Space Telerobotics

irg.arc. nasa ggv ~ “ '
NSNS

Terry Fong

Intelligent Robotics Group
NASA Ames Research Center

terry.fong@nasa.gov




NASA Ames Intelligent Robotics Group

Overview
« 32 researchers (14 Ph.D.’s)
« 25+ student interns yearly
* 80% NASA work
« 20% non-NASA work

Research themes

 Automated planetary mapping
= Base maps & terrain models
= Geospatial data systems

o Exploration user interfaces
= Robot & science operations
= Accessible science data

* Mobile robots
= Remotely operated & supervised
= Free-flyers, lake lander, & rovers
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Robots

Superball Bot
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User Interfaces
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Visual Environment for Remote
Virtual Exploration (VERVE)
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Remote Operation of Space Robots

Operator on Ground Operator in Space Operator on Ground
Robot in Space Robot on Ground Robot on the Moon
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Robots for Human Exploration

Motivation
* Help maintain spacecraft
« Enhance crew productivity

» Perform work before, in support,
and after humans

In-Flight Maintenance (IFM)

IN-FLIGHT MAINTENANCE TASKS

. Must perform .IFM to kee_p spgcecraft Trereae: & mrerlian
in a safe, habitable configuration « Provide mobile camera views
« Many IFM tasks are tedious, time- * Routine surveys and inventory
consuming, repetitive & routine » Check payload status / health
Routine maintenance
« Many IFM tasks cannot be done « Change air/water filters
using only fixed sensors / actuators « Perform water draw/input on ECLSS
L » Payload adjustment & trouble shooting
Unmanned mission phases Contingency response
o Setup Spacecraft prior to human » Assess enviror?ment after fire event
arrival (e.g., Mars exploration) » Assess & repair Leaks/MMOD da.mage
. . _ » Power cycle/reboot electrical equipment
@, » Contingency situations « Actuate mechanisms (hatches, valves, etc.)
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Space Station In-Flight Maintenance

Extra-Vehicular Activity (EVA)

* Not enough crew time to do everything
(only 1-2 EVAs per year)
« Crew must always carry out “Big 12”
contingency EVA's if needed
= Maintain electrical power system
= Maintain thermal control system

* Prep & tear down: up to 3 hr per EVA

Intra-Vehicular Activity (IVA)

» Crew spends a lot of IVA time on
maintenance (40+ hr/month)
» Routine surveys require 12+ hr/month

= Air quality, lighting, sound level,
video safety, etc.

« Crew must always carry out
contingency IVA surveys

s = Find and repair leaks, etc.
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Repetitive and Routine Tasks

Camera positioning
« Many cameras on the Space Station

« Crew has to manually reposition
cameras monitored by mission control
« Camera are essential for many tasks
= Safety surveys
= Equipment and payload inspections

= Crew “over the shoulder” views
during IVA activities

Logistics
« Crew must locate equipment and
materials needed for IVA work

= Crew spends up to 1 hr per day
manually searching for items

= 20,000 items in the inventory database

« Automated logistics is a key NASA
priority for future missions
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Smart SPHERES

ISS Mission Control
(Houston)
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SPHERES
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Smart SPHERES

Smartphone Upgrade
 Delivered on STS-135 shuttle flight

* Provides low-cost, off-the-shelf
avionics upgrade for SPHERES

« Activiated and initial check-out on
November 1, 2011

Key Points

« Smartphone was the first commercial
smartphone certified for use on the
Space Station

« Smartphone enables real-time,
remote operation of SPHERES by
crew and ground control

« Smartphone provides modern CPU,
Wi-Fi, and sensors (camera,
magnetometer, etc)

@Space Telerobotics




Smart SPHERES Network Setup

Node 2
DTN

JEM
DTN Gateway SSC
Linux Service Partition Load

A TDRSS

auoyd
Hewg

Android Smartphone

Communications Test Application
R OCA-USB

\, /
N /)
NV

A WAP
JSC Building 30 ki
,\

OCA Ground

SPHERES WS Router White Sands
RedHat Linux Install

Java-based GUI

DTN Gateway
RedHat Linux Install
& )
13

@ Space Telerobotics




Ground Control Test (12 December 2012)

Space Station Interior Survey
« Demonstrate free-flying video survey within (Kibo Laboratory module)
« Smart SPHERES remotely operated from Mission Control (Houston)

« Manual control (discrete commanding) and supervisory control
(command sequences)

OVHD
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Kibo Laboratory on ISS ® Knob
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Space Station Interior Survey

l’ﬁcémber 12, 2012

Crew: Kevin Ford, Expedition 33 Commander 2x speed
‘
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Global Exploration Roadmap

Tele-Presence (p. 22)

Tele-presence can be defined as tele-operation of a robotic
asset on a planetary surface by a person who is relatively
close to the planetary surface, perhaps orbiting in a space-
craft or positioned at a suitable Lagrange point. Tele-presence
is a capability which could significantly enhance the ability
of humans and robots to explore together, where the specific
exploration tasks would benefit from this capability. These
tasks could be characterized by:

ISECG

international Space Exploration * High-speed mobility
Coordination Group  Short mission durations

» Focused or dexterous tasks with short-time decision-making
* Reduced autonomy or redundancy on the surface asset
» Contingency modes/failure analysis through crew interaction
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Surface Telerobotics Project

Summary

* Demo crew-control surface telerobotics
(planetary rover) from ISS

* Test human-robot conops for
future exploration mission

» Obtain baseline engineering data
(robot, crew, data comm, task, etc)

SURVEY

DEPLOY

Implementation
» Lunar libration mission simulation

 Astronaut on Space Station E)
* K10 rover in NASA Ames Roverscape e
Z
ISS Testing (Expedition 36)
17 June 2013 — C. Cassidy, survey « Human-robot mission sim: site survey,
26 JuIy 2013 — L. Parmitano deploy telescope deployment, and inspection
) ’ _ » Telescope proxy: Kapton polyimide film roll
20 August 2013 — K. Nyberg, inspect (no antenna traces, electronics, or receiver)

* 3.5 hr per crew session (“just in time” training,
system checkout, ops, & debrief)

* Robot ops: manual control (discrete commands)

and supervisory control (task sequence)
@Space Telerobotics 18




"Fastnet” Lunar Libration Point Mission

Orion MPCV at Earth-Moon L2 (EM-L2)
» 60,000 km beyond lunar farside
 Allows station keeping with minimal fuel
» Crew remotely operates robot
* Does not require human-rated lander

Human-robot conops

» Crew remotely operates surface robot
from inside flight vehicle

* Crew works in shirt-sleeve environment
« Multiple robot control modes

Moon’s
. .
Depart Free-Return = Orbit
Eanh/ Trajectory ,l )
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Credit: (Lockheed Martin / LUNAR)
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“Fastnet” Mission Simulation with ISS

| Planning I | Phase 1 I | Phase 2 I | Phase 3 l
4 N\ [ 4 4
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Ground teams
plan out telescope
deployment and
initial rover
traverses.

Spring 2013
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Surveying

Crew gathers

information needed
to finalize the

telescope

deployment plan.

Telescope
Deployment

2RO * 3

Crew monitors the
rover as it deploys
each arm of the
telescope array.

Telescope
Inspection

N =

Crew inspects and
documents the
deployed telescope
for possible

damage.

| Crew Session 1 I

17 June 2013

Crew Session 2 I

Crew Session 3 I

26 July 2013

20 August 2013
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ISS Test Setup

ive” Rover
Sensor and
Instrument
Data
(telemetry)

Rover/
Science
Data (e.g.
imagery)

Interface
Instrumentation &
Evaluation Data

Rover Plan
(command sequence)

K10 rover at NASA Ames
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Robot Interface (Supervisory Control)
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Robot Interface (Manual Control)

Rover path
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Surface Telerobotics
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Assessment Approach

Metrics

« Mission Success: % task sequences: completed normally, ended abnormally
or not attempted; % task sequences scheduled vs. unscheduled

* Robot Utilization: % time robot spent on different types of tasks; comparison
of actual to expected time on; did rover drive expected distance

* Task Success: % task sequences per session and per task sequence:
completed normally, ended abnormally or not attempted; % that ended
abnormally vs. unscheduled task sequences

» Contingencies: Mean Time To Intervene, Mean Time Between Interventions
* Robot Performance: expected vs. actual execution time on tasks

Data Collection

— « Data Communication: direction (up/down), message type, total volume, etc.

* Robot Telemetry: position, orientation, power, health, instrument state, etc.

» User Interfaces: mode changes, data input, access to reference data, etc.

__+ Robot Operations: start, end, duration of planning, monitoring, and analysis

« Crew Questionnaires: workload (Bedford Scale), situation awareness (SAGAT)

automatic

M. Bualat, D. Schreckenghost, et al. (2014) “Results from testing crew-controlled surface
telerobotics on the International Space Station”. Proc. of 12" |-SAIRAS (Montreal, Canada)
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Human-Robot Teaming

Productivity Analysis

* Productive Time (PT) = astronaut and robot performing tasks
contributing to mission objectives

Overhead Time (OT) = astronaut and robot are waiting

%PT = percentage productive time

%0T = percentage overhead time

Work Efficiency Index (WEI) = Productive Time / Overhead Time

Productivity Total Phase Time PT oT %PT %0OT  WEI

Survey 0:50:01 0:34:58 | 0:15:03 | 69.90 | 30.10 § 2.32

Deploy 0:46:19 0:28:00 | 0:18:19 | 60.45 | 39.55 | 1.53
Highly productive
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Resource Prospector Mission (2020)

NASA led lunar rover mission
« $200M (plus launch & lander)
* NASA Class D / Category lll project
» Risk-tolerant, streamlined approach

Partnerships
* NASA to provide rover and payload

» Detailed discussions and study
with multiple partners for lander

Status

« Completed Mission Concept Review
(MCR) in September 2013

» Rover Engineering Test Unit (ETU)
completed in August 2015

» Payload Engineering Units in test
« Early 2020 launch date to the Moon

@Space Telerobotics 29

NASA lander concept
with rover and ISRU payload




Resource Prospector Mission (2020)
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Rover Field Test (October 2014)

Goals

* Prospecting. Mature prospecting ops concept for NIRVSS and NSS
instruments in a lunar analog field test

- Real-Time Operations. Improve support software by testing in a setting
where the abundance / distribution of water is not known a priori

« Science on Earth. Understand the emplacement and retention of water
in the Mojave Desert by mapping water distribution / variability
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Real-time Operations (NASA Ames)
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Rover and Instruments

L el
/ / J N e
xR =
W ’ .
u 5 \ ,-?
( y - b (
N > \\‘.Z o SRR
g S \\ L1
y a < ""“ ’_‘
\ /
. z , TR\ By
e v ¢ \ X

® Resource Localization
&% Neutron Spectrometer
i System

A Sl T
59 : o - +° L3

8 Sample Evaluation
, Near Infrared Volatiles
@5 Spectrometer System

B o et

@Space Telerobotics



Rover Field Test (October 2014)




Current Work
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Questions?

Ir;

Intelligent Robotics Group

Intelligent Systems Division
NASA Ames Research Center

irg.arc.nasa.gov

@Space Telerobotics 36




