Physical and Mechanical Properties of LoVAR: a new lightweight particle-reinforced Fe-36Ni alloy

Timothy Stephenson, NASA Goddard Space Flight Center, Greenbelt, MD, USA
David Tricker, Andrew Tarrant, Materion AMC, Farnborough, Hampshire, UK
Robert Michel, Jason Clune, Materion Beryllium and Composites, Elmore, OH, USA

SPIE Optics + Photonics 2015
San Diego, CA
August 9 – 13, 2015
Agenda

• Background
• Initial Trials
• Process Route
• Mechanical & Physical Properties
• Summary
Background

• Because of its low thermal expansion, alloy Fe-36Ni finds extensive use in spacecraft structures that require high pointing accuracy and dimensional stability, in spite of its density (8.1g/cm³).

• For Example:
 – JWST uses 429kg
 – Kepler FPA 20kg

• However, Payload mass is a direct driver of launch cost!

• So there is a direct need to light-weight this alloy while maintaining its favourable low-expansion properties.
Initial Blending Trials
Fe-36Ni+20Si$_3$N$_4$

Necklacing of Si$_3$N$_4$ around Fe-36Ni powders

Agglomeration of Si$_3$N$_4$ to produce millimeter sized agglomerates
Process Route

Processing <-> Structure <-> Properties <-> Performance

- Raw Materials
 - Fe-36Ni Powder
 - Si₃N₄ Powder

- High Energy Mixing
 - Mixing
 - Mechanical Alloying

- Solid-State Compaction
 - Hot Isostatic Pressing

- Secondary Processing
 - Open Die Forging
Mechanically Alloyed Fe-36Ni+20Si₃N₄
Tensile Properties

![Tensile Properties Graph](image_url)

Graph showing the tensile properties of LoVAR and Invar® materials. The graph plots stress in MPa against strain in %, with the stressstrain curves for LoVAR and Invar® materials indicated.

LoVAR: Solid line
Invar®: Dashed line
Thermal Expansion

Thermal Expansion $\Delta L/\Delta L_0$, ppm

Temperature, K

- 7A1
- 32-5 Super Invar
- LoVAR
Secant CTE

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Room Temperature CTE (ppm/K)</th>
<th>Secant CTE 10°C to 30°C (ppm/K)</th>
<th>Secant CTE -60°C to 60°C (ppm/K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoVAR</td>
<td>0.69</td>
<td>0.69</td>
<td>0.80</td>
</tr>
<tr>
<td>Super-Invar</td>
<td>0.05</td>
<td>0.06</td>
<td>0.19</td>
</tr>
<tr>
<td>Invar® (7A1)</td>
<td>1.49</td>
<td>1.49</td>
<td>1.49</td>
</tr>
</tbody>
</table>
Isothermal Dimensional Stability at 80°C

\[\Delta L/L_0, \text{ ppm} \]

Time, hours

- · LoVAR
- · 7A1
- · 7A3
- ·· Commercial Invar ®
Isothermal Dimensional Stability at 80°C

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Dimensional Change (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoVAR</td>
<td>0.14</td>
</tr>
<tr>
<td>Invar® (7A1)</td>
<td>4.65</td>
</tr>
<tr>
<td>Invar® (7A3)</td>
<td>2.42</td>
</tr>
<tr>
<td>Invar® (commercial hot finished rod)</td>
<td>38.16</td>
</tr>
</tbody>
</table>

Note: LoVAR greatly reduces the isothermal time-dependent length change that has been one of the main difficulties using Invar® in optical structures.
Summary

• We have described the early stage development of a new MMC that we call LoVAR.
• It embodies a low CTE and excellent dimensional stability.
• Materion and GSFC will continue to exploit the alloy design paradigm:

 Processing ↔ Structure ↔ Properties ↔ Performance

 To further enhance specific stiffness and stability.

• This will include a CTE matching capability.