
Weylin MacCalla
Embry-Riddle Aeronautical University, Daytona Beach, Florida

Sameer Kulkarni
Glenn Research Center, Cleveland, Ohio

Utilizing GPUs to Accelerate Turbomachinery
CFD Codes

NASA/TM—2016-218947

January 2016

NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space science.
The NASA Scientifi c and Technical Information (STI)
Program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Offi cer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI Program provides access
to the NASA Technical Report Server—Registered
(NTRS Reg) and NASA Technical Report Server—
Public (NTRS) thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major signifi cant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of signifi cant
scientifi c and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers, but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM. Scientifi c

and technical fi ndings that are preliminary or of
specialized interest, e.g., “quick-release” reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientifi c and
technical fi ndings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientifi c and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientifi c,

technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and
technical material pertinent to NASA’s mission.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Fax your question to the NASA STI

Information Desk at 757-864-6500

• Telephone the NASA STI Information Desk at
 757-864-9658

• Write to:

NASA STI Program
 Mail Stop 148
 NASA Langley Research Center
 Hampton, VA 23681-2199

Weylin MacCalla
Embry-Riddle Aeronautical University, Daytona Beach, Florida

Sameer Kulkarni
Glenn Research Center, Cleveland, Ohio

Utilizing GPUs to Accelerate Turbomachinery
CFD Codes

NASA/TM—2016-218947

January 2016

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Acknowledgments

The authors would like to thank Dr. Mark Celestina and Mr. Richard Mulac for
their insight and advice throughout the course of the project.

Available from

Trade names and trademarks are used in this report for identifi cation
only. Their usage does not constitute an offi cial endorsement,
either expressed or implied, by the National Aeronautics and

Space Administration.

Level of Review: This material has been technically reviewed by technical management.

NASA STI Program
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

National Technical Information Service
5285 Port Royal Road
Springfi eld, VA 22161

703-605-6000

This report is available in electronic form at http://www.sti.nasa.gov/ and http://ntrs.nasa.gov/

NASA/TM—2016-218947 1

Utilizing GPUs to Accelerate Turbomachinery CFD Codes

Weylin MacCalla*
Embry-Riddle Aeronautical University

Daytona Beach, Florida 32114

Sameer Kulkarni
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Abstract

GPU computing has established itself as a way to accelerate parallel codes in the high performance
computing world. This work focuses on speeding up APNASA, a legacy CFD code used at NASA Glenn
Research Center, while also drawing conclusions about the nature of GPU computing and the
requirements to make GPGPU worthwhile on legacy codes. Rewriting and restructuring of the source
code was avoided to limit the introduction of new bugs. The code was profiled and investigated for
parallelization potential, then OpenACC directives were used to indicate parallel parts of the code. The
use of OpenACC directives was not able to reduce the runtime of APNASA on either the NVIDIA Tesla
discrete graphics card, or the AMD accelerated processing unit. Additionally, it was found that in order to
justify the use of GPGPU, the amount of parallel work being done within a kernel would have to greatly
exceed the work being done by any one portion of the APNASA code. It was determined that in order for
an application like APNASA to be accelerated on the GPU, it should not be modular in nature, and the
parallel portions of the code must contain a large portion of the code’s computation time.

Nomenclature

CFD Computational Fluid Dynamics
CPU Central Processing Unit
dGPU Discrete Graphics Processing Unit
GPGPU General Purpose Computing on the Graphics Processing Unit
GPU Graphics Processing Unit
Kernel A portion of code that is run on the GPU

I. Introduction

Graphics processing units (GPUs) are typically used to drive the display of a computer. They are
uniquely suited to this because of their ability to run many threads at once. This is ideal for driving a
display that is made up of many pixels, which require many threads. This many-threaded ability of the
GPU also makes it suitable for general purpose computing. GPUs have been used to speed up many
parallel applications that are able to utilize the single instruction multiple thread (SIMT) architecture of
the GPU.

*NASA Glenn Research Center, intern from Embry-Riddle Aeronautical University.

NASA/TM—2016-218947 2

Computational fluid dynamics (CFD) codes have been a large part of general purpose computing on
GPUs (GPGPU). CFD codes have to do large amounts of computations on large data sets, often in
parallel. Researchers have been able to achieve impressive speedups of CFD codes on the GPU relative to
CPU runtimes, with some implementations able to achieve 100x decrease in runtime (Ref. 1).

This work focuses on accelerating a turbomachinery CFD code used by researchers in the
Turbomachinery and Turboelectric Systems Branch at NASA Glenn Research Center in Cleveland, Ohio.
The code, called APNASA (Refs. 2 to 4) is a legacy CFD code that was developed in the late 1980s. It is
well validated and researchers are familiar with it. APNASA is a three-dimensional, steady-state, time-
average Navier-Stokes code for multistage compressor analysis which solves the average passage system
of equations. Because it is used often, it is desired to speed up the runtime of the code to be able to more
quickly analyze compressor geometry designs. This work uses the parallel abilities of the GPU in an
attempt to speed up APNASA, while also investigating the potential to speed up legacy CFD codes in
general.

Two hardware systems are primarily used during the course of this work. The first is equipped with
16 Intel Sandy Bridge cores, and 16 GB of 1600 MHz DDR3 RAM. This system uses an NVIDIA Tesla
K40 GPU. The other system has an AMD A10-7850 Kaveri accelerated processing unit, which is
composed of four Steamroller CPU cores, and eight Radeon GPU cores. This system is equipped with
8 GB of 1866 MHz DDR3 RAM.

The remainder of this paper is organized as follows: Section II describes the approach to GPU
acceleration taken during the work. Sections III and IV discuss the software and hardware used during the
project, respectively. Section V examines memory management within GPU computing. Section VI
describes the tests performed on the hardware systems, and Section VII discusses the results of those
tests. Section VIII describes an investigation to determine the feasibility of GPU computing for the
hardware systems used. Section IX discusses an issue in the GPU programming software that was used,
and the steps that were taken to try to correct it, followed by conclusions in Section X.

II. Approach

While speeding up legacy codes is desired, re-writing them is not. These codes have the advantage of
being well-validated pieces of software, and writing GPU-centric codes could introduce new bugs.
Additionally, writing new codes is a time consuming process that is difficult to justify when there is
already a tool for the job. In the interest of keeping new bugs from appearing within the code throughout
the project, the source code was modified as little as possible, and there was not significant restructuring
of the code.

A few methods have been used to accelerate legacy codes using the GPU. These include creating a
compiler that re-writes the entire code base in a GPU programming language (Ref. 5), or re-writing and
porting sections of the code to the GPU for acceleration (Ref. 6). Creating a compiler is a very time
consuming process, and is specific to the formatting of the code. It was determined to be out of the scope
of the current effort. Instead, small, compute intensive and highly parallel parts of the code were
identified and ported to the GPU for acceleration.

The process that was used to port code to the GPU started with profiling the code. Then, once the most
time consuming parts of the source code were found, they were investigated for parallelism. The most
parallel parts were ported to the GPU, and then the GPU kernels were optimized. This was an iterative
process that was designed to incrementally speed up the code.

NASA/TM—2016-218947 3

III. Software

There were two types of software tools used during the project; profiling software, and GPU
programming software. Each are explained in more detail below.

A. Profiling Software

Profiling an application involves timing the running code to determine where the most time is spent.
Through the duration of the current effort, three software profiling tools were used, each for different
purposes:

GNU Profiling Tool (GPROF) (Ref. 7)
The GNU Profiling tool is part of the GNU compiler package which is freely available under the

GNU General Public License. It was used to take the initial profile of the code, and was able to provide
subroutine-level results about the most time consuming parts of the code. The information from the GNU
Profiler was used to narrow down the search for the sections of code to be offloaded to the GPU.

PGPROF (Ref. 8)
Once the time intensive subroutines were determined using the GNU Profiling Tool, the most

parallelizable sections of the subroutine had to be found. PGPROF (distributed by Portland Group) is a
line-by-line profiling tool that can be used to determine which lines of code take the most time to execute.
This tool was able to point out the areas of the source code that would be most beneficial to be ported to
the GPU.

NVIDIA Visual Profiler (NVVP) (Ref. 9)
It was important to be able to track the performance of the GPU code so that it could be optimized

further. NVVP was used to visually represent what was happening on the GPU. It was able to map out the
time spent transferring data as well as the time spent doing actual computation on the GPU. NVVP also
suggested ways to optimize the GPU code that was run, which helped to tune the GPU code once it was
created.

B. GPU Programming Software

There were three GPU programming tools that were considered:

CUDA
CUDA is a C-based programming language that works only with NVIDIA GPUs, so it would work

with the K40 system, but not the APU system. It is a low-level language that gives the programmer a lot
of control over the GPU, however using it would mean manually re-writing sections of code that would
be run on the GPU. While CUDA is a powerful language it was not used directly during the project.

OpenCL
Much like CUDA, OpenCL is a low-level language, however it is much more portable than CUDA.

OpenCL programs are able to run on most GPUs as well as other types of accelerators, like Intel’s Xeon
Phi. This portability adds a layer of complexity to the programming process, which makes it more
complex to program in than CUDA. It is a difficult process to port existing code to OpenCL because of
this complexity. Manually writing OpenCL code would most likely result in significant restructuring, and
re-writing many parts of the legacy code, which would not comply with the goals of the project, so
OpenCL was not used either.

OpenACC
Unlike OpenCL and CUDA, OpenACC is a high level approach to porting code to the GPU.

OpenACC allows the programmer to specify where there is parallelization opportunities in the code
through compiler directives, which are formatted comments placed in the source code. Then the compiler

NASA/TM—2016-218947 4

automatically writes OpenCL or CUDA code at compile time. This eliminates the need for multiple
source codes, as well as simplifies the process of porting codes to the GPU. What is traded for
convenience, though, is access to the low-level capabilities of OpenCL and CUDA. OpenACC takes
many of the low level details out of the programmer’s hands and does them automatically, such as
transferring data to the GPU. It is also able to maintain enough control to allow the programmer to
optimize the GPU code. OpenACC is a programming standard with several implementations. The one
used throughout the current effort was developed by the Portland Group.

IV. Hardware

There were two computers used in the project, and the main difference between them was the GPU
memory architecture. One used the traditional GPU memory architecture, where the CPU and GPU have
separate memory spaces. The other used a recently introduced memory architecture, where the CPU and
GPU share memory, and have equal access to the entire system RAM. The differences between these
memory models are explained in more detail below.

A. NVIDIA Tesla

The NVIDIA Tesla K40 accelerator graphics card was used during the first half of the project. It is a
dedicated GPU (dGPU), meaning that it is separated from the CPU physically. The K40 is a high end
accelerator that contains 2200 GPU cores, which together are capable of running tens of thousands of
concurrent threads. This computational power allows very large kernels to be run on the GPU. This card
also has the potential to run multiple kernels at the same time, and transfer data while running kernels. At
the time of this writing, the K40 costs $3142.78.

The K40 uses the traditional memory architecture associated with GPUs, where the CPU and GPU do
not share memory. This means that in order to do computation on the GPU, data has to be transferred over
the PCIe bus to get to the GPU. After GPU computation, the data must be transferred back from the GPU
to the CPU to be able to continue serial computation. These data transfers have the potential to introduce
bottlenecks in the code that can increase overall runtime rather than reduce it. A simplified diagram of the
memory model is shown in Figure 1(a).

B. AMD Accelerated Processing Unit

In addition to the Tesla K40 dGPU, an AMD A10-7850K accelerated processing unit (APU) was
used. In an APU, the CPU and GPU are integrated on the same die, and are able to share memory space.
Because of the smaller space, the APU’s GPU is much smaller than a dGPU. The A10-7850 Kaveri APU
comes with 8 GPU cores that are capable of running 512 total threads at a time. This is significantly less
powerful than the K40, however it comes with a memory architecture that could make up for the
decreased computational power, and a cost of $129.99 at the time of writing.

Kaveri APUs, like the A10, come equipped with what is referred to as heterogeneous unified memory
architecture (hUMA). This memory model allows the CPU and GPU to share the same memory space,
which means that the APU has the potential to eliminate the data copy overhead that can reduce speedups

(a) Traditional GPU Memory (b) APU Memory .

Figure 1.—Simplified memory models.

4 Core CPU 8 Core GPU

hUMA (Memory)

CPU GPU

CPU Memory GPU Memory

NASA/TM—2016-218947 5

gained by running on the GPU. Many applications may not require the full potential of the K40, but do
have to deal with the data transfer overhead of its memory architecture. The APU was designed to
eliminate that data transfer overhead, and has the potential to perform better than the K40 for some
applications. A simplified diagram of the memory model is shown in Figure 1(b).

V. Memory Management

As mentioned before, traditional GPU memory architecture requires data to be transferred from the
CPU to the GPU and back during computation. This problem is especially prevalent in codes that were
written before the use of the GPU for general purpose computing. Legacy codes like APNASA have been
optimized and validated for years on the CPU, which means that there is likely going to be data transfer
bottlenecks when porting the code to the GPU. These data transfers are fully capable of negating the
benefit of the GPU, however there are a few ways to try to limit the amount of data transfers within a
program. Three of these methods are described below:

A. Device-Resident Variables

One way to limit transfers is to create variables that are copied over to the GPU and left there for the
duration of the program. Every action that modifies these variables within the code should then be done
on the GPU, and not the CPU. Then, when a CPU process needs the data from the GPU, only the
information needed will be copied to the RAM, reducing the amount of data transfers greatly.

The limitation of this method is that the pieces of data that are put onto the GPU need to have a large
scope, meaning that the information stored needs to be declared early on in the program, and should be
used throughout the duration of the program. Within APNASA, many of the large arrays used are
generated at a subroutine level, and then deleted from memory after the subroutine has completed. If the
subroutine is called only one time, then this is a good method to use, as the data could be copied over at
the beginning of the subroutine and then copied out at the end. As it is currently implemented, however,
the most time intensive subroutines are called many times within the duration of the program. While
copying the data at the beginning and end of the subroutine may reduce the amount of copies, the data
will still be copied many times, adding to the run time significantly. Generating program-level arrays
could make this a viable process, however that would mean restructuring much of the code, which was
out of the scope of the project.

B. Concurrent Data Transfers

Large GPUs like the K40 have the ability to run several processes at once. This means that the card is
able to copy data to and from the device at the same time. They are also able to run two kernels at once,
and do data transfers for one kernel while the other is running. OpenACC allows the programmer to use
these features, and through some fine tuning, there are ways to help reduce the amount time that the
computer spends doing only data transfers. This process does not eliminate the data transfer overhead, but
can reduce it. This method was used during the current effort when running on the Tesla K40.

C. Shared Memory

In a system like the Kaveri APUs, where the memory is shared, there should be no data transfers
between the devices, which would eliminate the data transfer costs. The zero-copy features of the APU
are not yet implemented in PGI’s OpenACC package though, so in practice there is still overhead due to
data transfer. This is a simple copy within the RAM, however, and data does not have to be transferred
across the PCIe bus.

NASA/TM—2016-218947 6

VI. Tests

There were three separate codes that were ported to the GPU in the current effort. First, to make sure
that the system was working correctly, a dummy script was accelerated. Then, once the hardware was
confirmed to be working, an APNASA Pre-Processing Script was run on the GPU. Once that was
complete, an APNASA subroutine was examined and ported to the GPU. Each of the tests were
performed on both systems and are described in more detail below.

A. Dummy Script

The dummy script was approximately thirty lines of Fortran 90 code that created an array of 100,000
elements. The code then multiplied each element by 1.00001, 1,000,000 times. Because the code was so
simple and parallelizable, it was easy to determine if the results from the GPU were accurate. The code
also provided a simple way to determine if each hardware system was functioning without error.

B. APNASA Pre-processing Script

Prior to jumping into the complexities associated with a 3D CFD code, a fairly simple pre-processing
script was used as a way to continue validating the process of porting code to the GPU, as well as explore
the possibilities of accelerating applications other than APNASA. The pre-processing script was a short
script that took very little time in the first place, and is used to prepare mesh files to be run through APNASA.

C. APNASA Subroutine

Once finished with the pre-processing script, the more time intensive APNASA subroutines were
examined for accelerating. The “filter” subroutine was selected due its significance within the code.
Within 50 iterations of the APNASA demo case, it is called 50 times and accounts for 9.24 percent of the
total runtime of the code. Additionally, it has the highest per-call runtime of the top five subroutines.
Within this subroutine, two loops were identified as having a large potential for acceleration due to the
large amount of data being changed and the simplicity of the loops.

VII. Results

Part of the GNU profiler output described in Section III is listed in Table 1. This data was generated
by running 50 iterations of APNASA’s demo case. This demo case consists of a rotor and stator gridded
with 51 radial points, 51 tangential points, and 271 axial points. The case was run on a workstation with a
quad core Intel Xeon processor and 4 GB of DDR3 RAM. The total runtime of the 50 iterations was
169.65 s. One thing to notice from the profiling output is that even the most time consuming parts of the
code do not take much time to run. The runge and filter subroutines take the most individual time per call,
but that time is still well under a second. The remaining subroutines run sufficiently quickly in their
current configurations so they are not candidates for speedups. This modular nature of the APNASA code
is something to note, as it makes it less of a candidate for GPU acceleration.

TABLE 1.—TOP FIVE SUBROUTINES’ PROFILING DATA
Subroutine

name
Percent of total runtime,

percent
Calls Seconds per call

runge 25.3 200 0.21 s
gstres 13.96 2550 0.01 s
hstres 13.72 2601 0.01 s
fstres 13.10 2550 0.01 s
filter 9.24 50 0.31 s

NASA/TM—2016-218947 7

TABLE 2.—TEST RESULTS
Test NVIDIA Tesla K40 AMD A10-7850K

CPU GPU Multiplier CPU GPU Multiplier
Dummy script 67.6 s 1.02 s 66.27x 68.64 s 5.04 s 13.62x
Pre-processing script 1.53 s 1.67 s 0.92x 0.87 s 0.81 s 1.07x
50 CFD iterations 76.2 s 79.6 s 0.96x 100.44 s 107.52 s 0.93x

The results of the tests are shown in Table 2. The dummy script was sped up drastically on both the APU
and dGPU system. The dGPU system was able to achieve better speedups due to the larger computational
power. The pre-processing script was sped up on the APU system, but not the K40 system. This may have to
do with the reduced copy time of the APU as well as the reduced initialization time of the APU. Attempting to
speed up APNASA as a whole did not work on either system, with slightly better performance coming from
the dGPU. This has to do with the additional computational power and that the dGPU is able to run multiple
kernels concurrently, as well as copy data to and from the device while running kernels. The GPU code run on
the K40 was well-optimized. Many of the optimization techniques were not available on the APU however, so
there was a relative reduction in performance when using the APU.

VIII. GPU Feasibility

In order to determine whether APNASA and other codes would be good candidates for GPU
acceleration, the threshold at which a kernel is doing enough work to achieve speedups on the GPU was
found in two ways, and on both systems. Each method is explained in more detail below.

The information below contains two sets of GPU data; the total run time of the code when run on the
GPU, and the total run time minus the minimum GPU time, which is used to represent the kernel
execution time without the initialization time of the GPU. The initialization time was calculated by a
separate test that ran a dummy kernel and calculated the total run time. In practice, the threshold amount
for a given application will be somewhere on the CPU line of the graph, between the two GPU data lines.
This threshold will depend on the number of kernels that can distribute the initialization costs between
themselves. As more kernels are being run on the GPU, the lower the threshold amount will be.

A. Single Instruction per Element

First, the number of elements in an array was varied while the number of instructions being
performed on each element was kept at a constant value, which was one in this case. This test was used to
determine the number of elements an array would need in order to be accelerated on the GPU. The
runtime was noted after code completion on both the CPU and the GPU. The results are shown in Figure 2.

Interestingly, when the initialization time is ignored, the dGPU system and the APU system seem to
perform similarly. In order to speed up the runtime of a kernel on either of the GPUs, assuming that the
startup time is distributed among many kernels, the number of elements in the array needs to be upwards
of 100,000,000. We can also see from this data that the dGPU system has a minimum run time of about
0.9 s, and the APU has one of about 0.3 s. This helps to illustrate the existence of the initialization costs
as well as points out that any program being ported over to the GPU on either system needs to have a
runtime in excess of each of these values in order to be viable to run on the GPU, which may help to
explain why the pre-processing script saw speedups on the APU, but not on the K40 system.

NASA/TM—2016-218947 8

Figure 2.—Single instruction test results.

NASA/TM—2016-218947 9

B. Fixed Array Size

Because APNASA primarily uses a fixed mesh size for each blade row during a simulation, it is
desired to know how many instructions per element would be necessary to justify porting the data to the
GPU. This was found by fixing the array size to one representative of an APNASA mesh, and varying the
number of instructions per element within the array. The number of instructions ranged from 1-600
instructions per element. The results are shown in Figure 3. As before, the APU and dGPU behave
similarly when the startup costs are ignored. We see that in order for a kernel to be run on the GPU rather
than the CPU, the number of instructions per element must exceed 100. The portions of code being run on
the GPU from APNASA did not meet this requirement, which seems to indicate that there was little
chance of speedups.

Figure 3.—Fixed array size test results.

NASA/TM—2016-218947 10

IX. OpenACC Data Management

The accelerated processing unit’s hardware allows for complete sharing of data between the CPU and
the GPU. This ability should greatly improve the runtime of codes that are able to utilize it as compared to
the dGPU runtime. However this project was not able to utilize the full potential of the shared memory
due to limitations of the PGI OpenACC implementation at the time of writing, which does not yet support
the zero-copy feature of the architecture. As it is, the data is being unnecessarily copied in the RAM.
While the data transfer time is reduced, it is not eliminated as expected. Once this feature is implemented,
it may be worth revisiting attempts to accelerate APNASA on the APU.

An interface was developed in an attempt to force OpenACC to recognize the shared memory of the
architecture. Because we did not have access to the PGI compiler source code, we were only able to
generate an external routine to add data to this table. It was successful in getting OpenACC to see the
data, however the OpenCL code generated by the compiler was not able to modify the data. Creating an
external routine to force the compilers to recognize the shared memory does not seem to be possible
without having access to the source code of the compilers.

X. Conclusions

While the GPU is a modern powerhouse of computation, it is not able to speed up certain parallel
applications. This is due partially to the significant overhead costs associated with running code on the
GPU. There are often bottlenecks created when a large amount of data is transferred from the CPU to the
GPU and back, as well as large initialization costs just to get the GPU running. APNASA is written in a
very modular way, meaning that it uses many, quickly running subroutines that are called many times to
do computation. It does not seem to do enough parallel work on large arrays to overcome the overhead
costs of running code on the GPU. With new technologies, it may be possible, but at the moment, without
significant code restructuring, it will not be possible to accelerate APNASA using the GPU.

In order for an application to be accelerated from GPU computing, it needs to be structured in a
specific way. Any code that has potential to be sped up on the GPU needs to exceed the threshold values
involving the amount of data, and the amount of work being done to the data. Without significant parallel
potential, and the ability to store data on the GPU for long periods of time, it is unlikely that GPU
computing will be advantageous for many applications without code restructuring.

NASA/TM—2016-218947 11

Appendix A.—GPROF Profiling Output

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls s/call s/call name
25.30 42.92 42.92 200 0.21 0.27 runge_
13.96 66.61 23.69 2550 0.01 0.01 gstres_
13.72 89.89 23.28 2601 0.01 0.01 hstres
13.10 112.11 22.22 2550 0.01 0.01 fstres_
9.24 127.79 15.68 50 0.31 1.67 filter_
6.98 139.64 11.85 100 0.12 0.12 resid_
6.20 150.16 10.52 11 0.96 1.10 eddycm_
5.01 158.66 8.50 50 0.17 0.17 step_
1.17 160.65 1.99 powf.J
0.99 162.33 1.68 50 0.03 0.03 error_
0.92 163.89 1.56 11 0.14 0.14 damp1_
0.67 165.03 1.14 1 1.14 166.72 MAIN__
0.42 165.75 0.72 11 0.07 0.07 baxi2d_
0.37 166.37 0.62 1 0.62 0.62 resdke_
0.30 166.88 0.51 expf.J
0.22 167.26 0.38 200 0.00 0.00 baxist_
0.22 167.63 0.37 200 0.00 0.00 bcjv_
0.19 167.95 0.32 1 0.32 0.32 baxi_
0.13 168.17 0.22 200 0.00 0.00 bcext_
0.11 168.35 0.18 200 0.00 0.00 bcwall_
0.08 168.49 0.14 1 0.14 0.14 bforc1_
0.07 168.61 0.12 200 0.00 0.00 runge2_
0.06 168.71 0.10 logf.J
0.05 168.80 0.09 1 0.09 0.09 metric_
0.05 168.88 0.08 1 0.08 1.44 bforc3_
0.05 168.96 0.08 1 0.08 0.08 initb_
0.05 169.04 0.08 matherr
0.04 169.11 0.07 cosf.J
0.04 169.18 0.07 for_read_seq_xmit
0.04 169.24 0.06 50 0.00 0.00 filte2_
0.04 169.30 0.06 1 0.06 0.06 sarea_
0.03 169.35 0.05 51 0.00 0.00 fstr2_
0.02 169.39 0.04 51 0.00 0.00 hstr2_
0.02 169.43 0.04 expf
0.02 169.46 0.03 2315548 0.00 0.00 wf_
0.02 169.49 0.03 50 0.00 0.00 step2_
0.01 169.51 0.02 10 0.00 0.00 edycm2_
0.01 169.53 0.02 1 0.02 0.02 output_
0.01 169.55 0.02 for__desc_ret_item.
0.01 169.57 0.02 powf
0.01 169.58 0.01 200 0.00 0.00 bckv_
0.01 169.59 0.01 10 0.00 0.00 baxiske_
0.01 169.60 0.01 1 0.01 0.18 input_
0.01 169.61 0.01 1 0.01 0.01 resdke2_

NASA/TM—2016-218947 12

0.01 169.62 0.01 1 0.01 0.01 sarea2_
0.01 169.63 0.01 __libm_error_support
0.01 169.64 0.01 for__desc_ret_item
0.01 169.65 0.01 for__desc_zero_length_item
0.00 169.65 0.00 201 0.00 0.00 bcj2v_

 0.00 169.65 0.00 200 0.00 0.00 bcinl2_
0.00 169.65 0.00 100 0.00 0.00 resid2_
0.00 169.65 0.00 51 0.00 0.00 gstr2_
0.00 169.65 0.00 50 0.00 0.00 error2_
0.00 169.65 0.00 11 0.00 0.00 propty_
0.00 169.65 0.00 10 0.00 0.00 damp2_
0.00 169.65 0.00 1 0.00 0.00 bcext2_
0.00 169.65 0.00 1 0.00 0.00 bforc2_
0.00 169.65 0.00 1 0.00 0.00 bforc4_
0.00 169.65 0.00 1 0.00 0.00 bfread_
0.00 169.65 0.00 1 0.00 0.00 gridg_
0.00 169.65 0.00 1 0.00 0.00 metri2_
0.00 169.65 0.00 1 0.00 0.00 ptcalc_

% the percentage of the total running time of the
time program used by this function.

cumulative a running sum of the number of seconds accounted
seconds for by this function and those listed above it.

 self the number of seconds accounted for by this
 seconds function alone. This is the major sort for this
 listing.

calls the number of times this function was invoked, if
 this function is profiled, else blank.

self the average number of milliseconds spent in this
ms/call function per call, if this function is profiled,
 else blank.

total the average number of milliseconds spent in this
ms/call function and its descendents per call, if this
 function is profiled, else blank.

name the name of the function. This is the minor sort
 for this listing. The index shows the location of
 the function in the gprof listing. If the index is
 in parenthesis it shows where it would appear in
 the gprof listing if it were to be printed.

NASA/TM—2016-218947 13

Appendix B.—Source Code for Dummy Script

This code was used to ensure that the GPU systems were working correctly as well as ensure that the
OpenACC directives were properly porting code to the GPU.

 PROGRAM MAIN
C
 REAL, ALLOCATABLE, DIMENSION (:) :: X ! (IL)

C
 NL = 1000000
 IL = 100000

C
C ALLOCATE ARRAYS
C
 ALLOCATE(X(IL))
C
C INITIALIZE ARRAY X
C

 DO I=1,IL
 X(I) = FLOAT(I)
 END DO

C
C PERFORM A LOT OF WORK IN PARALLEL ON ARRAY X
C

c$acc kernels
 DO N=1,NL
c$acc loop
 DO I=1,IL
 X(I) = 1.00001 * X(I)
 END DO
 END DO
c$acc end kernels

C
 PRINT *, X(1), X(500), X(5000), X(10000)
 STOP
C
 END

NASA/TM—2016-218947 15

Appendix C.—Source Code for GPU Feasibility Test

This code was used to determine the amount of computation needed to achieve speedups on the GPU.
The dimensions of the array X were changed, as well as the number of instructions in the second loop.

 PROGRAM MAIN

C DECLARE VARIABLES
 REAL, ALLOCATABLE, DIMENSION (:,:,:) :: X
 INTEGER ::
 . IL = 61,
 . JL = 61,
 . KL = 200,
 . C = 0

C ALLOCATE X
 ALLOCATE(X(IL,JL,KL))

C POPULATE X
 DO K=1,KL
 DO J=1,JL
 DO I=1,IL
 X(I,J,K) = 1.0000
 END DO
 END DO
 END DO

C PERFORM TASKS ON X

c$acc kernels
 DO K=1,KL
 DO J=1,JL
 DO I=1,IL
 X(I,J,K) = X(I,J,K) * 2
 END DO
 END DO
 END DO
c$acc end kernels

 STOP
 END

NASA/TM—2016-218947 17

Appendix D.—Source Code for C/Fortran Interface

This code was used in an attempt to force PGI’s implementation of OpenACC to recognize the shared
memory of the accelerated processing unit. It is discussed in Section IX.

Fig D1. main.f
 PROGRAM MAIN

 USE ISO_C_BINDING
C INITIALIZE VARIABLES
 REAL, TARGET, ALLOCATABLE, DIMENSION (:) :: X
 INTEGER :: IL = 100

C ALLOCATE VARIABLES
 ALLOCATE(X(IL))

C INITIALIZE X
 DO I=1,IL
 X(I) = FLOAT(I)
 END DO

C CALL C FUNCTION
 CALL MAP(X,SIZE(X))

C CHANGE X TO 15
c$acc kernels loop present(X)
 DO I=1,IL
 X(I) = 15
 END DO

 CALL UNMAP(X)
C PRINT PART OF ALL POINTERS AND X
 PRINT *, X

 END

Fig D2. map_.c

/*
Function: map
maps inputted fortran data to OpenACC present data table
*/

#include <stdio.h>
#include <stdlib.h>
#include <openacc.h>

void map_(f1, size)
float f1[];
int size;

NASA/TM—2016-218947 18

{
acc_map_data(f1,f1,size*sizeof(float));

printf("\t%li\n", f1);
printf("\t%f\t%f\t%f\n", f1[0], f1[49], f1[99]);
}

Fig D3. unmap_.c

/*
Function: unmap
unmaps data from OpenACC present data table
*/
#include <openacc.h>

void unmap_(f1)
float f1[];
{
acc_unmap_data(f1);
}

NASA/TM—2016-218947 19

References

1. Thibault, Julien C., Senocak, Inanc; “CUDA Implementation of a Navier-Stokes Solver on Multi-
GPU Desktop Platforms for Incompressible Flows,” forty-seventh Aerospace Sciences Meeting
Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, 2009.

2. Adamczyk, J.J., 1985, “Model Equation for Simulating Flows in Multistage Turbomachinery,”
ASME 85-GT-226.

3. Adamczyk, J.J., Mulac, R.A., Celestina, M.L., 1986, “A Model for Closing the Inviscid Form of the
Average-Passage Equation System,” ASME 86-GT-227.

4. Adamczyk, J.J., Celestina, M.L., Beach, T.A., and Barnett, M., 1990, “Simulation of Three-
Dimensional Viscous Flows Within a Multistage Turbine,” ASME J. of Turbomachinery, Vol. 112,
pp. 370–376.

5. Jesperson, Dennis C., “Acceleration of a CFD code with a GPU,” Scientific Programming, Vol. 18,
2010, pp. 193–201

6. Noaje, Gabriel.; Jaillet, Christophe., Krajecki, Michael., “Source-to-source code translator: OpenMP
C to CUDA,” High Performance Computing and Communications (HPCC), 2011 IEEE 13th
International Conference on , vol., no., pp. 512,519, 2–4 Sept. 2011.

7. GPROF, GNU Binutils for Ubuntu, Ver. 2.24, 1983 [cited 4 August 2015].
8. PGPROF, PGI Accelerator workstation for C and Fortran, Ver. 15.5-0, 2015, URL:

https://www.pgroup.com/products/pgprof.htm [cited 4 August 2015].
9. NVVP, NVIDIA CUDA Toolkit, Ver. 6.5, 2013 [cited 4 August 2015].

