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Abstract 

GPU computing has established itself as a way to accelerate parallel codes in the high performance 
computing world. This work focuses on speeding up APNASA, a legacy CFD code used at NASA Glenn 
Research Center, while also drawing conclusions about the nature of GPU computing and the 
requirements to make GPGPU worthwhile on legacy codes. Rewriting and restructuring of the source 
code was avoided to limit the introduction of new bugs. The code was profiled and investigated for 
parallelization potential, then OpenACC directives were used to indicate parallel parts of the code. The 
use of OpenACC directives was not able to reduce the runtime of APNASA on either the NVIDIA Tesla 
discrete graphics card, or the AMD accelerated processing unit. Additionally, it was found that in order to 
justify the use of GPGPU, the amount of parallel work being done within a kernel would have to greatly 
exceed the work being done by any one portion of the APNASA code. It was determined that in order for 
an application like APNASA to be accelerated on the GPU, it should not be modular in nature, and the 
parallel portions of the code must contain a large portion of the code’s computation time.  

Nomenclature 

CFD Computational Fluid Dynamics  
CPU Central Processing Unit  
dGPU Discrete Graphics Processing Unit 
GPGPU General Purpose Computing on the Graphics Processing Unit 
GPU Graphics Processing Unit 
Kernel A portion of code that is run on the GPU 

I. Introduction 

Graphics processing units (GPUs) are typically used to drive the display of a computer. They are 
uniquely suited to this because of their ability to run many threads at once. This is ideal for driving a 
display that is made up of many pixels, which require many threads. This many-threaded ability of the 
GPU also makes it suitable for general purpose computing. GPUs have been used to speed up many 
parallel applications that are able to utilize the single instruction multiple thread (SIMT) architecture of 
the GPU. 
  

                                                      
*NASA Glenn Research Center, intern from Embry-Riddle Aeronautical University. 
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Computational fluid dynamics (CFD) codes have been a large part of general purpose computing on 
GPUs (GPGPU). CFD codes have to do large amounts of computations on large data sets, often in 
parallel. Researchers have been able to achieve impressive speedups of CFD codes on the GPU relative to 
CPU runtimes, with some implementations able to achieve 100x decrease in runtime (Ref. 1). 

This work focuses on accelerating a turbomachinery CFD code used by researchers in the 
Turbomachinery and Turboelectric Systems Branch at NASA Glenn Research Center in Cleveland, Ohio. 
The code, called APNASA (Refs. 2 to 4) is a legacy CFD code that was developed in the late 1980s. It is 
well validated and researchers are familiar with it. APNASA is a three-dimensional, steady-state, time-
average Navier-Stokes code for multistage compressor analysis which solves the average passage system 
of equations. Because it is used often, it is desired to speed up the runtime of the code to be able to more 
quickly analyze compressor geometry designs. This work uses the parallel abilities of the GPU in an 
attempt to speed up APNASA, while also investigating the potential to speed up legacy CFD codes in 
general.  

Two hardware systems are primarily used during the course of this work. The first is equipped with 
16 Intel Sandy Bridge cores, and 16 GB of 1600 MHz DDR3 RAM. This system uses an NVIDIA Tesla 
K40 GPU. The other system has an AMD A10-7850 Kaveri accelerated processing unit, which is 
composed of four Steamroller CPU cores, and eight Radeon GPU cores. This system is equipped with 
8 GB of 1866 MHz DDR3 RAM.  

The remainder of this paper is organized as follows: Section II describes the approach to GPU 
acceleration taken during the work. Sections III and IV discuss the software and hardware used during the 
project, respectively. Section V examines memory management within GPU computing. Section VI 
describes the tests performed on the hardware systems, and Section VII discusses the results of those 
tests. Section VIII describes an investigation to determine the feasibility of GPU computing for the 
hardware systems used. Section IX discusses an issue in the GPU programming software that was used, 
and the steps that were taken to try to correct it, followed by conclusions in Section X.  

II. Approach 

While speeding up legacy codes is desired, re-writing them is not. These codes have the advantage of 
being well-validated pieces of software, and writing GPU-centric codes could introduce new bugs. 
Additionally, writing new codes is a time consuming process that is difficult to justify when there is 
already a tool for the job. In the interest of keeping new bugs from appearing within the code throughout 
the project, the source code was modified as little as possible, and there was not significant restructuring 
of the code.  

A few methods have been used to accelerate legacy codes using the GPU. These include creating a 
compiler that re-writes the entire code base in a GPU programming language (Ref. 5), or re-writing and 
porting sections of the code to the GPU for acceleration (Ref. 6). Creating a compiler is a very time 
consuming process, and is specific to the formatting of the code. It was determined to be out of the scope 
of the current effort. Instead, small, compute intensive and highly parallel parts of the code were 
identified and ported to the GPU for acceleration.  

The process that was used to port code to the GPU started with profiling the code. Then, once the most 
time consuming parts of the source code were found, they were investigated for parallelism. The most 
parallel parts were ported to the GPU, and then the GPU kernels were optimized. This was an iterative 
process that was designed to incrementally speed up the code.   
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III. Software 

There were two types of software tools used during the project; profiling software, and GPU 
programming software. Each are explained in more detail below. 

A. Profiling Software 

Profiling an application involves timing the running code to determine where the most time is spent. 
Through the duration of the current effort, three software profiling tools were used, each for different 
purposes: 
 

GNU Profiling Tool (GPROF) (Ref. 7) 
The GNU Profiling tool is part of the GNU compiler package which is freely available under the 

GNU General Public License. It was used to take the initial profile of the code, and was able to provide 
subroutine-level results about the most time consuming parts of the code. The information from the GNU 
Profiler was used to narrow down the search for the sections of code to be offloaded to the GPU.  
 

PGPROF (Ref. 8) 
Once the time intensive subroutines were determined using the GNU Profiling Tool, the most 

parallelizable sections of the subroutine had to be found. PGPROF (distributed by Portland Group) is a 
line-by-line profiling tool that can be used to determine which lines of code take the most time to execute. 
This tool was able to point out the areas of the source code that would be most beneficial to be ported to 
the GPU.  
 

NVIDIA Visual Profiler (NVVP) (Ref. 9) 
It was important to be able to track the performance of the GPU code so that it could be optimized 

further. NVVP was used to visually represent what was happening on the GPU. It was able to map out the 
time spent transferring data as well as the time spent doing actual computation on the GPU. NVVP also 
suggested ways to optimize the GPU code that was run, which helped to tune the GPU code once it was 
created.  

B. GPU Programming Software 

There were three GPU programming tools that were considered: 
 

CUDA 
CUDA is a C-based programming language that works only with NVIDIA GPUs, so it would work 

with the K40 system, but not the APU system. It is a low-level language that gives the programmer a lot 
of control over the GPU, however using it would mean manually re-writing sections of code that would 
be run on the GPU. While CUDA is a powerful language it was not used directly during the project.  

 

OpenCL 
Much like CUDA, OpenCL is a low-level language, however it is much more portable than CUDA. 

OpenCL programs are able to run on most GPUs as well as other types of accelerators, like Intel’s Xeon 
Phi. This portability adds a layer of complexity to the programming process, which makes it more 
complex to program in than CUDA. It is a difficult process to port existing code to OpenCL because of 
this complexity. Manually writing OpenCL code would most likely result in significant restructuring, and 
re-writing many parts of the legacy code, which would not comply with the goals of the project, so 
OpenCL was not used either.  

 

OpenACC 
Unlike OpenCL and CUDA, OpenACC is a high level approach to porting code to the GPU. 

OpenACC allows the programmer to specify where there is parallelization opportunities in the code 
through compiler directives, which are formatted comments placed in the source code. Then the compiler 
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automatically writes OpenCL or CUDA code at compile time. This eliminates the need for multiple 
source codes, as well as simplifies the process of porting codes to the GPU. What is traded for 
convenience, though, is access to the low-level capabilities of OpenCL and CUDA. OpenACC takes 
many of the low level details out of the programmer’s hands and does them automatically, such as 
transferring data to the GPU. It is also able to maintain enough control to allow the programmer to 
optimize the GPU code. OpenACC is a programming standard with several implementations. The one 
used throughout the current effort was developed by the Portland Group.  

IV. Hardware  

There were two computers used in the project, and the main difference between them was the GPU 
memory architecture. One used the traditional GPU memory architecture, where the CPU and GPU have 
separate memory spaces. The other used a recently introduced memory architecture, where the CPU and 
GPU share memory, and have equal access to the entire system RAM. The differences between these 
memory models are explained in more detail below. 

A. NVIDIA Tesla 

The NVIDIA Tesla K40 accelerator graphics card was used during the first half of the project. It is a 
dedicated GPU (dGPU), meaning that it is separated from the CPU physically. The K40 is a high end 
accelerator that contains 2200 GPU cores, which together are capable of running tens of thousands of 
concurrent threads. This computational power allows very large kernels to be run on the GPU. This card 
also has the potential to run multiple kernels at the same time, and transfer data while running kernels. At 
the time of this writing, the K40 costs $3142.78. 

The K40 uses the traditional memory architecture associated with GPUs, where the CPU and GPU do 
not share memory. This means that in order to do computation on the GPU, data has to be transferred over 
the PCIe bus to get to the GPU. After GPU computation, the data must be transferred back from the GPU 
to the CPU to be able to continue serial computation. These data transfers have the potential to introduce 
bottlenecks in the code that can increase overall runtime rather than reduce it. A simplified diagram of the 
memory model is shown in Figure 1(a). 

B. AMD Accelerated Processing Unit 

In addition to the Tesla K40 dGPU, an AMD A10-7850K accelerated processing unit (APU) was 
used. In an APU, the CPU and GPU are integrated on the same die, and are able to share memory space. 
Because of the smaller space, the APU’s GPU is much smaller than a dGPU. The A10-7850 Kaveri APU 
comes with 8 GPU cores that are capable of running 512 total threads at a time. This is significantly less 
powerful than the K40, however it comes with a memory architecture that could make up for the 
decreased computational power, and a cost of $129.99 at the time of writing.  

Kaveri APUs, like the A10, come equipped with what is referred to as heterogeneous unified memory 
architecture (hUMA). This memory model allows the CPU and GPU to share the same memory space, 
which means that the APU has the potential to eliminate the data copy overhead that can reduce speedups 
 

(a) Traditional GPU Memory                     (b) APU Memory      . 

 
Figure 1.—Simplified memory models. 

4 Core CPU 8 Core GPU

hUMA (Memory)

CPU GPU

CPU Memory GPU Memory



NASA/TM—2016-218947 5 

gained by running on the GPU. Many applications may not require the full potential of the K40, but do 
have to deal with the data transfer overhead of its memory architecture. The APU was designed to 
eliminate that data transfer overhead, and has the potential to perform better than the K40 for some 
applications. A simplified diagram of the memory model is shown in Figure 1(b).  

V. Memory Management 

As mentioned before, traditional GPU memory architecture requires data to be transferred from the 
CPU to the GPU and back during computation. This problem is especially prevalent in codes that were 
written before the use of the GPU for general purpose computing. Legacy codes like APNASA have been 
optimized and validated for years on the CPU, which means that there is likely going to be data transfer 
bottlenecks when porting the code to the GPU. These data transfers are fully capable of negating the 
benefit of the GPU, however there are a few ways to try to limit the amount of data transfers within a 
program. Three of these methods are described below: 

A. Device-Resident Variables 

One way to limit transfers is to create variables that are copied over to the GPU and left there for the 
duration of the program. Every action that modifies these variables within the code should then be done 
on the GPU, and not the CPU. Then, when a CPU process needs the data from the GPU, only the 
information needed will be copied to the RAM, reducing the amount of data transfers greatly.  

The limitation of this method is that the pieces of data that are put onto the GPU need to have a large 
scope, meaning that the information stored needs to be declared early on in the program, and should be 
used throughout the duration of the program. Within APNASA, many of the large arrays used are 
generated at a subroutine level, and then deleted from memory after the subroutine has completed. If the 
subroutine is called only one time, then this is a good method to use, as the data could be copied over at 
the beginning of the subroutine and then copied out at the end. As it is currently implemented, however, 
the most time intensive subroutines are called many times within the duration of the program. While 
copying the data at the beginning and end of the subroutine may reduce the amount of copies, the data 
will still be copied many times, adding to the run time significantly. Generating program-level arrays 
could make this a viable process, however that would mean restructuring much of the code, which was 
out of the scope of the project.  

B. Concurrent Data Transfers 

Large GPUs like the K40 have the ability to run several processes at once. This means that the card is 
able to copy data to and from the device at the same time. They are also able to run two kernels at once, 
and do data transfers for one kernel while the other is running. OpenACC allows the programmer to use 
these features, and through some fine tuning, there are ways to help reduce the amount time that the 
computer spends doing only data transfers. This process does not eliminate the data transfer overhead, but 
can reduce it. This method was used during the current effort when running on the Tesla K40.  

C. Shared Memory 

In a system like the Kaveri APUs, where the memory is shared, there should be no data transfers 
between the devices, which would eliminate the data transfer costs. The zero-copy features of the APU 
are not yet implemented in PGI’s OpenACC package though, so in practice there is still overhead due to 
data transfer. This is a simple copy within the RAM, however, and data does not have to be transferred 
across the PCIe bus.  
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VI. Tests 

There were three separate codes that were ported to the GPU in the current effort. First, to make sure 
that the system was working correctly, a dummy script was accelerated. Then, once the hardware was 
confirmed to be working, an APNASA Pre-Processing Script was run on the GPU. Once that was 
complete, an APNASA subroutine was examined and ported to the GPU. Each of the tests were 
performed on both systems and are described in more detail below.  

A. Dummy Script 

The dummy script was approximately thirty lines of Fortran 90 code that created an array of 100,000 
elements. The code then multiplied each element by 1.00001, 1,000,000 times. Because the code was so 
simple and parallelizable, it was easy to determine if the results from the GPU were accurate. The code 
also provided a simple way to determine if each hardware system was functioning without error.  

B. APNASA Pre-processing Script 

Prior to jumping into the complexities associated with a 3D CFD code, a fairly simple pre-processing 
script was used as a way to continue validating the process of porting code to the GPU, as well as explore 
the possibilities of accelerating applications other than APNASA. The pre-processing script was a short 
script that took very little time in the first place, and is used to prepare mesh files to be run through APNASA.  

C. APNASA Subroutine 

Once finished with the pre-processing script, the more time intensive APNASA subroutines were 
examined for accelerating. The “filter” subroutine was selected due its significance within the code. 
Within 50 iterations of the APNASA demo case, it is called 50 times and accounts for 9.24 percent of the 
total runtime of the code. Additionally, it has the highest per-call runtime of the top five subroutines. 
Within this subroutine, two loops were identified as having a large potential for acceleration due to the 
large amount of data being changed and the simplicity of the loops.  

VII. Results 

Part of the GNU profiler output described in Section III is listed in Table 1. This data was generated 
by running 50 iterations of APNASA’s demo case. This demo case consists of a rotor and stator gridded 
with 51 radial points, 51 tangential points, and 271 axial points. The case was run on a workstation with a 
quad core Intel Xeon processor and 4 GB of DDR3 RAM. The total runtime of the 50 iterations was 
169.65 s. One thing to notice from the profiling output is that even the most time consuming parts of the 
code do not take much time to run. The runge and filter subroutines take the most individual time per call, 
but that time is still well under a second. The remaining subroutines run sufficiently quickly in their 
current configurations so they are not candidates for speedups. This modular nature of the APNASA code 
is something to note, as it makes it less of a candidate for GPU acceleration.  
 

TABLE 1.—TOP FIVE SUBROUTINES’ PROFILING DATA 
Subroutine 

name 
Percent of total runtime,

percent 
Calls Seconds per call 

runge 25.3 200 0.21 s 
gstres 13.96 2550 0.01 s 
hstres 13.72 2601 0.01 s 
fstres 13.10 2550 0.01 s 
filter 9.24 50 0.31 s 
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TABLE 2.—TEST RESULTS 
Test NVIDIA Tesla K40 AMD A10-7850K 

CPU GPU Multiplier CPU GPU Multiplier 
Dummy script 67.6 s 1.02 s 66.27x 68.64 s 5.04 s 13.62x 
Pre-processing script 1.53 s 1.67 s 0.92x 0.87 s 0.81 s 1.07x 
50 CFD iterations 76.2 s 79.6 s 0.96x 100.44 s 107.52 s 0.93x 

 

The results of the tests are shown in Table 2. The dummy script was sped up drastically on both the APU 
and dGPU system. The dGPU system was able to achieve better speedups due to the larger computational 
power. The pre-processing script was sped up on the APU system, but not the K40 system. This may have to 
do with the reduced copy time of the APU as well as the reduced initialization time of the APU. Attempting to 
speed up APNASA as a whole did not work on either system, with slightly better performance coming from 
the dGPU. This has to do with the additional computational power and that the dGPU is able to run multiple 
kernels concurrently, as well as copy data to and from the device while running kernels. The GPU code run on 
the K40 was well-optimized. Many of the optimization techniques were not available on the APU however, so 
there was a relative reduction in performance when using the APU.  

VIII. GPU Feasibility 

In order to determine whether APNASA and other codes would be good candidates for GPU 
acceleration, the threshold at which a kernel is doing enough work to achieve speedups on the GPU was 
found in two ways, and on both systems. Each method is explained in more detail below. 

The information below contains two sets of GPU data; the total run time of the code when run on the 
GPU, and the total run time minus the minimum GPU time, which is used to represent the kernel 
execution time without the initialization time of the GPU. The initialization time was calculated by a 
separate test that ran a dummy kernel and calculated the total run time. In practice, the threshold amount 
for a given application will be somewhere on the CPU line of the graph, between the two GPU data lines. 
This threshold will depend on the number of kernels that can distribute the initialization costs between 
themselves. As more kernels are being run on the GPU, the lower the threshold amount will be.   

A. Single Instruction per Element 

First, the number of elements in an array was varied while the number of instructions being 
performed on each element was kept at a constant value, which was one in this case. This test was used to 
determine the number of elements an array would need in order to be accelerated on the GPU. The 
runtime was noted after code completion on both the CPU and the GPU. The results are shown in Figure 2.  

Interestingly, when the initialization time is ignored, the dGPU system and the APU system seem to 
perform similarly. In order to speed up the runtime of a kernel on either of the GPUs, assuming that the 
startup time is distributed among many kernels, the number of elements in the array needs to be upwards 
of 100,000,000. We can also see from this data that the dGPU system has a minimum run time of about 
0.9 s, and the APU has one of about 0.3 s. This helps to illustrate the existence of the initialization costs 
as well as points out that any program being ported over to the GPU on either system needs to have a 
runtime in excess of each of these values in order to be viable to run on the GPU, which may help to 
explain why the pre-processing script saw speedups on the APU, but not on the K40 system.  
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Figure 2.—Single instruction test results. 
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B. Fixed Array Size 

Because APNASA primarily uses a fixed mesh size for each blade row during a simulation, it is 
desired to know how many instructions per element would be necessary to justify porting the data to the 
GPU. This was found by fixing the array size to one representative of an APNASA mesh, and varying the 
number of instructions per element within the array. The number of instructions ranged from 1-600 
instructions per element. The results are shown in Figure 3. As before, the APU and dGPU behave 
similarly when the startup costs are ignored. We see that in order for a kernel to be run on the GPU rather 
than the CPU, the number of instructions per element must exceed 100. The portions of code being run on 
the GPU from APNASA did not meet this requirement, which seems to indicate that there was little 
chance of speedups.  
 

 
 
 
 

 
Figure 3.—Fixed array size test results. 
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IX. OpenACC Data Management 

The accelerated processing unit’s hardware allows for complete sharing of data between the CPU and 
the GPU. This ability should greatly improve the runtime of codes that are able to utilize it as compared to 
the dGPU runtime. However this project was not able to utilize the full potential of the shared memory 
due to limitations of the PGI OpenACC implementation at the time of writing, which does not yet support 
the zero-copy feature of the architecture. As it is, the data is being unnecessarily copied in the RAM. 
While the data transfer time is reduced, it is not eliminated as expected. Once this feature is implemented, 
it may be worth revisiting attempts to accelerate APNASA on the APU.  

An interface was developed in an attempt to force OpenACC to recognize the shared memory of the 
architecture. Because we did not have access to the PGI compiler source code, we were only able to 
generate an external routine to add data to this table. It was successful in getting OpenACC to see the 
data, however the OpenCL code generated by the compiler was not able to modify the data. Creating an 
external routine to force the compilers to recognize the shared memory does not seem to be possible 
without having access to the source code of the compilers. 

X. Conclusions 

While the GPU is a modern powerhouse of computation, it is not able to speed up certain parallel 
applications. This is due partially to the significant overhead costs associated with running code on the 
GPU. There are often bottlenecks created when a large amount of data is transferred from the CPU to the 
GPU and back, as well as large initialization costs just to get the GPU running. APNASA is written in a 
very modular way, meaning that it uses many, quickly running subroutines that are called many times to 
do computation. It does not seem to do enough parallel work on large arrays to overcome the overhead 
costs of running code on the GPU. With new technologies, it may be possible, but at the moment, without 
significant code restructuring, it will not be possible to accelerate APNASA using the GPU.  

In order for an application to be accelerated from GPU computing, it needs to be structured in a 
specific way. Any code that has potential to be sped up on the GPU needs to exceed the threshold values 
involving the amount of data, and the amount of work being done to the data. Without significant parallel 
potential, and the ability to store data on the GPU for long periods of time, it is unlikely that GPU 
computing will be advantageous for many applications without code restructuring.  
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Appendix A.—GPROF Profiling Output 

Flat profile: 
 
Each sample counts as 0.01 seconds. 
%   cumulative   self              self     total            
time   seconds   seconds    calls   s/call   s/call  name     
25.30     42.92    42.92      200     0.21     0.27  runge_ 
13.96     66.61    23.69     2550     0.01     0.01  gstres_ 
13.72     89.89    23.28     2601     0.01     0.01  hstres 
13.10    112.11    22.22     2550     0.01     0.01  fstres_ 
9.24    127.79    15.68       50     0.31     1.67  filter_ 
6.98    139.64    11.85      100     0.12     0.12  resid_ 
6.20    150.16    10.52       11     0.96     1.10  eddycm_ 
5.01    158.66     8.50       50     0.17     0.17  step_ 
1.17    160.65     1.99                             powf.J 
0.99    162.33     1.68       50     0.03     0.03  error_ 
0.92    163.89     1.56       11     0.14     0.14  damp1_ 
0.67    165.03     1.14        1     1.14   166.72  MAIN__ 
0.42    165.75     0.72       11     0.07     0.07  baxi2d_ 
0.37    166.37     0.62        1     0.62     0.62  resdke_ 
0.30    166.88     0.51                             expf.J 
0.22    167.26     0.38      200     0.00     0.00  baxist_ 
0.22    167.63     0.37      200     0.00     0.00  bcjv_ 
0.19    167.95     0.32        1     0.32     0.32  baxi_ 
0.13    168.17     0.22      200     0.00     0.00  bcext_ 
0.11    168.35     0.18      200     0.00     0.00  bcwall_ 
0.08    168.49     0.14        1     0.14     0.14  bforc1_ 
0.07    168.61     0.12      200     0.00     0.00  runge2_ 
0.06    168.71     0.10                             logf.J 
0.05    168.80     0.09        1     0.09     0.09  metric_ 
0.05    168.88     0.08        1     0.08     1.44  bforc3_ 
0.05    168.96     0.08        1     0.08     0.08  initb_ 
0.05    169.04     0.08                             matherr 
0.04    169.11     0.07                             cosf.J 
0.04    169.18     0.07                             for_read_seq_xmit 
0.04    169.24     0.06       50     0.00     0.00  filte2_ 
0.04    169.30     0.06        1     0.06     0.06  sarea_ 
0.03    169.35     0.05       51     0.00     0.00  fstr2_ 
0.02    169.39     0.04       51     0.00     0.00  hstr2_ 
0.02    169.43     0.04                             expf 
0.02    169.46     0.03  2315548     0.00     0.00  wf_ 
0.02    169.49     0.03       50     0.00     0.00  step2_ 
0.01    169.51     0.02       10     0.00     0.00  edycm2_ 
0.01    169.53     0.02        1     0.02     0.02  output_ 
0.01    169.55     0.02                             for__desc_ret_item. 
0.01    169.57     0.02                             powf 
0.01    169.58     0.01      200     0.00     0.00  bckv_ 
0.01    169.59     0.01       10     0.00     0.00  baxiske_ 
0.01    169.60     0.01        1     0.01     0.18  input_ 
0.01    169.61     0.01        1     0.01     0.01  resdke2_ 
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0.01    169.62     0.01        1     0.01     0.01  sarea2_ 
0.01    169.63     0.01                             __libm_error_support 
0.01    169.64     0.01                             for__desc_ret_item 
0.01    169.65     0.01                             for__desc_zero_length_item   
0.00    169.65     0.00      201     0.00     0.00  bcj2v_ 

 0.00    169.65     0.00      200     0.00     0.00  bcinl2_ 
0.00    169.65     0.00      100     0.00     0.00  resid2_ 
0.00    169.65     0.00       51     0.00     0.00  gstr2_ 
0.00    169.65     0.00       50     0.00     0.00  error2_ 
0.00    169.65     0.00       11     0.00     0.00  propty_ 
0.00    169.65     0.00       10     0.00     0.00  damp2_ 
0.00    169.65     0.00        1     0.00     0.00  bcext2_ 
0.00    169.65     0.00        1     0.00     0.00  bforc2_ 
0.00    169.65     0.00        1     0.00     0.00  bforc4_ 
0.00    169.65     0.00        1     0.00     0.00  bfread_ 
0.00    169.65     0.00        1     0.00     0.00  gridg_ 
0.00    169.65     0.00        1     0.00     0.00  metri2_ 
0.00    169.65     0.00        1     0.00     0.00  ptcalc_ 
  
%           the percentage of the total running time of the 
time       program used by this function. 

 
cumulative   a running sum of the number of seconds accounted  
seconds        for by this function and those listed above it. 

  
 self               the number of seconds accounted for by this 
 seconds        function alone. This is the major sort for this 
                          listing. 
 

calls      the number of times this function was invoked, if 
             this function is profiled, else blank. 
  
self          the average number of milliseconds spent in this 
ms/call    function per call, if this function is profiled, 
           else blank. 
  
total         the average number of milliseconds spent in this 
ms/call    function and its descendents per call, if this 
           function is profiled, else blank. 

 
name       the name of the function.  This is the minor sort 
               for this listing. The index shows the location of 
          the function in the gprof listing. If the index is 
          in parenthesis it shows where it would appear in 
          the gprof listing if it were to be printed. 
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Appendix B.—Source Code for Dummy Script 

This code was used to ensure that the GPU systems were working correctly as well as ensure that the 
OpenACC directives were properly porting code to the GPU.  

 
     PROGRAM MAIN 
C 
      REAL, ALLOCATABLE, DIMENSION (:) :: X      ! (IL) 
 
C 
      NL = 1000000 
      IL = 100000 
 
C 
C  ALLOCATE ARRAYS 
C 
      ALLOCATE(X(IL)) 
C 
C  INITIALIZE ARRAY X 
C 
 
      DO I=1,IL 
      X(I) = FLOAT(I) 
      END DO 
 
C 
C  PERFORM A LOT OF WORK IN PARALLEL ON ARRAY X 
C 
 
 
c$acc kernels 
      DO N=1,NL 
c$acc loop 
      DO I=1,IL 
      X(I) = 1.00001 * X(I) 
      END DO 
      END DO 
c$acc end kernels 
 
  
 
C 
      PRINT *, X(1), X(500), X(5000), X(10000) 
      STOP 
C 
      END 
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Appendix C.—Source Code for GPU Feasibility Test 

This code was used to determine the amount of computation needed to achieve speedups on the GPU. 
The dimensions of the array X were changed, as well as the number of instructions in the second loop.  

 
      PROGRAM MAIN 
 
C DECLARE VARIABLES 
      REAL, ALLOCATABLE, DIMENSION (:,:,:) :: X 
      INTEGER ::  
     . IL = 61, 
     . JL = 61, 
     . KL = 200, 
     . C = 0 
 
C ALLOCATE X 
      ALLOCATE(X(IL,JL,KL)) 
 
C POPULATE X 
      DO K=1,KL 
      DO J=1,JL 
      DO I=1,IL 
      X(I,J,K) = 1.0000 
      END DO 
      END DO 
      END DO  
 
C PERFORM TASKS ON X 
 
c$acc kernels 
      DO K=1,KL 
      DO J=1,JL 
      DO I=1,IL 
      X(I,J,K) = X(I,J,K) * 2 
      END DO 
      END DO 
      END DO 
c$acc end kernels 
 
      STOP 
      END 
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Appendix D.—Source Code for C/Fortran Interface 

This code was used in an attempt to force PGI’s implementation of OpenACC to recognize the shared 
memory of the accelerated processing unit. It is discussed in Section IX.  

 
Fig D1. main.f 
      PROGRAM MAIN 
 
      USE ISO_C_BINDING 
C     INITIALIZE VARIABLES 
      REAL, TARGET, ALLOCATABLE, DIMENSION (:) :: X 
      INTEGER :: IL = 100 
 
C     ALLOCATE VARIABLES 
      ALLOCATE(X(IL)) 
 
C     INITIALIZE X 
      DO I=1,IL 
      X(I) = FLOAT(I) 
      END DO 
 
C     CALL C FUNCTION 
      CALL MAP(X,SIZE(X)) 
       
 
C     CHANGE X TO 15 
c$acc kernels loop present(X) 
      DO I=1,IL 
      X(I) = 15 
      END DO 
 
      CALL UNMAP(X) 
C     PRINT PART OF ALL POINTERS AND X 
      PRINT *, X 
 
      END 
 
Fig D2. map_.c  
 
/* 
Function: map 
maps inputted fortran data to OpenACC present data table 
*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <openacc.h> 
 
void map_(f1, size) 
float f1[]; 
int size; 
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{ 
acc_map_data(f1,f1,size*sizeof(float)); 

 
printf("\t%li\n", f1); 
printf("\t%f\t%f\t%f\n", f1[0], f1[49], f1[99]); 
} 
 
 
Fig D3. unmap_.c 
 
/* 
Function: unmap 
unmaps data from OpenACC present data table 
*/ 
#include <openacc.h> 
 
void unmap_(f1) 
float f1[]; 
{ 
acc_unmap_data(f1); 
} 
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