon. 
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Figure 22.—DIC Images of the axial strain (a) and transverse strain (b) for 

the 90° coupon under tension prior to final failure. 
 
Figure 22(a) and (b) present the axial and transverse strain contours for the 90° coupon. The 90° 

coupon exhibits high strain localization at the free edge which is more diffuse and widespread than in the 
other off-angle directions, occurring periodically over the observed length. Previous experimental work 
(Kohlman 2012) noted that the damage of the coupon initiated at the edges in locations similar to those 
showing the highest axial strain. The current DIC results indicate that the highest strain regions are at the 
intersection of bias tows (between the axial tows). 

Finite Element Model 
In the discussion to follow in the remainder of this report, only the 0°, 30°, 60° and 90° coupons are 

discussed. The 45° coupon will be used for final validation of the subcell modeling approach and will not 
be utilized during this initial verification phase, where it is anticipated that model parameters will be 
modified/changed to match the physical response of the braided composite. The results of simulations of 
the 45° coupon will be presented in another report focused on the validation of the subcell approach.  

The finite element mesh follows the subcell modeling approach, whereby each individual subcell is 
assigned to a unique composite shell element which contains the appropriate UD stacking and 
orientations. In LS-DYNA, this is accomplished through the use of the *Section_Shell keyword to specify 
the number of layers and orientations, and the *Integration_Shell keyword to specify the material and 
thickness of each integration point, which in the subcell modeling approach is tied to a given UD layer. 
Belytskcho-Tsay conventional shell elements were used. The FE mesh is shown in Figure 23, where the 
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0° and 90° meshes are similar to previous subcell works (Goldberg et al. 2010). For the 30° and 60° 
coupons, the subcell mesh is skewed, as shown in Figure 23, to accomplish the following goals: 

 
1. Preserve quadrilateral elements along the free-edge boundaries of the coupons 
2. Preserve the orientation of the axial tows which are dictated by the red and green element paths 

shown in the FE mesh  
 
Since free-edge failure was a common, observable phenomenon in the 45° and 90° coupons, measures 

were taken to ensure that stress-strain calculations at the free-edges would not be distorted by triangular 
or poorly formed elements. For 30° and 60° coupons, triangular and poorly formed elements do exist at 
the grip boundaries (not shown). Failure in these regions would invalidate simulation results. 
Consequently, artificially high strength values are imposed on all elements which are triangular at the 
gripped boundary or are poorly conditioned. As a result, these regions would behave orthotropic elastic 
through the entirety of the simulation and force failure to occur away from the gripped boundary. This 
meshing approach at the gripped boundaries does not conflict with experimental results, since the 30° and 
60° coupons failed predominantly at the gage section of the coupon.  

The second assumption was made in order to preserve the orientation of the subcell modeling 
approach, which was preferentially aligned with the axial tow direction. To account for the skewed nature 
of the subcells, the subcell area was preserved to ensure that the characteristic length associated with the 
subcells would be consistent across all of the simulations (0° through 90°), thereby eliminating any 
influence of element size when comparing the simulation results. In general practice, this method of 
skewing the subcell orientation need only be performed when it is necessary to create a “clean” boundary 
which does not lie parallel or perpendicular to the axial tow path. 

 

 
Figure 23.—FE mesh of the various off-axis coupons simulated in LS-DYNA. The color coding represents the 

unique subcell regions (A=Red, B=Blue, C=Green, D=Yellow). 
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Figure 24.—Schematic of the through-thickness ideally shifted coupon stacking. 

Each row represents a braid layer. The ideally shifted stacking configuration 
features shifting of the axial subcells (A and C) through the thickness. 

 
 
 
Previous works (Cater et al. 2014) found that using a single shell element to represent a multi-layer 

braided coupon did not accurately predict the transverse (90°) modulus of the coupon nor capture the 
effects of the locally unsymmetric areas. Thus, the six layers of the braided composite were modeled by 
individual shell layers in this current work. Two different stacking orientations were investigated 
(perfectly stacked and ideally shifted) as was done in previous subcell studies (Cater et al. 2014). The first 
configuration assumed that axial tows were aligned perfectly through the thickness, whereas the shifted 
model assumed that an every-other nesting was occurring between the axial tows. A schematic of the 
ideally shifted model is shown in Figure 24, showing the alternating subcells through the thickness of the 
coupon. It was found formerly that the two stacking configurations affected the predicted transverse 
modulus slightly; however, there were no obvious results to conclude preferring one stacking arrangement 
over the other. 

In addition to the nesting configuration, the appropriate contact definition between the various plies 
was investigated. In previous works, a tiebreak contact was employed between shell layers. Nodal 
constraints would be applied with respect to the translational degrees of freedom only, but would allow 
for the failure/separation of the nodal constraints upon reaching a failure criterion. This contact definition 
is hereby referred to as “tiebreak”. The second formulation was a shell-edge to surface constraint which 
can be applied between node sets along a shell edge and a surface segment. This constraint ties the 
rotational degrees of freedom and translational degrees of freedom between the shell element nodes and 
the displacements and curvatures of the respective surface. When applied between the conventional shell 
layers along with an option to consider distance offsets, it constrains both the rotational and translational 
degrees of freedom of the two layers. This second contact definition, however, does not allow for failure 
or separation between layers, and is hereon referred to as the beam offset contact type. 

The two contact types will be investigated, along with the two stacking configurations, to understand 
the influence of each on the coupon behavior and determine the appropriate considerations to take for 
future impact analysis. No failure is prescribed in the tiebreak contact. The material and model parameters 
for the T700/PR520 composite are taken as presented from the previous sections on Subcell Modeling. 
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Figure 25.—FE mesh of the 90° coupon showing the positioning 

of the virtual strain gage (note: only a portion of the FE mesh 
is shown, and loading is applied in the horizontal direction). 

 

Simulation Results and Discussions 
The results from the numerical FE model are presented in this section. All strain results were obtained 

from the LS-DYNA simulations via the use of a virtual strain gage, shown in Figure 25. The virtual strain 
gage was based on the nodal displacements of two nodes located at the mid-section of the coupon. The 
distance between the two nodes were two unit cells in length (approximately 35.6 cm). The stresses were 
determined via reactionary forces at the applied boundary condition (in the load direction). 

Shell Contact and Subcell Stacking Configuration Study 

The first set of numerical simulations consisted of both the two contact definitions between the 
individual shell layers and the two stacking configurations discussed in the previous section. The results 
from the 0°, 30°, 60° and 90° coupons are discussed in what follows; however, for brevity not all stress-
strain curves are shown. These first set of tests were used to determine the best contact and stacking 
configuration to use in future studies. As such, these first set of results discussions will cover the 
comparison between stress-strain curves of the FE simulations and experimental results. In a later 
discussion, the comparison between experimental and numerical failure mode predictions on the final 
coupon configurations will be presented. In addition, this first investigation utilizes only the bias ply 
longitudinal strengths determined from the top down unit-cell approach discussed in previous sections. 

The predicted strength of the axial (0°) coupons were found to be sensitive to the stacking 
configuration, with estimations of 892 MPa and 904 MPa for the ideally shifted and perfectly stacked 
configurations with tiebreak contact, respectively. These values are both slightly lower than the 
experimentally reported value of 984 MPa. Both the experimental and numerical stress-strain curves were 
linear elastic until failure, with the simulations showing some nonlinearity immediately before failure. 
This nonlinearity, however, was simply a function of the exponential form of damage evolution in the 
continuum damage mechanics model (MAT 58 in LS-DYNA). The results for the 0° coupon also showed 
minimal sensitivity with respect to the contact definitions. The tiebreak and beam offset coupons 
displayed minute differences in moduli and strength for the same stacking configuration. 
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Figure 26.—Stress-strain curves for the 30° coupon test for both contact types and stacking configurations. The 

experimental data is shown in gray and black and numbered in the figure. The colored lines represent the four 
simulation coupons with varying stacking or contact type as indicated in the figure legend. 

 
The results from the 30° coupon are shown in Figure 26 for all four coupon types alongside the 

experimental data. The estimated strength of the coupon was found to be insensitive to the stacking 
configuration as shown below. For example, both the ideally shifted and perfect stack coupons with the 
beam offset contact definitions exhibited similar ultimate strengths and ductile post-peak responses. The 
choice of contact type, however, affected the coupon response and ultimate strength. The predicted 
strength of the 30° coupon with the beam offset contact (488 MPa) compared well with the test data (518 
and 455 MPa). The coupon with beam offset contact was linear to the predicted strength. The tiebreak 
coupons, on the other hand, exhibited a nonlinearity in the stress-strain response seen in the experimental 
tests. The tiebreak contact, however, caused premature failure well below the experimental values. The 
perfect stack tiebreak coupon, for example, predicted a strength value 20 percent lower than the lowest 
experimental strength. 

The 60° coupon tests were found to be sensitive to both the contact definition and stacking 
configuration. All simulation results, however, were found to under-predict the experimental strengths by 
nearly 50 percent in all four test cases. Due to this large discrepancy, the simulation results are not 
valuable in producing meaningful conclusions on proper contact definition or stacking configuration and 
are excluded here. In addition, the large under-prediction highlights a deficiency in the initial method 
used to determine the tensile strength of the bias plies. In the section to follow, the results for the 60° 
coupon will be presented using the second method to obtain a bias tow longitudinal strength and will be 
compared to the initial top down unit-cell approach. 

The stress-strain curves from the transverse, or 90°, coupon simulations are shown in Figure 27, along 
with the experimental test data. Similar to the 30° coupon, the resulting predictions were found to be 
sensitive to the type of contact defined between the layers. The tiebreak coupons exhibited earlier 
softening in the material response, due to the yielding (in the transverse and shear directions) in some 
localized regions in the subcells. They also displayed lower estimated strengths than their beam offset 
coupon counterparts. The transverse coupon results also present a strong difference in coupon response  
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Figure 27.—Stress-strain curves for the 90° coupon test for both contact types and stacking configurations. The 

experimental data is shown in gray and black and numbered on the figure. The colored lines represent the four 
simulation coupons with varying stacking or contact type as indicated in the figure legend. 

 
between the two stacking configurations. For either contact definition, the perfectly stacked coupons 
showed premature material softening with final strengths well below the experimentally reported values. 
Similar to the 30° coupon, the ideally shifted coupon utilizing the beam offset contact best captured the 
final strength of the coupon. It should be noted, however, that the response with this configuration was 
linear elastic until failure. Both experimental stress-strain curves show a distinct nonlinearity after  
0.5 percent strain which is not captured in the simulation results for the ideally shifted beam offset 
coupon. The possible source of this discrepancy is discussed later, along with the comparison of predicted 
failure modes.  

Based on the previous results for all four simulated coupon types across the four testing directions, it 
was found that the ideally shifted coupon with the beam offset contact provided the best match to the 
overall composite behavior. This conclusion was based on comparisons between the experimental and 
simulated stress-strain curves and predicted strength values for the 30° and 90° coupons. The simulated 
results were relatively indifferent to stacking configuration for the other coupon directions. It should be 
noted again that the ideally shifted stacking configuration was a representation of the nesting of axial 
fibers during manufacture. The ideal shifting was a structured means of easily incorporating fiber nesting 
without dealing with a truly random through-thickness distribution. Thus, it can be only recommended 
over the perfectly aligned configuration, not generalized to be the best approach.  

The beam offset contact type also provided the best match for the predicted braided coupon strengths. 
The tiebreak contact, which does not tie rotational degrees of freedom between shell layers, caused 
premature failure in the 30° and 90° coupons. One important item to note is the lack of predicted 
nonlinearity of the coupon response when using the beam offset contact for the 30° and 90° cases. This 
nonlinearity was observed experimentally in both cases. Nevertheless, it was deemed more relevant to 
capture the appropriate strength rather than the nonlinearity of the coupon response which may be more 
complex than the coarse subcell approach can capture.  
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Another important point to address from the simulations and the experimental work using DIC was 
the influence of contact type and shifting configuration on the simulation of the coupon directions which 
had the presence of free edge damage in the experimental tests. Figure 20 and Figure 22 show the 
presence of strain concentrations at the free edges of the 30° and 90° coupons, respectively. These two 
coupon directions are also the two simulated cases which do not load directly along a fiber tow path. Due 
to the sensitivity of these two coupon directions on contact type and/or stacking configuration, it is 
believed that these parameters (contact and stacking) play a role in load distribution and damage 
development when the coupon is not loaded in a fiber tow direction 

Predicted Failure Modes 

This section discusses the results of all off-axis coupon simulations using the aforementioned ideally 
shifted beam offset coupon for all cases. The experimental failure modes are compared with the FE model 
and the results are discussed. Similar to the previous study, the 45° coupon is omitted intentionally to 
provide final validation of the calibrated model. 

The stress-strain curves for the 0° coupon are shown in Figure 28 for both the simulation case (ideally 
shifted with beam offset contact) and two experimental test cases. It should be noted that the experimental 
data was limited to the number of curves for which the DIC data was available (2 of 3). The observed 
nonlinearity of the simulation was a function of the MAT 58 exponential damage evolution. The 
simulation failure mode was a tensile failure of the axial plies, which corresponds well to the longitudinal 
failure of the axial tows from the experiment. The simulation failure occurred nearest to the grips due to 
the deterministic nature of the numerical solution, whereas the experiment failed both near the grips and 
at the gage section. The experimental curve which exhibits stiffening was a test which did not fail initially 
(due to insufficient grip displacement) and was subsequently reloaded. For more accurate comparison, the 
lower experimental test data should be used which matched well to the simulated response. 

The stress-strain curves for the 30° coupon are shown in Figure 29. The two experimental coupons 
exhibited a range for the predicted strength (~450 and ~520 MPa). The simulated coupon (again, ideally 
shifted with beam offset contact) failed initially at 495 MPa, well within the two experimental data points. 
The predicted failure from the simulations was compressive failure of the bias tows oriented 
perpendicular to the load. A comparison between the experimental failure path and simulated failure 
modes is shown in Figure 30(a) and (b). The red elements shown in Figure 30(b) are elements whose bias 
plies have reached their longitudinal strength. The stresses in these plies were compressive. All other plies 
and ply directions remained intact in the simulation coupon, hence the simulated coupons were able to 
carry additional load after the initial failure (as shown by the post-peak response of the simulation in 
Figure 29). The experimental coupon did not show evidence of fiber tow failures aside from the 
compressive bias tow failures (axial tows and bias tows not perpendicular to the load were intact) and was 
relatively stiff compared to the other failed coupons. The stiffness and strength remaining in the 
simulation after the initial failure may be important in capturing the appropriate residual stiffness and 
strength of the composite post-impact and should not be dismissed. The termination of the experimental 
test was likely due to the significant load drop experienced during the compressive tow failure, resulting 
in a stop condition.  
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Figure 28.—The stress-strain curve for the ideally shifted coupon with beam offsets in the 0° tensile test (red) 

along with two experimental stress-strain curves (black and gray, labeled). 
 

 
Figure 29.—Stress-strain curve for the ideally shifted coupon with beam offsets in the 30° tensile test (red). 

Experimental data from two separate tests are included and labeled to identify the end point. 
 
The simulation results in Figure 30(b) show a preferential alignment of the bias tow compressive 

failures along the 30° direction coincident with the axial fibers, which can also be observed in the 
experimental results in Figure 30(a). The simulation results, however, do not show localized failure along 
a single path, and damage progressed along two different axial tow paths as shown by the two long 
diagonal lines of red elements at the center of Figure 30(b). This diffuse damage development may be a 
limitation in the finite element discretization which is incapable of capturing discrete cracks. In the 
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current analysis, the failure surfaces of the UD plies are faceted, meaning the longitudinal, transverse and 
shear directions are uncoupled when determining the failure in the constitutive model. As such, the 
compressive longitudinal failure of the bias plies in the analysis does not necessarily cause tensile and/or 
shear failure in the same ply. This result was observed at various elements failed in the 30° simulated 
coupon. Since these ply layers were able to still carry load in the transverse and shear directions, they may 
have contributed to the development of additional compressive failures in the simulations outside of the 
origination of failure in the coupon. In the actual experimental test, the bias tows which fail in 
compression are completely severed and unable to carry transverse/shear load. The observed damage was 
highly localized. Aside from this difference, the model was able to correctly predict the coupon failure 
mode. In addition, the current analysis is deterministic. The introduction of probabilistic strengths or 
locally varying material properties (present in the real composite) may lead to more localized failures. 

Figure 31 shows the stress-strain curves for the experimental and numerical coupons in the 60° 
coupon test for both the original simulation, which used the bias longitudinal strength obtained from the 
top down unit-cell approach, and the modified simulation which enforced a failure strain equivalent to the 
axial ply failure strain in the longitudinal direction. The modified simulation (with bias ply tensile failure 
strains set equal to the axial ply tensile strains) had a predicted strength of 830 MPa, correlating well with 
the reported experimental strengths of 828 and 862 MPa. These results are far improved from the original 
prediction of 464 MPa. In addition, this updated bias ply longitudinal strength did not affect the predicted 
strength or stress-strain response of the 0° and 30° coupon, since it was not a significant failure direction 
in those two directions. 

Good correlation was found with the modified simulation results and the experimental data for the 
60° coupon. One noted difference in the stress-strain curves is the apparent nonlinearity of the modified 
simulation at around 0.9 percent strain and is addressed here. This nonlinearity was caused by local plies 

 
 

(a)  
 

(b)  
Figure 30.—(a) The experimental failure and (b) the predicted failure of the 

simulated 30° coupon. The color coding in figure (b) corresponds to red 
specifying an element whose integration point has reached the damaged 
state (D=1) in the longitudinal direction. The stress in these integration points 
(which corresponded to the bias tows lying perpendicular to the load) was 
compressive.  
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Figure 31.—Stress-strain curves for the ideally shifted coupon with beam offsets in the 60° tensile test. Both the initial 

simulation (red) and the modified simulation (blue) which included the increased bias tow longitudinal tensile 
strengths are presented. Experimental data from two separate tests are shown (gray and black) with labels to 
distinguish the termination points. 

 
(axial and bias) reaching their specified shear strength. Recalling from the sections on UD strength 
determination, the shear directions were modeled to have a plateau stress upon reaching their strength. 
This strength was reached in this case for the axial tow in shear, causing the softening of the coupon 
stiffness observed in Figure 31.  

It is believed that the simulated nonlinearity in the numerical model was a result of the lack of 
continuity of bias tows in the subcell model. Due to the discretization of the model, axial tow continuity is 
preserved, while bias tow continuity is not. As a result, the load distribution in the 60° FE subcell model 
is carried disproportionately in shear by the axial and non-60° bias plies. The experimental coupon is 
loaded along the 60° bias tows which are continuous. The numerical coupon, on the other hand, does not 
load the bias plies directly, and instead has complex load transfers between adjacent A/B, B/C, C/D and 
D/A subcells.  

The predicted failure mode of the composite for the 60° coupon was tensile failure of the bias UD 
plies in the longitudinal direction (direction of the applied loading). This correlates well with the 
experiment, as shown by the comparisons in Figure 32(a) and (b). As expected, the simulation results are 
highly localized to a small region near the grips of the coupon, due to the deterministic nature of the 
simulation. Additionally, the simulation is less catastrophic in terms of damage development; however, 
the extent of damage in the experimental test—as seen in Figure 32(a)—may be skewed by the post-
failure pull out of bias tow fibers. In both the experiment and FE simulations, the tensile failure of the 
bias tows caused failure of the entire region, e.g., failure of all other material directions in the simulation. 

The stress-strain curves for the 90° coupon are presented for both the simulation and experiments in 
Figure 33. Both the original simulation (which under-predicted the 60° coupon strength) and the modified 
simulation with updated bias ply tensile strains/strengths are presented. Although the original simulation 
predicted a strength value which matched well with the experimental data, the failure mode was a 
longitudinal failure of the bias tows. The experiment, on the other hand, was a function of edge-initiated 
shear failure, as shown by the image of the failed coupon in Figure 17 and the DIC strains prior to failure in 
Figure 22. As a result, the increased bias tow tensile strength in the modified simulation causes an over-
estimation of the composite strength in the 90° direction. The over prediction may be due to limitations of 
the current model which is not sufficient to represent the free-edge effects in the 90° coupon. 
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(a)  
 

(b)  
Figure 32.—(a) The experimental failure and (b) the predicted failure of 

the simulated 60° coupon. In (b), the colors correspond to different 
subcell regions, and not to damage values as in previous plots. 

 
 

 
Figure 33.—Stress-strain curves for the ideally shifted coupon with beam offsets in the 90° tensile test. Both the initial 

simulation (red) and the modified simulation (blue) which included the increased bias tow longitudinal tensile 
strengths are presented. Experimental data from two separate tests are shown and labeled 
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Figure 34 overlaps the DIC images captured during experiment with the stress-strain curves obtained 
by simulation and experimental measurement. The figure illustrates the development of surface cracking 
and the out-of-plane displacements at the free-edges. This localized damage is believed to be one of the 
sources of material nonlinearity in the overall coupon response. An additional source of coupon 
nonlinearity is also believed to be fiber straightening within the matrix, due to the unrestrained fiber tows 
at the edges. These complex mechanisms are not captured by the current subcell model, which may be a 
limitation of the current level of fidelity in the model. For example, Kohlman (2012) observed tow 
shearing (between axial and bias tows at the free edge) as a predominant failure mechanism based on 
coupon observations. Any method attempting to capture these mechanisms explicitly, however, will incur 
significant computational cost. 

On the other hand, it is worth mentioning that these free-edge effects are typically mitigated in the 
design of composite structures and are less critical in the determination of failure in flat panel impact tests 
or other realistic structural scenarios. In a real composite structure, the ideal case 90° failure due to 
longitudinal failure of the bias tows, which is simulated in the present subcell model, may be the actual 
failure mode when the material is utilized in a realistic large scale structure. Thus, the inability of the 
subcell model to capture the 90° failure mode and failure strength observed in the straight sided coupon is 
not a critical flaw to the approach’s usefulness as a modeling tool.  

 

 
Figure 34.—Stress-strain curves for the simulation and experiment overlapped with DIC images of both the shear and 

longitudinal strains (w.r.t. the loading direction) at various points along the experimental curve. The vertical lines 
represent the onset of the observed localized strains or displacements in the experimental test. X-strain and y-
strain components correspond to the axial and transverse directions, respectively. 
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Figure 35.—Comparison between the reported strength values and the modified simulation 

response (dashed boxes). The green check marks correspond to simulations where the failure 
mode in the simulation matched the observed experimental failures. The red X corresponds to a 
difference in failure mode predictions in the 90° coupon. 

 
 
Additionally, previous works have shown the transverse (90°) strength of triaxially braided 

composites to be significantly higher without the edge effect. Salem et al. (2014) performed burst tube 
tests to help characterize the transverse, or 90°, strength of the coupon without the influence of free edges. 
The composite tubes were made of T700 fiber tows, the Epikote 862 (E862) resin and an identical 
braiding architecture to the system in the current work. They were pressurized internally to cause a 
uniform loading in the hoop stress direction, which can be idealized as a transverse load for a standard 
coupon. The authors reported a more than 50 percent greater value of the final failure strength over those 
reported from straight sided coupon tests. The reported failure strain value was in the range of 1.5 to 
1.9 percent. These observations can be compared qualitatively to the trends observed in the modified 
simulation of the 90° coupon shown in Figure 33. In the subcell simulation of the T700/PR520 90° 
coupon, the 44 percent over prediction of the straight sided coupon strength and predicted 1.9 percent 
failure strain may suggest the subcell model exhibited an appropriate material response if free edge 
effects are neglected.  

A summary of the predicted strengths in the modified subcell model are shown in Figure 35. The 
results indicate that the subcell model performed well in predicting the failure mode and experimental 
strength for three of the four tests cases. The response of the 90° coupon which was susceptible to edge 
damage and hence was not captured appropriately by the FE model. 

Conclusions 
A combined experimental and analytical approach has been presented to verify the proposed subcell 

modeling approach in capturing the behavior of 2D triaxially braided composites. The proposed modeling 
approach combined top down coupon level strength data with computational micromechanics to obtain 
model parameters.  

To provide coupon level data, tensile experiments were carried using straight sided braided composite 
coupons loaded at five orientations. DIC was used to monitor the damage initiation and failure process 
during tensile tests. The experimental results showed that the failure strengths and failure modes of the 
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straight sided coupons of the braided composites were sensitive to the loading configuration. Coupons 
with five different orientations displayed a range of failure modes and strengths despite the intended 
quasi-isotropic nature of the braid design. The 0° and 60° directions had the highest failure strengths, 
whereas the 30°, 45° and 90° coupons had significantly lower reported strengths. The latter three coupon 
tests were susceptible to edge cracking and possible edge initiated damage.  

A study of two different stacking configurations (through the thickness of the braid) and two different 
contact types assisted in identifying the most appropriate combination to accurately capture the braided 
coupon response. A strong contact between individual shell layers, which tied rotational and translational 
degrees of freedom, was found to best predict the experimental strengths. In addition, the best correlation 
to the experimental data was obtained for all directions when using a shifted coupon model which 
accounts for the nesting of axial tows observed in manufactured composites. 

The subcell model was successful in predicting the failure modes and coupon strengths for the 0°, 30° 
and 60° coupons. A discrepancy in the original characterization of the bias tow longitudinal tensile 
strength was identified. The top-down methodology was modified and alternative assumptions were 
provided. The modified simulations provided an improved fit to the experimental data. 

The predicted strength of the 90° coupon test was much higher in the simulations. In addition, the 
predicted failure mode did not match to those observed from the experiments. The experimental failure 
modes were known to be caused by damage initiated at the free edge. The experimental DIC strain data 
show significant localization of strains at the free edge which is not captured in the simulation. In 
addition, a lack of an intra-tow interface in the subcell method limits the current approach in simulating 
these failure modes. The simulated response, however, matches qualitatively with the strength determined 
by the tube burst tests with a similar composite system, indicating that the subcell modeling approach 
would appropriately capture the appropriate 90° coupon strength in the absence of the free edges.  

The result indicates that the free edge effect can significantly reduce the strength of braided 
composites at certain orientations. Therefore, the design and manufacturing strategies which reduce or 
eliminate the exposure of free edge for these orientations should lead to a significant improvement of the 
load bearing capability and the integrity of the structure.  

In summary, the subcell approach shows promise in providing an improved analysis capability for 
braided composite structures with high computational efficiency. In the next phase, this approach along 
with the best practices reported here will be validated in the simulation of 45° coupon under tension and 
panel impact experiments.   
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Appendix 
This section contains the significant LS-DYNA keywords used for the current subcell modeling work. 

These include the keywords used to define the subcell stacking (*Section_Shell), the integration rules for 
the subcells (*Integration_Shell), the contact keyword for the beam offset type contact and the material 
card. Additional information on the exact input should be referenced to the LS-DYNA user’s manual 
(Hallquist 2006). 

Figure A.1 shows the section definition used to define subcell A. The information contained within 
the card includes the shell thickness, element type, integration rule, and stacking orientation of the UD 
plies. Figure A.2 contains the associated integration rule card referenced by the *Section_Shell keyword 
of subcell A. The *Integration_Shell keyword contains the location, thickness and associated material 
specifier for each layer of the composite shell (subcell). Figure A.3 presents the keyword for the use of 
MAT58 (*Mat_Laminated_Composite_Fabric) for the axial ply (Vf = 80 percent). Lastly, Figure A.4 
provides an example of the contact keyword used to define the beam offset type contact. 
 
 
 

 
Figure A.1.—The *Section_Shell keyword for Subcell A. This keyword contains the definition of the element type, 

shell thickness and the orientation of the unidirectional plies. (Units are in inches.) 
 

 

 

 
Figure A.2.—The *Integration_Shell keyword for subcells A 

and C. Contained in the keyword are the thicknesses of each 
unidirectional lamina within the subcell, the location of the 
integration point and the associated material specifier for the 
layer. 
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Figure A.3.—The *Mat_Laminated_Composite_Fabric keyword for the axial unidirectional ply (Vf = 80 percent). 

Moduli and strength values are listed in units of psi. 
 
 
 

 
Figure A.4.—The contact keyword used to define contact between the shell element layers. The slave surface for the 

contact was prescribed using node sets while the master surfaces were specified through the use of segments.  
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