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Abstract 15 

 16 

 By the end of the current decade, there are plans to deploy several geostationary 17 

Earth orbit (GEO) satellite missions for atmospheric composition over North 18 

America, East Asia and Europe with additional missions proposed. Together, these 19 

present the possibility of a constellation of geostationary platforms to achieve 20 

continuous time-resolved high-density observations over continental domains for 21 

mapping pollutant sources and variability at diurnal and local scales. In this paper, 22 

we use a novel approach to sample a very high global resolution model (GEOS-5 at 7 23 

km horizontal resolution) to produce a dataset of synthetic carbon monoxide 24 

pollution observations representative of those potentially obtainable from a GEO 25 

satellite constellation with predicted measurement sensitivities based on current 26 

remote sensing capabilities. Part 1 of this study focuses on the production of 27 

simulated synthetic measurements for air quality OSSEs (Observing System 28 

Simulation Experiments). We simulate carbon monoxide nadir retrievals using a 29 

technique that provides realistic measurements with very low computational cost. 30 

We discuss the sampling methodology: the projection of footprints and areas of 31 

regard for geostationary geometries over each of the North America, East Asia and 32 

Europe regions; the regression method to simulate measurement sensitivity; and 33 

the measurement error simulation. A detailed analysis of the simulated observation 34 

sensitivity is performed, and limitations of the method are discussed. We also 35 

describe impacts from clouds, showing that the efficiency of an instrument making 36 

atmospheric composition measurements on a geostationary platform is dependent 37 

on the dominant weather regime over a given region and the pixel size resolution. 38 

These results demonstrate the viability of the “instrument simulator” step for an 39 

OSSE to assess the performance of a constellation of geostationary satellites for air 40 

quality measurements. We describe the OSSE results in a follow up paper (Part 2 of 41 

this study). 42 
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 43 

1. Introduction 44 

 45 

 Current satellite observations of tropospheric composition made from low 46 

Earth orbit (LEO) satellites provide at best one or two measurements each day at 47 

any given location. Coverage is quasi-global but sparse, often with large 48 

uncertainties in individual measurements that limit examination of local and 49 

regional atmospheric composition over short time periods. This has hindered the 50 

operational uptake of these data for monitoring air quality and population exposure, 51 

and for initializing and evaluating chemical weather forecasts.  52 

 By the end of the current decade, there are planned geostationary Earth orbit 53 

(GEO) satellite missions for atmospheric composition over North America, East Asia 54 

and Europe, with additional missions proposed (CEOS, 2011). Together, these 55 

present the possibility of a constellation of GEO platforms to achieve continuous 56 

time-resolved high-density observations over continental domains for mapping 57 

pollutant sources and variability. The GEO geometry provides a continuous view of 58 

the part of the Earth that is below the satellite, enabling measurements many times 59 

per day that help capture the diurnal evolution of emission sources, tropospheric 60 

chemistry and pollution transport. 61 

 The planned GEO missions include the EVI-1/TEMPO (Tropospheric 62 

Emission: Monitoring of Pollution, Zoogman et al., 2014b) over USA, Sentinel 4/IRS 63 

over Europe and GEMS over Asia. Each mission has a different primary objective, 64 

but they share the common goal of monitoring pollutants for atmospheric 65 

composition and air quality and will have a common measurement capability for 66 

ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldhyde (HCHO) and 67 

aerosols, utilizing radiances in the ultraviolet-visible (UV-Vis) spectrum. Planned 68 

GEO observations of infrared active trace gases of relevance to air quality are 69 

currently limited to total column carbon monoxide (CO) observations from the 70 

European IRS instrument, which is originally not driven by atmospheric 71 

composition applications. However, other IR measurements that could play a part in 72 

the GEO constellation are being proposed as part of the NASA Decadal Survey GEO-73 

CAPE (GEOstationary Coastal and Air Pollution Events) mission, such as the EVI-3 74 

CHRONOS mission (https://www2.acd.ucar.edu/chronos) that would measure CO 75 

and methane (CH4) using heritage from the Terra/MOPITT (Measurement of 76 

Pollution in The Troposphere) instrument. Given the effect of nearby emissions and 77 

transported pollution on local air quality, MOPITT-like CO observations are a good 78 

candidate for air quality measurements on a GEO platform because the unique 79 

sensitivity of this platform to pollution in the boundary layer, as well as in the free 80 

troposphere, allows both vertical and horizontal tracking of pollution transport.  81 

 Carbon monoxide is a primary pollutant and plays an important role in 82 

tropospheric chemistry and its sources are both natural and anthropogenic. There 83 

are two main processes of CO production: incomplete combustion (e.g., industrial 84 

and urban fossil/bio fuel burning, wildfires and biomass burning); and natural 85 

chemical production from hydrocarbon oxidation. As an O3 precursor, CO is also 86 

important in determining the tropospheric O3 budget. The principal CO sink is the 87 

oxidation by hydroxyl (OH) radicals, giving an average CO lifetime of about two 88 

months dependent on season. With these characteristics, CO serves as a tracer of 89 
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pollution emissions and transport, and as a proxy for emissions and distributions of 90 

other species co-emitted with CO but not easily measured. Taken together, 91 

observations of the full suite of UV-Vis and IR trace gases and aerosols could provide 92 

the high spatio-temporal resolution continental-scale observations of lower-93 

tropospheric pollution needed to monitor, forecast, and manage air quality on a 94 

daily basis (Edwards et al., 2009; Lahoz et al., 2012; Bowman et al. 2013). 95 

 Previous GEO observation simulation studies for air quality have assessed 96 

the potential capabilities of instruments covering the above three continental 97 

regions separately. Edwards et al. (2009) and Zoogman et al. (2011, 2014ab) 98 

consider the CONUS (continental US) region and demonstrate the feasibility of using 99 

observing system simulation experiment (OSSE) studies to help define quantitative 100 

trace gas measurement requirements in different spectral regions for satellite 101 

missions and to evaluate the expected performance of proposed observing 102 

strategies to test the ability of GEO satellite measurements of ozone (O3) and CO. 103 

Claeyman et al. (2011) and Sellitto et al. (2013b) cover the European region and 104 

describe the capabilities of a concept nadir thermal infrared sensor proposed for 105 

deployment onboard a GEO platform to monitor O3 and CO for air quality purposes 106 

(MAGEAQ: Monitoring the Atmosphere from Geostationary orbit for European Air 107 

Quality). Lastly, Zoogman et al. (2014a) assimilate concurrent ozone and CO 108 

observations and show that geostationary measurement of CO provides significant 109 

benefit for monitoring ozone.   110 

 The goal of this study is to evaluate the impact of a future GEO constellation 111 

on global chemical weather by using the observing system simulation experiment 112 

(OSSE) technique. Here we primarily consider CO as a good chemical tracer for 113 

evaluating the impact of a GEO constellation of observations. As described by 114 

Edwards et al. (2009), chemical OSSEs provide a way of expanding case-specific 115 

sensitivity studies to assess the impact of future measurements systems. A chemical 116 

OSSE is composed of several elements (fig. 1 – see also, Timmermans et al., 2014). A 117 

nature run (NR) (1) represents the atmospheric true state. A complete OSSE needs 118 

an observation simulator (2) to sample the nature run to produce synthetic 119 

observations (3). The synthetic observations are then assimilated using a data 120 

assimilation system (4) into a second atmospheric model, the control run (CR) (5). 121 

This produces the assimilation run (AR) (6). The impact of concept instrument 122 

measurements on constraining the modeled state of the atmosphere can then be 123 

evaluated and assessed (7) by comparing the NR, CR and AR (1, 5 and 6). We 124 

describe this study in two parts. In the present paper (Part 1) we focus on the NR 125 

(1), observation simulator (2) and synthetic observations (3). A follow-up article 126 

(Part 2) will focus on assimilating the simulated measurements and assessing the 127 

synergies between the different instruments of the constellation by simulating data-128 

denial case studies (elements 4 to 7 in fig. 1). This study presents for the first time a 129 

global GEO constellation OSSE for CO. 130 

 According to Rodgers (2000), within the remote sensing optimal estimation 131 

framework one can represent the sensitivity of the retrieved trace gas profile from a 132 

satellite measurement to the true state of the atmosphere by the averaging kernel 133 

(AK) function. For accurate observation simulations in an OSSE, we need a full 134 

radiative transfer model for radiances and their Jacobians (which represent the 135 

sensitivity of the radiance to the true atmospheric state) to compute the AKs for 136 
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each atmospheric and surface scene. Since this presents a significant computational 137 

burden, practical implementations of OSSEs for air quality to date have used 138 

approximated observation simulators. Some have used specified constant AKs 139 

(Edwards et al., 2009; Zoogman et al., 2011), or have simplified the AK variability by 140 

considering only a few scene types (Claeyman et al., 2011). Sellitto et al. (2013a) 141 

showed that the use of no, or limited scene dependent AK, parameterizations could 142 

significantly misrepresent the sensitivity of an observing system. Sellitto et al. 143 

(2013a) also recommend using comprehensive scene-dependent approximations of 144 

the AKs in cases where the computational cost of a full radiative transfer model is 145 

too expensive to perform an OSSE study (for example, for a GEO constellation).  146 

Worden et al. (2013) address this issue by using a multiple regression analysis of 147 

real satellite observations to estimate scene-dependent averaging kernels, thus 148 

avoiding the use of a full radiative transfer model. This method allows the fast 149 

computation of scene-dependent AKs, and the processing of a very large dataset of 150 

synthetic observations in a short amount of time. 151 

  Due to the constraint from the NR space and time resolution, approximations 152 

made to the instrument sampling and horizontal resolution cannot provide 153 

information at a higher resolution than the nature run (Edwards et al., 2009). One 154 

should use high space and time resolution NRs to simulate high instrument space 155 

and time sampling. The planned missions mentioned above would provide less than 156 

10 km spatial resolution at about every 1 hour. Sellitto et al. (2013b) also 157 

approximated the observation simulation by not discarding the cloud-contaminated 158 

measurements, thus leading to a possible overestimation of the GEO instrument 159 

potential to monitor tropospheric O3 and pollution features in general.  One should 160 

account for cloud contamination by testing scenarios with variable instrument 161 

sampling and resolution. 162 

 In this paper we use the multiple regression analysis of Worden et al. (2013) 163 

to produce a very large data set representing a GEO constellation of synthetic 164 

observations for air quality. In section 2, we describe the very high resolution NR 165 

from the Goddard Earth Observing System Model version 5 (GEOS-5) at 7 km 166 

horizontal resolution. Section 3 describes the sampling methodology with details on 167 

the geostationary projection to the surface of the earth, and the multi linear 168 

regression method with its limitations for predicting averaging kernels and 169 

estimated observation errors. Section 4 investigates the impacts of clouds on the 170 

GEO constellation. The effect of horizontal resolution and sampling is discussed. 171 

Section 5 presents the measurements and a detailed analysis of the simulated 172 

observation sensitivity (e.g., averaging kernel variability). Section 6 gives a 173 

summary, conclusions and perspectives.   174 

 175 

2. The nature run 176 

 177 

 The Goddard Earth Observing System Model, Version 5 (GEOS-5, Rienecker et 178 

al., 2008) is used to provide the NR. The GEOS-5 atmospheric model is a weather-179 

and-climate model used for atmospheric analyses, weather forecasts, uncoupled and 180 

coupled climate simulations and predictions, and for coupled chemistry-climate 181 

simulations. The NR used for this study covers a 2-year global, non-hydrostatic 182 

mesoscale simulation for the period 2005-2006. In addition to standard 183 
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meteorological parameters (wind, temperature, moisture, surface pressure), this 184 

simulation includes 15 aerosols tracers (dust, sea salt, sulfate, black and organic 185 

carbon), and O3, CO and carbon dioxide (CO2) trace gases.  186 

 The model simulation is driven by prescribed sea-surface temperature and 187 

sea-ice derived at a horizontal resolution of 0.25 degrees. Biomass burning 188 

emissions of organic carbon, sulfate, CO and CO2 are obtained from the Quick Fire 189 

Emissions Dataset (QFED) version 2.4-r6. The basis of the QFED is the fire radiative 190 

power (top-down) approach, and it draws on the cloud correction method used in 191 

the Global Fire Assimilation System (GFAS; Kaiser et al. 2012). Anthropogenic 192 

emissions of carbon species and aerosols are largely taken from the Emissions 193 

Database for Global Atmospheric Research (EDGAR; Olivier et al., 1994), which are 194 

provided annually at a resolution of 0.1 degrees. For CO and CO2, EDGAR v4.2 195 

emissions from 2005 through 2007 were used. For organic and black carbon 196 

aerosols species, Hemispheric Transport of Air Pollution (HTAP) emissions were 197 

used.  198 

 Outputs at 30-minute intervals have been produced at a resolution of 0.0625 199 

degrees (~7 km) using a cubed-sphere horizontal grid with 72 vertical levels, 200 

extending from the surface up to 0.01 hPa (~85 km). All details and references 201 

concerning nature run file specifications, meteorology, chemistry and emissions can 202 

be found in the NR description documents at: 203 

http://gmao.gsfc.nasa.gov/projects/G5NR/ 204 

 In this study we focus on July 2006. Figure 2 shows the CO total column 205 

provided by the NR for 15 July 2006 at 15:00 UT. This map shows the ability of the 206 

NR to represent the high variability of CO fields at a global scale. We display typical 207 

and expected CO values: very high values (above 4.1018 molecules/cm2) over central 208 

Africa due to biomass burning; high values (around 3.1018 molecules/cm2) over 209 

dense populated areas due to anthropogenic emissions. The NR total columns of CO 210 

also clearly show long-range transport patterns of CO from anthropogenic and 211 

biomass-burning sources across the oceans of the Northern Hemisphere (NH) and 212 

Southern Hemisphere (SH), respectively.  213 

 Figure 3 shows the July 2006 average of surface CO values over the three 214 

regions of interest (North America - CONUS, Europe and Eastern Asia). The NR 215 

shows realistic horizontal CO variability due to the very high space and time 216 

resolutions of the simulations. Emissions from cities from small to large size are 217 

clearly identifiable. Transport infrastructure such as roads (eastern US in figure 3.a) 218 

and ship routes (China sea in figure 3.c) are also visible.  In this study we use the NR 219 

model output variables, both the chemical parameters (CO quantities) and the 220 

meteorological parameters (not shown), to predict averaging kernels for simulated 221 

observations in the GEO constellation. This is done for each of the CONUS, Europe 222 

and Eastern Asia regions of interest. 223 

 224 

3. Sampling methodology 225 

 226 

3.1. Geometry of measurements 227 

 228 

 We constructed three GEO instrument simulators over the three regions of 229 

interest defined immediately above using the methodology described in Worden et 230 
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al. (2013). Footprints of the instruments are defined as a GEO projection on the 231 

globe. We defined � (along the parallel from the sub-satellite point) and � (along the 232 

meridian from the sub-satellite point) at regularly spaced scanning angles (in 233 

degrees). The GEO projection consists of projecting these angles from the GEO 234 

platform to the surface of the earth to obtain the corresponding longitudes and 235 

latitudes of the footprints. We have the following relationship between viewing 236 

angles at the satellite location and latitude, longitude position on the earth surface: 237 

 238 

��� = tan
��� �⁄ � + ��_���	  (1) 239 

 240 

��� = tan
� ����� ��⁄ ��  (2) 241 

 242 

where ��_��� is the sub-satellite point longitude and: 243 

 244 

� = �� − ! cos � cos � 

 245 

� = ! sin � cos � 

 246 

� = −! sin � 

 247 

�� = &�� + �� 

 248 

' = (��� cos � cos ��� − ��cos ��� + ���sin ������ 

 249 

! = �� cos � cos � − '
�cos ��� + ���sin ��� 

 250 

p1 = 42164 km, the altitude of a GEO platform from the center of the earth 251 

p2 = 1.006803 is the ratio of the earth radius at the equator and at the pole (p2 = 252 

req/rpo). 253 

p3 = p1
2 – req

2 254 

 255 

 These equations follow from the methods provided in the technical 256 

document EUMETSAT (2011) and sketch of figure 4.d should be consulted to 257 

understand the above formulas. Projecting the regularly spaced instrument viewing 258 

angles onto the surface of the earth (figure 4.b) results in GEO instrument footprints 259 

with non-regular latitude and longitude spacing. GEO instruments then have a non-260 

uniform horizontal resolution: the footprint density per surface area decreases as 261 

the measurements go outward from the sub-satellite point (figure 4.c). The GEO-262 

CAPE concept mission (Fishman et al., 2012) requires hourly measurements with a 263 

spatial resolution in the order of 5 to 10 km and a measurement domain of at least 264 

5000 km. Table 1 gives an overview of the characteristics of the three instruments 265 

that we call hereafter GEO-US (over CONUS), GEO-EU (over Europe) and GEO-AS 266 

(over Eastern Asia). We set the scanning angles of the three instruments to have a 267 

horizontal resolution under 10 km (0.1°) in the approximate middle of the 268 
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measurement domain (i.e., sub-longitude and the mean of latitudes at the sub-269 

longitude). Figure 4.a. shows the measurement domains of the GEO constellation. 270 

Areas of coverage have different shapes due to the latitudinal extent of continents; 271 

GEO-EU has more of a latitudinal extent compared to GEO-US, which has to cover a 272 

wider longitude range. GEO-AS has been designed as a compromise solution 273 

between measurements over Chinese mega-cities and measurements over Korea 274 

and Japan. 275 

 276 

3.2 Carbon monoxide instrument simulator 277 

 278 

 In this study, we assume characteristics of the CO measurements of the 279 

troposphere similar to those of the Terra/MOPITT (Measurement of Pollution in the 280 

Troposphere) instrument (Drummond, 1992). The last version of the retrieved CO 281 

product version 5 (Deeter et al., 2013) uses a multispectral approach utilizing near-282 

visible infrared (NIR) solar backscatter signals at 2.3 microns and thermal infrared 283 

(TIR) emission signals from the Earth surface and atmosphere at 4.6 microns. This 284 

approach provides enhanced measurement sensitivity to near-surface CO 285 

concentrations and allows the possibility of retrieving CO profile information to 286 

separate CO in the planetary boundary layer and free troposphere (Worden et al., 287 

2010). This is a requirement for the GEO-CAPE concept mission (Fishman et al., 288 

2012) and it is generally desirable for air quality space remote observations to 289 

distinguish between local emissions and transported pollution at a given location 290 

(Lahoz et al., 2012). In the case of MOPITT, the combination of the TIR and NIR 291 

radiances significantly improves the sensitivity to the lower tropospheric CO for 292 

daytime land observations. For nighttime land and day/night ocean observations, 293 

only the TIR radiances contribute to the retrieval.  294 

 The MOPITT-retrieved CO volume mixing ratios (VMRs) are on 10 pressure 295 

levels (surface, 900, 800, 700, 600, 500, 400, 300, 200, 100 hPa). Each retrieved 296 

level is representative of the layer content defined by the level value itself and the 297 

level above. The top most level extends from 100 hPa to 50 hPa. The retrieved CO 298 

profile �)  can be related to the true atmospheric state �*  with the following linear 299 

relationship: 300 

 301 

+) = +, + -�+* − +,� + .  (3) 302 

 303 

In Eq. (3) +/ is the true atmospheric CO profile state (in log10(VMR)) and +, is the a-304 

priori state vector (in log10(VMR)) derived from a monthly mean climatological 305 

profile from the MOZART-4 (Model for Ozone and Related chemical Tracers, version 306 

4) chemical transport model (Emmons et al., 2010). The random error . (in 307 

log10(VMR)) is simulated using the retrieval noise, and 	- is the retrieval AK matrix 308 

(see section 3.3). (The +) 	retrieved profile obtained is then converted from 309 

log10(VMR) to VMR for the final data product).  310 

 Figure 5 shows two representative MOPITT AKs. The sensitivity of the 311 

MOPITT instrument to near-surface CO varies according to different surface types 312 

and atmospheric conditions. The left panel of Fig. 5 shows a typical AK for a daytime 313 

measurement over land with enhanced sensitivity toward the surface. The right 314 

panel of Fig. 5 shows a typical AK for a TIR-only ocean or nighttime measurement 315 
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over land with low sensitivity in the lowermost troposphere. A useful quantity 316 

indicating the information content of a measurement is the degrees of freedom for 317 

signal (DFS), given by �0�-� (Rodgers, 2000). Higher DFS values indicate more 318 

sensitivity of the retrieval to the true profile.  319 

 To diagnose the sensitivity of the measurement to the lowest layers, DFS can 320 

be calculated over the three lowest levels (Surface to 700 hPa) as 1234,� = ∑ 788�89�  . 321 

In Figure 5 the DFS (DFS0,3) is 1.9 (0.7) and 1.5 (0.2) for land-day and ocean-night 322 

measurements, respectively. We can see that MOPITT sensitivity toward the surface 323 

(DFS0,3) is scene dependent. That is, it depends on various land and atmospheric 324 

parameters (i.e., nature of the surface and current state of the atmosphere at a given 325 

time) that control, among other things, the surface-atmospheric thermal contrast, 326 

i.e., the difference between the surface temperature and the atmospheric 327 

temperature profile. 328 

 329 

3.3 Simulated retrieval method. 330 

 331 

 Worden et al. (2013) investigated the CO retrieval error resulting from the 332 

use of a single average AK in an observation simulator compared using the true 333 

retrieval AKs. They further developed a scene-dependent AK prediction tool capable 334 

of approximating the true AK with a significant reduction in retrieved CO error 335 

compared to using a single average AK. This AK prediction tool allows us to produce 336 

a large amount of simulated data over months in an efficient manner. One month of 337 

data for a GEO constellation (i.e,. around 200 million profiles) can be produced in 338 

less than 12 hours.   339 

 The method of Worden et al. employs a multiple regression approach for 340 

deriving scene dependent AKs using predictors based on state parameters from the 341 

NR. The main parameters used are: CO concentration, temperature, specific 342 

humidity and pressure (see table 2). The method is based on the computation of the 343 

singular value decomposition (SVD) of the AK matrix. Given an AK matrix -, we 344 

compute the SVD by means of: 345 

 346 

- = :;<= (4) 347 

 348 

where the columns of : and < are the left and right singular vectors respectively, 349 

and the elements of ; (a diagonal matrix) are the singular values. Since the first two 350 

singular vectors account for 95% of the variability of MOPITT CO AKs on average 351 

and the first three singular vectors account for 99.995 %, the method retains the 352 

first three ranked singular vectors. For a complete description of the SVD technique, 353 

numerical examples and software used please refer to Worden et al., 2013. We then 354 

calculate the three first singular vectors and values using multiple regression. For 355 

example, 356 

 357 

>8? = @8? + ∑ �8?A�?ABA9�  (5) 358 

  359 

with dimensions of: i singular vectors, j pressure levels, and k predictors. The 360 

parameters are: c, a constant; a, regressions coefficients; and x, predictors. We used 361 

twelve predictors (N=12) and have defined eleven different training sets (containing 362 
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the a coefficients) for the geographical regions of interest. Only a single training set 363 

can be used in the regression calculation.  The predictors and training sets are listed 364 

in Table 2. Worden et al. (2013) selected the predictors based on their importance 365 

in the regression technique for parameterizing MOPITT forward model 366 

transmittances of Edwards et al. (1999). The training sets are derived from a multi 367 

linear fit using real MOPITT observations. The training set period is the entire year 368 

2006. Once an AK matrix A is predicted, the simulated observation profile from the 369 

NR can be computed using the retrieval equation: 370 

 371 

+) = +, + -�+BC − +,� + .  (6) 372 

 373 

with +BC , the NR profile sampled at the MOPITT vertical resolution, replacing the 374 

true state profile +* in equation 3. Because MOPITT retrieved values express a CO 375 

quantity over a pressure layer, we compute a weighted average using the pressure 376 

thickness of the GEOS-5 vertical CO levels mapped onto the MOPITT grid to produce 377 

+BC . 378 

 379 

3.4. Training set method limitations 380 

 381 

 In section 3.3 we applied the method described Worden et al. (2013), to 382 

reconstruct the averaging kernel matrix. In order to utilize the multi linear 383 

regression (equation 5), we need pre-calculated coefficients (a0,N) from a multi-384 

regression fit derived from real MOPITT observations, that we call training sets 385 

given in Table 2. In some cases, mostly over the CONUS and Asian megacities, very 386 

high CO profile concentrations and total CO column amount values can extend 387 

beyond the boundary values of the data set used to build the training set and hence 388 

beyond the boundary values of the training set itself. Because of the near linear 389 

relationship between predictors and predicted AKs (equation 4 and 5), using 390 

predictors from the model with values that are outside the training set distributions 391 

may lead to unphysical averaging kernel values, e.g., strong negative values or 392 

values above unity. This is most likely the case for the CO predictors (CO profile and 393 

CO total column). In order to prevent predictors that are outside the training set 394 

range and not to discard a significant amount of simulated observation over 395 

polluted areas we reduce the CO profile predictor as follows.  We calculate the mean 396 

(μ) and standard deviation (σ) of the CO profile training sets. If the predicted CO 397 

profile values (p) are above μ+2σ, the new predictor (p’) is then calculated as 398 

follows: 399 

 400 

p’ = (1-γ)(μ+2σ)+ γp  (7) 401 

 402 

where γ is a weighting coefficient ranging between 0 and 1. Then the scaled CO 403 

profile is used to recalculate related CO predictors (CO column, Cos(θsza)/log10CO(z) 404 

and dT(z) )/log10CO(z)). This allows the simulator to produce reasonable variability 405 

in measurement sensitivity while still including the high CO cases and without 406 

generating unphysical averaging kernels. Sensitivity tests during extreme pollution 407 

events have shown that using γ>0.2 produces an unacceptably high frequency of 408 
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unrealistic averaging kernel functions. In order to have a robust observation 409 

simulator which does not produce unphysical averaging kernel values we use γ=0.1. 410 

 411 

3.5. Simulated error method 412 

 413 

 The regression method described above does not account for simulating 414 

measurement error (represented by the retrieval error covariance matrix) and 415 

retrieval noise. In order to simulate the error terms, we use the relationships 416 

between the AK matrix and the associated retrieval errors terms (Rodgers, 2000). 417 

The associated retrieval noise D is defined using the retrieval noise covariance 418 

matrix	E!, derived from the retrieval error covariance matrix E� . Where D is the 419 

vector containing  the square root of the diagonal elements of E! , and �F))  the 420 

vector containing the square root of the diagonal elements of E�. The retrieval error 421 

covariance matrix E�can be decomposed as the sum of two matrices (Deeter et al. 422 

2011): 423 

 424 

• A smoothing error covariance matrix EG that describes the expected error 425 

arising from differences between the true profile and retrieved profile, and 426 

which are due to the characteristics of the weighting functions and the 427 

influence of the a priori covariance matrix.  428 

• A retrieval noise error covariance matrix E! that quantifies the expected 429 

errors due to errors in the radiances. 430 
 431 

Then 432 

 433 

E� = EG + E!  (8) 434 

 435 

with EG approximated using the a priori covariance matrix E,, as follows 436 

 437 

EG = �H − -�E,�H − -�I  (9) 438 

 439 

and E� directly calculable from E, and - 440 

 441 

E� = �H − -�E,  (10) 442 

 443 

so that 444 

 445 

E! = E��H − �H − -�=� (11) 446 
 447 

 448 

E! is mostly lower than EG but not negligible (see section 5.2 and figure 11). 449 

Relatively to E� , E! will increase if EG decrease (if - tends to be the identity H). We 450 

define E,  as for the MOPITT v4 and v5 products (Deeter et al., 2010). The a priori 451 

covariance matrix E, incorporates the same variance value J4 at all levels, with a 452 

constant correlation height Pc over a pressure level p defining the off-diagonal 453 

elements. Thus,  454 

 455 
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J,,8? = J4K
��LM
LN�/PQ�R  (12) 456 

 457 

with Pc=100 hPa and CO=(0.3 log10e)2. In order to simulate the random error	D, we 458 

add a pseudo-random noise on each nature run sampled by a predicted AK:  459 

 460 

.	 = +)E!�/� ∘ T�0, H�   (13) 461 

 462 

 where ∘ denotes the Schur product and T�0, H� a matrix following a normal 463 

distribution of means equal 0 and standard deviation equal the identity matrix I. We 464 

also calculate the retrieval error profile as follows: 465 

 466 

�F)),8 = �),8J�,8,8�/�
  (14) 467 

 468 

Because the smoothing error EG mostly dominates on the error budget (equation 8), 469 

the impact of the random error . is low compared to the retrieval error profile and 470 

hence the accuracy of the retrievals are not significantly impacted. 471 

 472 

4. Impact of clouds 473 

 474 

 Under cloudy conditions, the simplest approach for MOPITT-like 475 

measurements on a GEO platform would be simply to discard cloudy pixels and not 476 

perform retrievals. It is thus important to assess the impact of the cloud coverage on 477 

GEO measurements. In this study, a scene is considered clear when the interpolated 478 

cloud fraction from the NR is lower than 5% of a single footprint. This is the clear-479 

sky condition used operationally with real MOPITT measurements. Cloud 480 

contaminated footprints with greater than 5% of cloud fraction would be discarded.  481 

Clouds properties are not used to predict AK variability. Figure 6 presents the ratio 482 

of cloud free pixels, over the month of July 2006 for the constellation. The ratio of 483 

cloud free pixels is the number of cloud free observations divided by the total 484 

number of possible observations (i.e., one per hour during one month) for a given 485 

pixel. Figure 9 gives an idea of instantaneous instrument coverage with a 5% cloud 486 

fraction threshold. The GEO-EU displays very few cloud-contaminated areas 487 

whereas the GEO-AS has very few cloud free areas.  488 

 The cloud-free ratio geographical distribution shows differences between 489 

intra- and inter-continental regions. On average, GEO-EU has the highest ratio 490 

(60%) followed by GEO-US (40%) and GEO-AS (20%).  Strong variations of the ratio 491 

are also observed for different weather regimes within each measurement domain. 492 

Mediterranean weather regimes such as western CONUS and the entire 493 

Mediterranean basin exhibit higher ratios, above 80%. Conversely, oceanic, 494 

subtropical and tropical regimes such as northern Europe, southern CONUS and 495 

southeastern Asia have lower ratios, below 20%.  Over the GEO-AS field of view, 496 

Korea and Japan exhibit very low ratios around 10% due to East Asian monsoon 497 

effects that provide persistent convective cloud coverage.  498 

 The value of the cloud free ratio depends on the spatial resolution of the 499 

observation (pixel size) and the cloud fraction threshold used. Figure 7 displays 500 

results of sensitivity tests on pixel size and cloud fraction threshold. We assume that 501 
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the lowest pixel size simulated is 7 km due to the model horizontal resolution. We 502 

can then increase the pixel size by averaging contiguous grid cells. It is shown here 503 

that with a given cloud fraction threshold, increasing the pixel size reduces the 504 

average cloud free ratio. We perform tests for varying cloud fraction thresholds to 505 

calibrate the assimilated data product. Variations of the cloud free ratio following 506 

variations in the cloud fraction threshold and the pixel size show the same patterns 507 

(but with a different range of values) for the three instruments of the constellation.  508 

 To explain these patterns we display a specific case (figure 8) as an example 509 

of how the observed coverage changes with the two varying parameters. The case 510 

study presented shows two typical horizontal cloud structures: one of high 511 

granularity located over the eastern part of the plot, which is identified as 512 

convective structures, and the other of low granularity located on the northwest 513 

part of the plot, which is identified as a cold air front. Over low granularity areas, 514 

decreasing the cloud fraction threshold will not increase the cloud-contaminated 515 

area as much as it does over the high granularity areas. As an idealized example, one 516 

can imagine adding pixels around four single separated sparse pixels (a granular 517 

structure) and adding a pixel around a four-by-four pixel area (a non-granular 518 

structure).  In the first case, there will be 8 pixels around each of the 4 original 519 

pixels, making a total of 32 additional pixels.  In the second case 12 additional pixels 520 

will surround a 2 by 2 square. The increase in area will be larger with the granular 521 

structure than with the non-granular structure.  522 

 In the more realistic case of our observation simulations, granularity can 523 

vary at different scales and at different times. We found that adjusting the cloud 524 

fraction threshold to 20% for a 42 km pixel size gives comparable statistics of cloud 525 

coverage as with the 5% threshold for a 7 km pixel size (see section 5.3 and figure 526 

12). 527 

 528 

5. Simulated GEO constellation measurements 529 

 530 

5.1. Simulated sensitivity analysis 531 

 532 

 Figure 9 displays the maps of sampled Surface-700 hPa NR and retrieved 533 

partial columns and associated DFS0,3 for the GEO constellation. Looking at DFS0-3 534 

maps first shows that the observation simulator reproduces the variability of 535 

measurement sensitivity over the satellite measurement domains. The maps are 536 

snapshots during daytime, and show strong differences in DFS0-3 between sea and 537 

land due to the different AK training sets used. The land training set simulates multi-538 

spectral (TIR+NIR) retrieval AKs in contrast to the sea training set that simulates 539 

TIR-only retrievals. The DFS0,3 values between land and sea surfaces are in 540 

agreement with figure 5: instrument sensitivities over land are generally higher 541 

than over sea, because of the availability of multi-spectral simulated retrievals. DFS 542 

variability over land, or over sea only, is also simulated using the multi-regression fit 543 

as described in section 3.3. To describe this variability, we will focus on the analysis 544 

over land. The most obvious variations of DFS0,3 follow orography. The main reason 545 

is the reduction in the number of retrieved levels if surface pressure is lower than, 546 

e.g., 900 hPa. For a constant number of retrieved levels, the variation of the surface 547 

level layer thickness also plays a significant role (represented by the dP predictor; 548 
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see table 2), and a thinner surface layer will contribute less retrieval sensitivity. 549 

Variations of DFS0,3 can also be correlated to the CO amount in the NR. This 550 

variability is represented with the CO total column and CO profile predictors. CO 551 

abundance is a strong predictor of sensitivity due to the use of log10(VMR) retrievals 552 

in MOPITT with corresponding weighting functions that have increasing magnitude 553 

for increasing VMR (Worden et al., 2013). Finally, the temperature profile and 554 

thermal contrast (dT) play a significant role in the DFS0-3 variability, as expected for 555 

the TIR contribution in a multispectral instrument. While DFS0-3 depends more on 556 

predictors such as CO column and dP, all of the predictors in Table 2 add 557 

information to the regression fit, as tested in Worden et al. (2013). 558 

 Figure 10 shows scatter plots of DFS0-3 versus the main DFS variability 559 

drivers, i.e., parameters mentioned above such as CO concentration, dP and dT. 560 

Night and day values are displayed (blue and red, respectively) showing the 561 

expected increase of sensitivity during day (simulating a multispectral retrieval) 562 

compared to night (simulating a TIR-only retrieval). For each region, using an 563 

alternation of day training sets and night training sets, designed to produce 564 

multispectral and TIR-only retrieval AKs, respectively, then simulates a diurnal cycle 565 

of sensitivity. Correlation of DFS0-3 with predictors gives an indication of which 566 

variables in the NR true state will drive measurement sensitivity. However, this is 567 

not a deterministic result since actual sensitivity depends on all the predictors, 568 

together with the distributions of those 569 

 variables as compared to the training set distributions, indicated by the lines in 570 

Figure 10. Variations in the dependence on predictors can be seen by the different 571 

distributions in Figure 10 for CONUS, Europe and Asia. Over Asia and Europe, 572 

overall CO concentrations from NR show significantly lower as compared to the 573 

training set mean. For Asia, scatter plots do not show any clear dependence between 574 

DFS0-3 and CO concentrations. For Europe, the dependence is more marked during 575 

daytime. Lower CO predictor values compared to training set mean might lead to 576 

underestimation of DFS0-3 , however it fits a realistic range of values (from 0.25 to 577 

0.5). 578 

 579 

5.2 NR sampling and error budget 580 

 581 

 The difference between the NR CO and the retrieved CO shows higher NR 582 

values than in the simulated retrievals (fig. 9). Retrieved values can be close to the 583 

NR if sensitivity (DFS) is high enough and/or the a priori CO profile is close enough 584 

to the NR. Cases with strong CO plumes in the NR can be identified in figure 9 over 585 

Asia (around 35°N and 115°E) and over Europe (around 5°E and 55°N). In the Asian 586 

case, the plume is very well detected in the synthetic retrieval, because over land 587 

GEO-AS has a DFS0,3 above 0.5 and a priori profile concentrations close to the NR 588 

profile (not shown). In the European case, plumes are barely detected because over 589 

sea the GEO-EU has DFS0,3 below 0.3 and the a priori profile concentrations are far 590 

from NR values. In general, retrieved CO concentrations are lower than the NR CO 591 

concentration because a priori values are lower than NR values. In certain cases (see 592 

fig. 9 for Asia around 110°E and 35°N), the opposite is observed; a priori 593 

concentrations are higher than the NR. The a priori profile, sampled from a lower 594 

resolution MOZART-4 climatology (see section 3.2) does not capture the specific NR 595 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 14

high-resolution features. Conversely, polluted areas are represented as relatively 596 

high CO over broad area, which can produce cases where �, is higher than �* . 597 

 Figure 11 left panels show scatter plots of NR CO partial columns (Xt) versus 598 

retrieved CO partial columns (Xr) with night cases (blue) and day cases (red) over 599 

land. In general, night Xr values are farther from the Xt compared to the day Xr 600 

values. As explained in section 5.1 and in figure 10, DFS0,3 values are lower during 601 

night than during day. Lower DFS will produce Xt values that are closer to the a 602 

priori (Xa). If Xa is far from Xt, the smoothing error (Xs) will increase with lower 603 

DFS0,3. Even if DFS0,3 is high (around 0.7), Xs can be high if Xt is very far from Xa. In 604 

the case of GEO-US, values spread by 10-20 DU (Dobson Units) around the Xt=Xr 605 

axis, showing that Xa can be higher or lower than Xt. In the case of GEO-EU, the 606 

spread is lower because Xt is in general close to Xa. In the case of GEO-AS, Xr values 607 

are mostly lower than Xt values, showing that Xa is generally lower than Xt.  608 

 Figure 11 right panel displays scatter plots of Xs (in % relative to Xr) versus 609 

the surface-700hPa partial column retrieval error (Xe). We see that Xe values are in 610 

the range expected from real MOPITT observations: between 15% and 30%. 611 

Following equation 8 and 14, diagonal values of EG should be lower or equal to 612 

diagonal values of E� and hence Xs should be lower or equal to Xe (if Xs is calculated 613 

as Xe). The condition is respected in most of the cases, but some Xs values are higher 614 

than Xe. Again, this happens when Xa is very distant from Xt, and due to the fact that 615 

Xa and Xt (i.e., +, and +*) are not used in the calculation of the a priori covariance 616 

matrix (see section 3.5 and equation 9 and 12). The perfect estimate of EG would 617 

then be: 618 

 619 

EG = �H − -��+, − +*��+, − +*�I�H − -�=  (15) 620 

 621 

This can be estimated for this study since we are assuming the NR is the true state. 622 

However, for real observations it is not possible to estimate the actual smoothing 623 

covariance error matrix. Therefore, use of the method described in section 3.5 is 624 

more realistic, and will provide reasonable error estimates in most cases since Xs 625 

has generally lower values than Xe. 626 

 627 

5.3. Reduced resolution simulated observations 628 

 629 

 In part II of this study, we will assimilate the simulated GEO-constellation 630 

into a global model. We will use the global chemistry – climate model CAM-Chem, 631 

including its full chemical scheme (Lamarque et al., 2012). State-of-the-art global 632 

atmospheric chemical models do not have high horizontal resolution. In this second 633 

part of the study, we use a 0.9° by 1.25° resolution model configuration. Since the 634 

resolutions of the NR and the simulated observations are much finer than the CAM-635 

Chem resolution, we will use the reduced resolution NR (0.5°, i.e., 42 km 636 

approximately). The reduced NR simulations are the same as the native NR 637 

simulations, but the horizontal resolution has been reduced a posteriori (see Da 638 

Silva et al., 2014).  639 

 Figure 12 displays the reduced resolution (42 km) simulated observations. 640 

As explained in section 3.5, because the model resolution is 42 km we assume that 641 

the pixel size has the same size. To generate an appropriate sampling according to 642 
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the pixel resolution, we divide by a factor of 5 the number of latitude and longitude 643 

pixels provided in the table. The left panels show the average surface-700hPa 644 

retrieved CO column for July 2006. The right panels show the cloud free ratio for 645 

July 2006. For the cloud fraction threshold, we use 20% to keep the same cloud free 646 

ratio as for the high-resolution observation simulation, as explained in section 3.5. 647 

Cloud free ratio maps (figure 12) at low resolution are then very similar to the same 648 

maps at high resolution (figure 6). 649 

 650 

 651 

6. Conclusion 652 

 653 

 This paper is Part 1 of a two-part study. Here, we demonstrate the feasibility 654 

of simulating a GEO constellation for air quality monitoring, with a focus on CO. 655 

Three potential instruments are simulated covering the three most populated and 656 

polluted areas of the world: Continental US (CONUS), Western Europe and Easter 657 

Asia. We use very high-resolution output (0.06°, i.e., ~7 km horizontal resolution) 658 

from the GEOS-5 model as a NR to simulate a MOPITT-like instrument. Instead of 659 

using a full radiative transfer model to simulate the instrument vertical retrieval 660 

sensitivity as defined by the AK, we use a novel method described by Worden et al., 661 

(2013). This method employs multi-linear regression using predictors (from the 662 

NR) and training set coefficients (from real MOPITT data) to produce scene-663 

dependent AKs, thus allowing a very fast computation of the instrument synthetic 664 

measurement dataset. Thus, we avoid the computational burden of using a full 665 

radiative transfer model, allowing the generation of one month of GEO constellation 666 

data in less than 12 hours. This makes simulation of the GEO constellation 667 

measurement computationally feasible. The main conclusions of this work are as 668 

follows: 669 

 670 

1. Instead of using the model resolution as the instrument pixel resolution, and 671 

the defined field of view as a simple latitude/longitude rectangle, we present 672 

a method to simulate the data using a GEO projection. This gives accurate 673 

GEO instrument spatial resolutions and fields of view that vary with latitude 674 

and longitude.  675 

2. This paper extends application of the Worden et al., (2013) averaging kernel 676 

(AK) prediction method. Realistic variations of potential GEO instrument 677 

vertical retrieval sensitivities are simulated. Instrument sensitivities depend 678 

on predictors and the main drivers are: surface pressure, CO profile and 679 

temperature profile. Rather than using an average AK for fast computation, 680 

the observation simulator presented here is able to provide fast computation 681 

of AK variability (and its associated retrieval error covariance matrix) at the 682 

same time.  683 

3. We discuss limitations of the method used for this study. The very high CO 684 

concentrations occurring in the NR over very polluted areas often overreach 685 

the training set statistical coverage. In this situation, we use a tuning method 686 

to reduce the amplitude of CO variations in the NR. 687 

4. To make the observation simulations as realistic as possible, we account for 688 

the impact of clouds. Cloud contamination in the observations is strongly 689 
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dependent on the instrument spatial resolution and the geographical region 690 

of interest. The Mediterranean weather regimes show the lowest cloud 691 

occurrences, whereas subtropical weather might provide comparatively 692 

lower temporal and spatial sampling for air quality GEO measurements. 693 

5. We present case studies for the three measurement domains and show that 694 

the observation simulation method employed here provides realistic AK 695 

variability. The degrees of freedom for signal for the lowermost troposphere 696 

(DFS0-3) ranges from 0.2 to 0.7 with significantly larger values over land and 697 

for day that reflect the enhanced vertical sensitivity possible with 698 

multispectral retrievals. We simulate small local DFS0-3 variations according 699 

to surface and atmospheric parameters (e.g., surface pressure, CO profile and 700 

temperature profile). 701 

6. Simulated retrieval errors that are derived from the AK simulation are 702 

compared to the true smoothing error. Comparisons show that the retrieved 703 

errors are realistic, being lower than or in the range of the smoothing error.  704 

 705 

The next step in this study (Part 2) will be to assimilate the synthetic 706 

measurement data into a global model. To do so, we present here an additional set of 707 

simulated observations at a reduced spatial resolution (42 km). This allows an OSSE 708 

for the potential future prediction system of global air quality with the same 709 

capabilities for each region of interest: the same models (NR and CR), the same data 710 

assimilation system (AS) and the same instrument design (observation simulator). 711 

The goals of Part 2 will be to: (1) assess the ability of the GEO constellation to observe 712 

the impact of pollutant emissions over each region; (2) look at the importance of 713 

long-range transport between regions; and (3) investigate the value of the 714 

measurements from each mission in the GEO constellation, taken individually and 715 

together. 716 

  717 
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Tables: 874 

 875 

 876 

 877 

 GEO-AM GEO-EU GEO-AS 

Sub_lon -97° 8.4° 120° 

Number x pixels 500 400 400 

Number y pixels 230 250 200 

xmax 3.5° 2.4° 3.3° 

xmin -3.5° -2.4° -3.3° 

ymax 7.2° 8.2° 6.7° 

ymin 4.2° 5.7° 3.5° 

Table 1. GEO-constellation instrument specifications: satellite position, 878 

number of pixels and angles of views. 879 

 880 

 881 

 882 

 883 

 884 

 885 

 886 

Predictors Training sets 

θsza  North Hemisphere Ocean (TIR) 

Emissivity CONUS Day (Psrf>900hPa, TIR+NIR) 

Latitude CONUS Night (Psrf>900hPa, TIR) 

Surface temperature Europe Day (Psrf>900hPa, TIR+NIR) 

dP=Psurface-Pref 
* Europe Night (Psrf>900hPa, TIR) 

CO column Eastern Asia Day (Psrf>900hPa, TIR+NIR) 

Water Vapor Q(z) Eastern Asia Night (Psrf>900hPa, TIR) 

CO(z) N.H. Mountains Day (900hPa>Psrf>800hPa, TIR+NIR) 

Thermal contrast dT(z)=(Tsrf-T(z)) N. H. Mountains Day (800hPa>Psrf>700hPa, TIR) 

dT(z)2 N.H. Mountains Night (900hPa>Psrf>800hPa, TIR+NIR) 

Cos(θsza)/log10CO(z) N. H. Mountains Night (800hPa>Psrf>700hPa, TIR) 

dT(z) )/log10CO(z)  
* Pref=1000hPa 887 
 888 

Table 2. Left: List of predictors, right: List of the different training sets used to 889 

produce the geostationary constellation CO measurements. TIR and NIR state 890 

if the training set simulates multispectral or TIR-only retrievals  (see text for 891 

details). 892 
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 900 

 901 

Figures: 902 

 903 

 904 

 905 

 906 

 907 
 908 

Figure 1. The chemical OSSE framework. See text for details. 909 

 910 
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 916 
Figure 3. Surface CO time average during July 2006 over (a) North America, (b) 917 

Europe, and (c) Asia. 918 

 919 

 920 
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 921 
Figure 4. a) Geostationary constellation measurement domain a) Polar 922 

projection. b) GEO-EU domain in a geostationary projection, red dots are the 923 

full resolution footprints, purple dots are plotted every 100th pixels. c) is the 924 

same as b) but in an equidistant latitude-longitude cylindrical projection. d) 925 

Geometrical sketch of the geostationary projection. 926 

 927 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 25

 928 
Figure 5. Examples of original typical MOPITT averaging kernels (AKs). Left 929 

panel: multispectral day/land AK. Right panel: night/land or sea AK.  930 
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 931 
Figure 6. Cloud free ratio (%) for the three measurement domains during July 932 

2006.  933 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 27

 934 
Figure 7. Sensitivity matrices of the average cloud free ratio (in %) for pixel 935 

size versus cloud fraction  threshold. 936 

 937 

 938 

 939 
 940 

Figure 8. Examples of cloud detection and ratio of observed area for two 941 

different cloud fraction thresholds and two different pixel sizes. Red are cloud 942 

contaminated pixels and blue are cloud free pixels. Performed over South East 943 

CONUS 5 July 2006 00UT. 944 

 945 

 946 

 947 
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 948 
Figure 9. Snapshots of the Nature Run surface to 700 hPa partial column (a, d, 949 

g). Corresponding retrieved partial column (b, e, h) and corresponding 950 

degrees of freedom for signal (DFS) for surface to 700 hPa (c, f, j). Snapshots 951 

are captured at daytime but different dates following regions: 4 July 2006 952 

02UT CONUS, 14 July 2006 10UT Europe, 22 July 2006 18UT Eastern Asia. 953 

Deep colors are the cloud-free pixels. Faded colors represent cloud-954 

contaminated pixels that are not used in further processing. 955 

 956 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 29

 957 
Figure 10. Scatter plots showing variation of degrees of freedom for signal of 958 

surface to 700 hPa versus predictors with highest impacts to the multi-linear 959 

regression fit (see table 2 and text for details). Red are day-time values (3pm 960 

local time) and blue are night-time values (3am local time) 5 July 2006. 961 

Vertical solid lines indicate the mean value of the distribution used to build 962 

the training sets and dashed lines indicate associated ±σ (standard deviation). 963 

Dotted lines indicate associated +2σ for CO training set.  964 
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 965 
Figure 11. Left panels: scatter plots of Nature run surface-700 hPa partial 966 

columns (Xt) versus corresponding retrieved partial columns (Xr). Right 967 

panels: Smoothing error (Xs) versus corresponding retrieved error (Xe). Dates 968 

are the same as described in figure 10. 969 
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 970 
Figure 12. Low-resolution observation simulations used for the assimilation 971 

runs. Left panels: July 2006 average retrieved CO surface-700 hPa partial 972 

column. Right panels: Cloud free ratio for July 2006. 973 

 974 
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Highlights 

 

• A constellation of geostationary platforms for mapping pollutant sources 

and variability is described 

 

• Observation simulation without radiative transfer model is 

computationally cheap 

 

• Impacts of clouds are diagnosed and is dependent of the weather regime 

 

• A detailed analysis of the simulated observation sensitivity is performed 

 

• Limitations of the method are discussed 

 

 

 




