NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Behavior of Spinning Space Vehicles with Onboard Liquids, 2nd Edition, Technical Report B8030Although the fundamental principles of spin stabilization are well established, uncertainty regarding the potential for rapid nutation growth caused by onboard liquids is a continuing concern. NASA and other organizations regularly encounter the issue of rapid nutation growth due to energy dissipation by liquids on spinning vehicles. Of concern is the stability of spinning upper stages and of spacecraft that spin for part or all of their missions. Several missions have required last-minute hardware or operational changes to deal with rapid nutation divergences that were identified late in the program. In some instances, major schedule slips were barely averted. In at least two cases, it was determined that a spinning upper stage was not a viable option. Historically, the "slosh" issue has been addressed by each space vehicle project individually, if it has been addressed at all. Due to budgetary and programmatic constraints, individual projects are unable to address the problem globally. Hence, there has been little effort to collect available test and flight data and use that data to make a coherent, unified picture of the "slosh" effect and how to deal with it. To some extent, each project has had to "reinvent the wheel", which can be both costly and risky. This study is a step toward correcting the situation. Specifically, the goal was to identify and collect available flight and test data for spinning vehicles with onboard liquid propellants. A total of 149 flight data points and 1,692 test points were collected as part of this study. This data was analyzed, correlated, and is presented here in a normalized form. In most cases, the normalization involves a dimensionless nutation time constant that can be used to predict performance of other vehicles with the same type of tank. For some configurations, it was also possible to identify conditions that can lead to resonance between nutational motion and liquid modes. Gaps in the knowledge base are identified and approaches to filling those gaps are outlined. The data presented here has two different but related uses. First, it can be applied directly to current and future spacecraft programs. Second, it can provide truth models for testing analytical techniques. Experience has shown that purely analytical models of the liquid "slosh" effect on spinning vehicles are unreliable unless they are validated against flight or test data. To the author's knowledge, this report contains the most extensive and varied data set available. As such, it should be a good resource for anyone seeking to develop and validate improved analytical techniques. All of the original digital data sets have been archived on disk, with copies provided to NASA/KSC. With some restrictions, many of these data sets can be made available to researchers within the United States. Whenever possible, spacecraft are identified by name in this report. However, several organizations provided access to data with the explicit proviso that their programs not be identified and that parameters be presented only in normalized form. These constraints have been respected.
Document ID
20160001550
Document Type
Technical Publication (TP)
Authors
Hubert, Carl (Hubert Astronautics, Inc. Purcellville, VA, United States)
Date Acquired
February 4, 2016
Publication Date
August 1, 2008
Subject Category
Propellants and Fuels
Spacecraft Design, Testing and Performance
Report/Patent Number
NASA/TP-2013-217917
Funding Number(s)
CONTRACT_GRANT: NNK05LA48P
Distribution Limits
Public
Copyright
Public Use Permitted.

Available Downloads

NameType 20160001550.pdf STI