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Abstract
This report summarizes initial modeling of the local response of the Bigelow

Expandable Activity Module (BEAM) to micrometeorite and orbital debris (MMOD)
impacts using a structural, non-linear, transient dynamic finite element code.
Complementary test results for a local BEAM structure are presented for both hammer
and projectile impacts. Review of these data provided guidance for the transient
dynamic model development. The local model is intended to support predictions using
the global BEAM model, described in a companion report. Two types of local models
were developed. One mimics the simplified Soft-Goods (fabric envelop) part of the
BEAM NASTRAN model delivered by the project. The second investigates through-the-
thickness modeling challenges for MMOD-type impacts. Both the testing and the
analysis summaries contain lessons learned and areas for future efforts.

1. Introduction

Micrometeorite and Orbital Debris (MMOD) impacts are a common threat for
human and robotic spacecraft traveling in low earth orbit, see Ref [1]. Design
approaches for protecting spacecraft against MMOD impacts that degrade the
performance or cause catastrophic destruction have been studied extensively, see
Ref. [2]. Flexible spacecraft structural components present a particularly challenging
structure to protect. For human-rated space habitats, a demonstration module has
been fabricated utilizing the design approach documented in a US Patent, see Refs.
[3 and 4]. This demonstration module has been designated the Bigelow Expandable
Activity Module (BEAM), which will be attached to the International Space Station
(ISS) as illustrated in Figure 1, see Ref. [5].

A number of numerical methods and associated hardware for damage detection for
MMOD type impacts have been documented in the literature, see Ref. [6-12]. The
simulations presented in this report have been developed to align with the
Distributed Impact Detection System (DIDS) deployment testing on BEAM, see Refs.
[13-15]. DIDS is an array of accelerometers, connected to a processor that can be
used to determine the location of MMOD impacts, as shown notionally in Figure 2.

Historically, hypervelocity testing has been conducted to determine MMOD impact
performance. Hypervelocity testing is very expensive and is only feasible for shields
in the later phases of design. Therefore, advancement of analytical methods is
important to develop protection against MMOD impacts for novel structures in the
early trade study and design phases. The purpose of this report is to document
progress made in developing spacecraft structural modeling of MMOD impact and
relevance to active impact detection systems. The focus here is the development of a



model suitable to understand MMOD impacts on soft-goods structures such as the
BEAM. A companion report highlights global BEAM modeling behavior.

2. Component testing

Impact testing on a 38 x 38 cm MMOD shield sample supported on a 67 x 67 cm
restraint-layer framework was conducted, see Refs. [16, 17]. A photograph of the
test article is shown in Figure 3, with a schematic cross-section shown in Figure 4.
This test configuration was used for both the hammer and the projectile testing. The
test articles had foam spacers that were shaped like picture frames or cored with
cylindrical through-the-thickness holes, see Figure 5. For all of the hammer testing,
the foam spacers were shaped like picture frames. For most of the projectile tests,
the foam was also picture-frame shaped. To facilitate comparison with previous
vendor-supported projectile tests, a few projectile impacts with the cored-foam
spacers were tested. The picture-frame shaped test configuration is the baseline and
cored-foam test configuration will be specified as needed. From a simulation
perspective, the details of the restraint layer are the most relevant, as the DIDS
accelerometers will be attached to this layer.

Placement of the accelerometers is shown in Figure 6. The instrumentation
consisted of paired accelerometers at each location. Specifically, DIDS
accelerometers were located as close as possible with Facility accelerometers. The
Facility accelerometers provided continuous data. The DIDS accelerometers trigger
only when a signal of a certain magnitude is detected. Unfortunately for projectile
impacts, the location of the DIDS sensors on the restraint layer will likely result in
missing some of the initial data as the DIDS wake up and start recording data.
Nonetheless, the testing provides a great deal of information about how the signals
will propagate through the layers and the physics of the double strap responses.

2.1 Hammer impact testing

A series of 15 instrumented hammer tests were performed with impact locations on
the restraint layer, the exterior shield surface, and the sample frame. At each site,
the responses from three hammer impacts were recorded. The data in the figures
are for the Facility accelerometers. These tests were important to the modeling
because of their excitation control and the ability to directly impact locations not
possible to access during projectile testing. For example, hammer impacts were

performed directly on the restraint layer.

The restraint-layer acceleration responses to three hammer impacts on shield Layer
1 are shown in Figure 7. This set of measurements approximates an MMOD impact
that produces no damage to the outer most shield layer. The data confirm the



transmission of a hammer impact on the front of shield Layer 1 to the
accelerometers on the back of the restraint layer. (corresponding front and back
locations on the restraint layer have been plotted on the same graph). The front-to-
back accelerometers exhibit an equal and opposite behavior. The light tension of
Layer 1 generated a rather “soft” response rather than the sharp impulse typically
seen in hammer testing. The overlay of the responses for the three impacts provides
confidence in the repeatability of the structural response to similar impacts.

In contrast, the hammer impact on the tensioned restraint layer results in a much
sharper impact of approximately twice the amplitude, see Figure 8. Again, the
responses for the three hammer excitations are generally repeatable and front-to-
back accelerometers show an equal-and-opposite response.

2.2 Projectile impacts

For the projectile tests, nine tests were performed with projectiles of varying size,
material, and impact velocity. In addition, prior to these tests, the vendor conducted
15 projectile tests, with projectiles of varying sizes, impact angles, and impact
velocities. Although descriptions of the damage were provided for the vendor tests,
no acceleration measurements were acquired. For all of the vendor conducted
impacts, the foam picture-frame spacers were replaced with a cored-foam spacer.

Figure 9 provides a comparison of accelerations for projectile impacts with two
foam spacer configurations. Only the back restraint layer accelerometers have been
shown, because these locations represent the on-orbit BEAM application. Time t=0
has been established by time shifting the measurements. For the set of data in the
top row (HITF 14103), the mass is 0.133g, impact angle=45-deg., impact
velocity=5.42 km/s, and the foam spacer is the “cored” configuration. For the
bottom row (HITF 14105), the mass is 0.0138 g, impact angle=30-deg, impact
velocity=3.10 km/s, and the foam space is the “picture-frame” configuration. Both
tests produced similar damage in that the first and second layers were damaged,
with no damage to the 3rd and final layer. However, the normal kinetic energy at
impact is an order of magnitude different. The responses for test HITF14105 are an
order of magnitude less that those for HITF 14103, which correlates to the
approximate difference in impact kinetic energy. Both configurations of the foam
spacer provide a mechanism to transfer energy to the restraint-layer.

A collection of the normal kinetic energy versus projectile mass for all tests are
shown in Figure 10. A line fit through the pass data points has been computed to
approximate a threshold. The pass conditions were identified by the project as those
tests where the restraint layer remained undamaged. Impacts above this line are



presumed to fail MMOD protection, as evidenced by the failure points lying just
above the line.

The comparison of responses for two similar tests, which were near the pass-fail
threshold are presented, see Figure 11. Here, both the impact conditions, the foam
spacer configuration and the damage, are similar. In case (HITF 14107B), the
mass=0.312g, impact angle=45-deg., and impact velocity=6.83 km/s. For case
(HITF14108), the mass=0.120g, impact angle=30-deg., and impact velocity=7.00
km/sec. The similarity in the restraint-layer responses for the two tests provides
confidence in the ability to eventually utilize such test data to validate the models.

2.3 Testing Summary

It should be noted that potential differences between the test samples and the on-
orbit BEAM structure are: 1) tension in the various layers; and 2) interlayer foam
spacer configuration. In spite of these differences, significant insights proved useful
to support model development:

1. Impacts on the outer model layer will propagate to the restraint layer
through the foam spacers. The details of the transmissions could depend on
the geometry of the interlayer foam spacers.

2. The two layers of restraint-layer straps act as a single layer as noted by the
equal and opposite responses for corresponding front-to-back
accelerometers pairs.

3. The repeatability of the responses is good as demonstrated by the similarity
of responses for the three hammer impacts at each location.

4. For the test article, the wave propagation in the restraint layer is
approximately 200 m/s, with a fundamental vibration frequency of 110 Hz.
The component restraint layer tension is less than that for the on-orbit
configuration because of the limited capability for tensioning straps in the lab.

3.0 Component model

Two component models were developed for investigations of the ability of LS-
DYNA®, see Ref. [18], to capture the basic physics of the BEAM panel tests. These
were referred to as: 1) the Simple Model and 2) the Layer Model. To date, the
simulations were intended to represent non-penetrating hammer impacts that
cause no damage to the material.

3.1 Simple Model

The Simple Model consisted of a square sheet of shell elements 67.31 cm (26.5 in.)
on a side. The model is illustrated in Figure 12. The model properties are provided
in Table 1. As the purpose of the model was to investigate the ability to capture




basic physics of wave propagation through a membrane rather than to match
particular test results, the properties used were approximate and do not match
material properties used for later investigations.

The material was modeled as a fabric (*"MAT_FABRIC), which has no compressive
stiffness or bending stiffness. For solution stability, a small amount of compressive
stiffness was provided based on the definition of a fabric liner. The liner was
assigned the same properties as the fabric, but the thickness was just 2% of the
fabric thickness. The liner was assigned a damping factor of 0.05 (5% critical
damping).

For the simulations, the panel was tensioned via a thermal load and then a short
duration force pulse representing an MMOD impact was applied at the center. The
load histories are described in Figure 13. The tensile preload in the panel was
established by imposing a temperature change of -11.5 degrees ramped over 0.1
seconds. The force at the center of the panel was a triangular spike with a duration
of 0.002 seconds and a peak amplitude of 10 dynes that begins at the end of the 0.1
second preload ramp.

The primary characteristic of interest in the model was the natural frequency. This
was determined by performing a fast Fourier transform (FFT) of the velocity history.
The velocity histories of four nodes of the baseline model are illustrated in Figure
14. A sample plot of the FFT of the baseline responses is shown in Figure 15. The
natural frequency stands out at 628 Hz and changes in a manner consistent with the
theory. It has been recognized that this is substantially higher than the test value.
However, this difference in vibration frequency will not affect the conclusions
resulting from the parameter studies in this section.

Two parameter studies were performed with the model. In the first, the elastic
modulus was varied. The thermal expansion coefficient was varied simultaneously
to keep the preload tension constant. The variants featured the baseline elastic
modulus multiplied by 0.125, 0.25, 0.5, 1, 2, 4, and 8, see Figure 16.

For the second parameter study, the tension was varied by adjusting the
temperature change while holding the elastic modulus and thermal expansion
coefficient constant. The variants featured the baseline temperature change
multiplied by 0.5, 1, and 2, see Figure 17.

These results are consistent with theory. For a guitar string of a given length, the
frequency is proportional to the square root of the tension in the string divided by
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the mass per unit length. Figure 17 shows such a relationship for the panel
membrane. The explanation for the insensitivity to the elastic modulus is that small
deflections do not significantly change the tension, so the tension does not
significantly deviate from the pretension. As the panel deflects out of plane, the
deflection is resisted by the out-of-plane component of the pretension. This is
illustrated in Figure 18.

3.2 Layer Model

The Layer Model featured outer, middle and base layers separated by foam “picture
frames”. The outer and middle layers were carbon. The base layer represented a
carbon sheet and a Kevlar sheet. The Kevlar sheet, representing the restraint-layer,
extended beyond the foam picture frames to restraints at the approximate location
of the interface with the steel frame and hardware used to apply pretension. The
model is illustrated in Figure 19, with model properties provided in Table 2.

For all of the *MAT_FABRIC material models, a liner was defined that provided a
small amount of compressive stiffness to help stabilize the response. The liner had
the same elastic modulus and Poisson’s ratio as the fabric. The liner thickness was
specified as 2% of the fabric thickness and the liner damping factor was specified as
0.05 (5% of critical damping).

The base layer was tensioned via a thermal expansion coefficient and temperature
change. The temperature change was ramped over the first 0.1 seconds of the
simulation as illustrated in Figure 20. The preload was set to provide a tension of
2.67E8 dynes (600 lbs) along the edges based on a total edge length of 55.88 cm (22
inches) and a single layer of material with a thickness of 0.254 cm (0.1 inches), see
Figure 21.

The impactor was modeled as a single brick element with a base 2 cm x 2 cm, a
height of 10 cm, and a mass of 313 grams. Surface-to-surface contact was defined
between the impactor and the outer layer with the contact stiffness based on a
factor of 0.01 applied to the limiting stiffness for solution stability based on time
step size and nodal mass. The impactor was given an initial velocity of 100 cm/sec
and the initial position was adjusted so that impact with the outer layer occurred at
0.1 seconds.

Histories of the resultant accelerations at the center of each panel layer are shown
in Figure 22. In the close-up image, it can be readily discerned that the response at
the base layer is approximately 1/100t the response at the outer layer and that the
lag time for the response to reach the base layer is approximately 0.003 seconds.
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3.3 Modeling Summary
The following is a summary of results from exercising of the LS-DYNA code for
impacts on the local-BEAM models.

1. The panel response is primarily a function of the mass per unit area and the
tension in the membrane. The response is relatively insensitive to material
properties such as elastic modulus.

2. LS-DYNA® using Lagrangian finite elements is capable of capturing the basic
physics of the response to a non-penetrating impact.

3. Expansion of the through-the-thickness local modeling approach to a global-
model is likely possible given knowledge of the foam spacer configuration;
however, this would greatly increase model size and run time.

A conventional finite element model will not capture the phase-change and
subsequent transition of the projectile and splatter as the projectile penetrates
layers. Penetrating impacts would presumably require a highly localized Smooth
Particle Hydrodynamics (SPH) approach. Feasibility of extension of the dense SPH
local-model to a global model is not known.

4. Concluding remarks

This report summarizes initial modeling of the local response of the Bigelow
Expandable Activity Module (BEAM) to micrometeorite and orbital debris (MMOD)
impacts using a structural, non-linear, transient dynamic finite element code.
Complementary test results for a local BEAM structure are presented for both
hammer and projectile impacts. Review of these data provided guidance for the
transient dynamic model development. The local model is intended for eventual
inclusion in the global BEAM model described in a companion report. Primary
highlights include:

1. Impacts on the outer model layer will propagate to the restraint layer
through the foam spacers. The details of the transmissions will depend on
the geometry of the interlayer foam spacers.

2. The restraint-layer frequency response is primarily a function of the mass
per unit area and the tension in the membrane. The frequency response is
relatively insensitive to material properties such as elastic modulus.

3. LS-DYNA® using Lagrangian finite elements is capable of capturing the basic
physics of the response to a non-penetrating impact.

4. The feasibility of incorporating non-conventional finite element modeling
approaches, such as SPH, to support global predictions has yet to be
determined. An alternative approach could utilize the impulse predicted by
the detailed local model on the restraint layer as input to a simpler global
model.
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Table 1. Simple Model Properties

Parameter Dimension
Edge Length 67.31 cm
Thickness 0.5 cm
Mass Density 0.373 g/cm3

Baseline Elastic Modulus

1.00E9 dyne/cm2

Poisson’s Ratio

0.3

Thermal Expansion Coef.

1.E-3 strain/deg

Temp Change

-11.5°

Thermal Stress

1.64E7 dyne/cm2

Tension / Unit Edge Length

8.20E6 dyne/cm

Table 2. Layered Model Properties

Layer [ Thickness Element E p v o Material Model
2 3 -1
(cm) Formulation | (dyne/cm’) | (gram/cm”) (deg )
Outer 5
0.4877 4.14E11 0.695 0.3 0. *MAT_FABRIC
Layer (Membrane)
Upper 2 (Fully-
6.35 6.30E6 0.021 0.05 0. *MAT_ELASTIC
Foam Integrated)
Middle 5
0.2438 4.14E11 0.695 0.3 0. *MAT_FABRIC
Layer (Membrane)
Lower 2 (Fully-
6.35 6.30E6 0.021 0.05 0. *MAT_ELASTIC
Foam Integrated)
Base 5
0.254 8.963E10 0.7343 0.3 | 0.001** [ *MAT_FABRIC
Layer* (Membrane)

* Base layer features nonstructural mass = 0.1695 g/cm inside foam boundary to represent lower

fabric panel of Shield Layer.

** Apply temperature change of -6.69E-2 degrees to achieve base layer preload.
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MMOD impact risk contours
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Figure 2. [llustration of DIDS sensors on-orbit.
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Small deflections do not significantly
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Figure 18. Mechanism for membrane’s resistance to out-of-plane deflection.
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Figure 19. Layer Model
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Figure 20. Pretension load for layer model.
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Figure 22. Sample Layer Model resultant acceleration responses.
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