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Abstract

Staggered grid, entropy stable discontinuous spectral collocation operators of any order are de-
veloped for Burgers’ and the compressible Navier-Stokes equations on unstructured hexahedral
elements. This generalization of previous entropy stable spectral collocation work [1, 2], extends
the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to a combination
of tensor product Legendre-Gauss (LG) and LGL points. The new semi-discrete operators discretely
conserve mass, momentum, energy and satisfy a mathematical entropy inequality for both Burg-
ers’ and the compressible Navier-Stokes equations in three spatial dimensions. They are valid for
smooth as well as discontinuous flows. The staggered LG and conventional LGL point formulations
are compared on several challenging test problems. The staggered LG operators are significantly
more accurate, although more costly to implement. The LG and LGL operators exhibit similar
robustness, as is demonstrated using test problems known to be problematic for operators that
lack a nonlinearly stability proof for the compressible Navier-Stokes equations (e.g., discontinuous
Galerkin, spectral difference, or flux reconstruction operators).
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1 Introduction

Beginning with a high-order solution polynomial, numerous approaches exist for constructing dis-
continuous Galerkin (DG) spectral element methods. Popular variants adopt either the weak (in-
tegral) or strong (differential) form of the governing equations derived by integrating the equations
once or twice against a test function. Various interior and interface flux approximations are used
(e.g., quadrature free fluxes [3], or skew-symmetric operators [4]), as are various quadrature rules
(e.g., Legendre-Gauss,1 Legendre-Gauss-Lobatto, or Legendre-Gauss-Radau points). Each design
choice is motivated by desirable goals, such as efficiency, accuracy, data locality, flexibility, etc.
Kopriva and Gassner [5] presented a survey of design decisions made when constructing nodal DG
algorithms, as well as their advantages and disadvantages.

A popular design philosophy for the incompressible Navier-Stokes equations is to stagger the
solution and fluxes at independent point sets. For example, Bernardi and Maday use a stag-
gered approach for the Stokes problem [6]. For the compressible Navier-Stokes equations, Kopriva
and Kolias [7] collocate the solution variables at the Legendre-Gauss-Chebyshev quadrature points
(0, · · · , N − 1), and evaluate the fluxes at the Legendre-Gauss-Chebyshev points (0, · · · , N). This
conservative combination of over-collocated fluxes proves to be more robust in practical problems
than conventional Legendre-Gauss-Lobatto (LGL) techniques [7]. (The number of flux points ex-
ceeds the solution points by one, and is reminiscent of the spectral finite volume method of Cai,
Gottlieb, and Harten [8]). Staggered collocation operators have evolved over the past two decades
to include a rich set of approaches. For example, the spectral difference (SD) [9,10] and flux recon-
struction (FR) [11, 12] approaches, discretize the compressible Navier-Stokes equations in strong
form on a staggered set of solution (order p) and flux points (order p+1). The observed convergence
rate is reported to be (p+ 1), for a sequence of nested uniform and quasi-uniform grids.

An alternate design strategy based on a summation-by-parts (SBP), simultaneous-approximation-
term (SAT) framework (i.e., SBP-SAT operators), is used in references 1,2 to construct discontin-
uous collocation spectral element methods of any order, and are referred to as entropy stable (SS)
discontinuous collocation (DC) algorithms (i.e., SSDC algorithms). Therein, the primary design
motivation is a semi-discrete spatial operator that supports a nonlinear (entropy) stability proof
for the compressible three-dimensional (3D) Navier-Stokes equations, on curvilinear unstructured
hexahedral elements.

The SSDC operators discretize the governing equations in strong form at the 3D tensor product
LGL points, and adjoining elements are coupled using a provably nonlinearly stable SAT penalty
approach technique [13]. The resulting algorithm is similar to the strong form nodal DG method
reported in reference 14, although it differs in the treatment of the nonlinear Euler fluxes and the
interface couplings. A novel choice of nonlinear fluxes ensures conservation of mass, momentum and
energy as well as the entropy inequality within each element; hence element-wise entropy stability.2

Carefully constructed interface fluxes then guarantee boundedness of the entropy throughout the
entire domain. The nonlinear stability is achieved without additional hyper-viscosity dissipation,
de-aliasing or filtering, and over-integration of the fluxes or solution. Other important differences
with respect to the DG, SD, and FR schemes appear in the treatment of boundary conditions, which
are designed to preserve the nonlinear stability of the interior operators (see, references 2,15).

1These points are also referred to as Gauss points in literature.
2Dissipation is required for shocked flows to enforce a physical entropy inequality, and density and pressure (or

temperature) are assumed to remain positive.
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Entropy stable spectral collocation operators are robust for shocks of moderate strength (e.g.,
normal shock strengths M ≤ 1.75), and are fully consistent with the Lax-Wendroff theorem [16] for
weak solutions. The robustness stems from a semi-discrete thermodynamic entropy that is provably
bounded for all time in the L2 norm, provided that boundary data preserves the entropy estimate of
the interior operator (and density and temperature remain positive). The nonlinear stability proof
is sharp; indeed entropy conservative interface fluxes guarantee global entropy conservation (neutral
nonlinear stability). This sharp estimate is achieved because hyper-viscosity dissipation, de-aliasing
or filtering of the fluxes/solution is not needed. Furthermore, assumptions of integral exactness
are unnecessary to justify the proof (commonly used in weak form finite element methods (FEM)),
because strong conservation form derivatives are approximated using diagonal-norm SBP operators,
rather than weak form integrals. Thus, over-integration of the nonlinear fluxes is unnecessary to
more closely approximate integral exactness.

Although the formulations presented in references 1,2 are a significant step towards operational
entropy stable discontinuous collocation spatial discretizations of any order, noteworthy challenges
remain: 1) arbitrary collocation points, 2) spatial- (h) and order- (p) adaptive refinement of hex-
ahedral elements, and 3) triangular, prismatic and tetrahedral elements. Herein, an SBP-SAT
framework is used to develop a staggered grid, entropy stable spectral element formulation that
includes a broader selection of collocation points. The entropy stable mechanics developed in ref-
erences 1, 2 are extended to include solutions collocated at the Legendre-Gauss (LG) points with
fluxes computed at the LGL points. The competitive advantages of the new entropy stable stag-
gered algorithm relative to the algorithms presented in references 1,2 are then established.

The new staggered operators based on the LG points have several advantages relative to the
pure LGL operators. First, the integral exactness of the LG points exceeds that of the LGL points:
(2p + 1) vs. (2p − 1), and it is shown elsewhere [5] that the LG points have superior accuracy
properties. Second, the LG points are an interior point distribution and as such, the solution data
is not duplicated on adjoining element interfaces. Neither are variables collocated at the corners
of the element. Thus, geometric boundary discontinuities are handled in an integral sense without
explicit knowledge of the boundary singularity. In more general terms, moving data around an
element while maintaining entropy stability is an important capability when developing additional
element types and connectivities. For example, consider the closely related problems of h-refinement
at a 2 : 1 element interface compression or a p-refinement interface. These scenarios require data
movement from adjoining interfaces onto a common intermediate mortar [17]. The quadrature
points do not in general coincide on either side of the interface. Thus, the nonlinear stability proofs
presented in references 1,2 do not immediately extend to this extremely important capability.

Extensive numerical tests presented herein, reveal that the new staggered entropy stable dis-
continuous collocation (staggered SSDC) operators are significantly more accurate than the LGL
SSDC operators [1,2], of equivalent polynomial order. They are however, more costly to implement.
Simple counting arguments based on inviscid and viscous flux evaluations, indicate that the cost of
the staggered algorithm for a solution polynomial order p is comparable to that of an LGL opera-
tor [1,2], with a solution polynomial order of (p+1). Preliminary studies using an explicit temporal
integrator indicate that the increased accuracy of the staggered approach partially offsets the ad-
ditional cost, particularly at low polynomial order. Further investigation is needed to convincingly
establish whether over-collocating the fluxes (including the SD [7, 9] or FR [11, 12] operators) can
be justified from a cost perspective. An ongoing investigation continues that includes the effects of
implicit temporal integrators as well as the impact of data movement; computationally intensive
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yet extremely accurate, low memory footprint algorithms will be competitive in the future.
The paper is organized as follows. Section 2 includes the general theory of SBP operators, and

differentiation and interpolation spectral collocation operators. Section 3 includes a brief survey of
entropy stability at the continuous and semi-discrete level, the data mechanics and the interface
SAT coupling approach for the staggered SSDC operator in multiple spatial dimensions. Section 4
includes the mechanics of the staggered SSDC operator. Both energy and entropy proof are pre-
sented for the 1D Burgers’ equation. Section 5 extends the 1D staggered SSDC operator to multiple
spatial dimensions in the context of the compressible Navier-Stokes equations. Section 6 extends
the staggered SSDC operator to multiple elements. In Section 7, a theoretical cost comparison
is made between the conventional collocated [1, 2] and the staggered SSDC operators. Section 8
presents numerous numerical studies. The Euler vortex and viscous shock propagation problems
are used to demonstrate the superior accuracy of the staggered algorithm. The Taylor-Green vortex
problem and supersonic flow past a 3D square cylinder (Mach = 1.5, and Re = 104), are used to
demonstrate the robustness in the limit of order one discretization errors. Section 9 summarizes the
results of the paper. Two appendices are included. Appendix A includes a more detailed discus-
sion on SBP-SAT operators, while a derivation of spectral derivative and interpolation operators
is included in Appendix B.

2 Summation-by-parts operators

2.1 First derivative

First derivative operators that satisfy the summation-by-parts (SBP) convention, discretely mimic
the integration-by-parts property

xH∫
xL

φ
∂q

∂x
dx = φ q|x

H

xL −
xH∫
xL

∂φ

∂x
q dx, (1)

with φ an arbitrary scalar test function. At the discrete level, this mimetic property is achieved by
constructing the first derivative approximation, Dφ, with an operator in the form

D = P−1 Q, P = P>, ζ>Pζ > 0, ζ 6= 0,

Q> = B −Q, B = Diag (−1, 0, . . . , 0, 1) ,
(2)

where ζ is an arbitrary vector. The matrix P can be thought of as a mass matrix (or integrator)
much like in the finite element framework, or a volume that contains local grid information in the
context of finite volume or finite difference numerical methods. The nearly skew-symmetric matrix
Q, is an undivided differencing operator; all rows sum to zero, as do all columns save the first and
last, which sum to −1 and 1, respectively. The special structure of Q guarantees conservation as
is proven in the following lemma.

Lemma 2.1. All differentiation matrices, D, satisfying the SBP convention given in equation (2)
are discretely conservative in the P-norm.

Proof. The proof of this lemma can be found in reference 18.
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While the matrix P need not be diagonal, the class of diagonal norm SBP operators play
a crucial roll in the development of entropy stable (SS) SBP simultaneous-approximation-term
(SAT) operators (see references 1,2, 15,19,20).

The accuracy of the first derivative operator, D, can be expressed as

∂φ

∂x
(x) = Dφ(x) + Tp+1, (3)

where
x = (x1, . . . , xN ) , x1 = xL, xN = xH (4)

are the collocated points, and

φ(x) = (φ(x1), φ(x2), . . . , φ(xN ))>

∂φ

∂x
(x) =

(
dφ

dx
(x1),

dφ

dx
(x2), . . . ,

dφ

dx
(xN )

)> (5)

are the projections of the test function φ and its derivative onto the grid x. Tp+1 is the truncation
error of the approximation of the first derivative, which is p-th order accurate. Integration in the
approximation space is conducted using an inner product with the integration weights contained
in the norm P,

xH∫
xL

φ
∂q

∂x
dx ≈ φ>PDq, (6)

where

q(x) = (q(x1), q(x2), . . . , q(xN ))> , with x = (x1, . . . , xN ) , x1 = xL, xN = xH , (7)

is the projection of continuous variables q onto the grid x. Substituting equation (2) into equation
(6), the mimetic SBP property is demonstrated,

φ>PP−1Qq = φ>
(
B −Q>

)
q = φNqN − φ1q1 − φ>D>Pq. (8)

2.2 Discontinuous spectral collocation operators

2.2.1 Differentiation

Consider the SBP operators constructed at the Legendre-Gauss-Lobatto (LGL) points [21], which
include the end points of the interval, xL and xH . The complete discretization operator for the
fourth-order accurate polynomial interpolation (p = 4) in the standard one-dimensional (1D) ele-
ment (xL = −1, xH = +1) is illustrated in Figure 1. In this figure, the solution points are identified
with • and the flux points are identified with |. The latter points are similar in nature to the control
volume edges employed in the finite volume method and are used to prove the nonlinear stability
(entropy stability) as briefly shown in Section 3.3, (see references 1,2 for a more detailed discussion).

Define the Lagrange basis polynomials relative to the N discrete LGL points, x, as

Lj(x) =
∏N

k=1
k 6=j

x− xk
xj − xk

, 1 ≤ j ≤ N. (9)
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u1 u2 u3 u4 u5

f̄5f̄4f̄0 f̄1 f̄3
f1 f2 f3 f4 f5

x̄0 x̄3x̄2x̄1 x̄4 x̄5

−1 −9
10 −

√
3
7

−16
45 0 +16

45
+
√

3
7

+9
10

+1

x1 x2 x3 x4 x5

f̄2

Figure 1. The one-dimensional discretization for the fourth-order accurate polynomial interpolation
(p = 4) LGL collocation is illustrated. Solution points are identified with • and the flux points are
identified with |.

Assume that a smooth and (infinitely) differentiable function f(x) is defined on the interval
xL = −1 ≤ x ≤ 1 = xH . Reading the function f and its derivative df

dx at the discrete points, x,
yields the vectors

f(x) = (f(x1), f(x2), · · · , f(xN−1), f(xN ))>,

df
dx

(x) =
(
df

dx
(x1),

df

dx
(x2), · · · , df

dx
(xN−1),

df

dx
(xN )

)>
.

(10)

The interpolation polynomial fN (x) (of order p = N − 1) that collocates f(x) at the discrete
points, x, is given by the contraction

f(x) ≈ fN (x) = L(x; x)>f(x), (11)

where L(x; x) is a column vector whose components are the Lagrange basis polynomials relative to
the nodes x (i.e., Lj(x) in equation (9)). Note that the explicit dependence of L on the independent
variable x and the set of point x is indicated for completeness.3

Theorem 2.1. The derivative operator that exactly differentiates an arbitrary p-th order polynomial
(p = N − 1 ) at the collocation points, x, is

D = (dij) =
(
dLj
dx

(xi)
)
, (12)

where dLj
dx (xi) denotes the derivatives of the Lj Lagrange basis polynomial with respect to x evaluated

at the collocated node xi. This element corresponds to the element in the j-th column and i-th row
of the differentiation matrix D.

Proof. The proof to this theorem can be found in Appendix B (see also reference 21).

A representation of the differentiation operator D, which satisfies all the requirements for being
an SBP operator is given in the following theorem

3fN is a polynomial of order p in the independent variable x.
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Theorem 2.2. The derivative operator that exactly differentiates an arbitrary p-th order polynomial
(p = N − 1) at the collocation points, x, can be expressed as

D = P−1 Q (13)

with

P =
∑

` L(ηl; x)L(ηl; x)>ω` , Q =
∑

` L(ηl; x)dLdx (ηl; x)
>
ω`, (14)

where η` and ω`, 1 ≤ l ≤ N , are the abscissae of the LGL points and their quadrature weights,
respectively. L(x; x) is a column vector whose components are the Lagrange basis polynomials
relative to the discrete nodes x (i.e., Lj(x) in equation (9))

Proof. The proof to this theorem can be found in Appendix B.

The matrix P in (14) is symmetric and positive definite for any vector x [21]. When the
LGL points are used for x, then P is a diagonal approximation (i.e., the so-called “mass lumped”
approximation) of the full P-norm (see Appendix B). A diagonal norm SBP operator is necessary
to achieve strict entropy stability [22, 23]. This constraint on the norm P is reiterated in section
3.3.1.

2.2.2 Interpolation

Define on the interval −1 ≤ x ≤ 1, the vectors of discrete point,

x̃ = (x̃1, x̃2, · · · , x̃M−1, x̃M )>, −1 ≤ x̃1, x̃2, · · · , x̃M−1, x̃M ≤ 1;

x = (x1, x2, · · · , xN−1, xN )>, −1 ≤ x1, x2, · · · , xN−1, xN ≤ 1.
(15)

Herein, the discrete points x̃ and x are the Legendre-Gauss (LG) points (i.e., the so called Gauss
points) and the LGL points, respectively. All the scalars, vectors, and matrices associated to the
LG points are denoted with a “tilde” symbol. Next, define the interpolation operators that move
data between x̃ and x:

ILGL→LG = P̃−1RLG−LGL,
ILG→LGL = P−1R>LG−LGL,

P̃ ILGL→LG = I>LG→LGL P,

(16)

where

RLG−LGL =

1∫
−1

L(x; x̃) L(x; x)> dx. (17)

In Appendix B.3, we prove that these polynomial interpolation operators exist and satisfy the
relations (16), provided that the LGL points are of higher polynomial orders than the LG points
(i.e., N > M).
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3 Entropy consistent and entropy stable SBP operators

3.1 Governing equations

Consider the three-dimensional (3D) compressible Navier-Stokes equations for a calorically perfect
gas expressed in the form

∂q

∂t
+
∂fi
∂xi

=
∂f

(V )
i

∂xi
, x ∈ Ω, t ∈ [0,∞),

Bq = g(B)(x, t), x ∈ ∂Ω, t ∈ [0,∞),

q(x, 0) = g(0)(x), x ∈ Ω,

(18)

where the Cartesian coordinates, x = (x1, x2, x3)>, and time, t, are independent variables, and
index sums are implied. The vectors q, fi, and f (V )

i are the conserved variables, and the conserved
inviscid and viscous fluxes, respectively. Without loss of generality, a 3D box

Ω = [xL1 , x
H
1 ]× [xL2 , x

H
2 ]× [xL3 , x

H
3 ]

is chosen as our computational domain with ∂Ω representing the boundary of the domain. The
boundary vector g(B) is assumed to contain linearly well-posed Dirichlet and/or Neumann data.
Herein, we have omitted a detailed description of the 3D compressible Navier-Stokes equations
because it can easily be found in literature.

3.2 Continuous analysis

Consider the (nonlinear) compressible Navier-Stokes equations given in equation (18). This system
of incomplete parabolic partial differential equations (PDEs) have a quadratic or otherwise convex
extension of its original form, that when integrated over the physical domain, Ω, depends only
on boundary data and dissipative terms. This convex extension yields the entropy function and
provides a mechanism for proving the stability in the L2 norm of the nonlinear system of PDEs
(18). In fact, Dafermos [24] showed that if a system of conservation laws is endowed with a convex
entropy function, S = S(q), a bound on the global estimate of S can be converted into an a priori
estimate on the solution vector q (e.g., the solution of system (18)).

Definition 3.1. A scalar function S = S(q) is an entropy function of system (18) if it satisfies
the following conditions:

• Differentiation of the convex function S(q), simultaneously contracts all the inviscid spatial
fluxes as follows

∂S

∂q

∂fi
∂xi

=
∂S

∂q

∂fi
∂q

∂q

∂xi
=

∂Fi
∂q

∂q

∂xi
=

∂Fi
∂xi

, i = 1, 2, 3. (19)

The components of the contracting vector, ∂S/∂q, are the entropy variables denoted as w> =
∂S/∂q. Fi(q) are the entropy fluxes in the i-direction.
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• The entropy variables, w, symmetrize system (18) if w assumes the role of a new independent
variable (i.e., q = q(w)). Expressing equations (18) in terms of w yields

∂q

∂t
+
∂fi
∂xi
−
∂f

(V )
i

∂xi
=

∂q

∂w

∂w

∂t
+
∂fi
∂w

∂w

∂xi
− ∂

∂xi

(
ĉij

∂w

∂xj

)
= 0, i = 1, 2, 3, (20)

with the symmetry conditions: ∂q/∂w = (∂q/∂w)>, ∂fi/∂w = (∂fi/∂w)> and ĉij = ĉ>ij.

Because the entropy is convex, the Hessian ∂2S/∂q2 = ∂w/∂q is positive definite4,

ζ>
∂2S

∂q2
ζ > 0, ∀ζ 6= 0, (21)

and yields a one-to-one mapping from conservation variables, q, to entropy variables, w. Likewise,
∂w/∂q is symmetric positive definite (SPD) because ∂q/∂w = (∂w/∂q)−1 and SPD matrices are
invertible. The entropy and corresponding entropy flux are often denoted an entropy-entropy flux
pair, (S, F ) [25].

The symmetry of the matrices ∂q/∂w and ∂fi/∂w, indicates that the conservation variables, q,
and inviscid fluxes, fi, are Jacobians of scalar functions with respect to the entropy variables,

q> =
∂ϕ

∂w
, fi

> =
∂ψi
∂w

, (22)

where the nonlinear function, ϕ, is called the potential and ψi are called the potential fluxes [25]. The
potential and the corresponding potential flux are denoted a potential-potential flux pair, (ϕ,ψ) [25].

Just as the entropy function is convex with respect to the conservative variables (∂2S/∂q2 is
SPD), the potential function is convex with respect to the entropy variables, w.

The two elements of Definition 3.1 are closely related, as is shown by Godunov [26] and Mock
[27]. Godunov proves that:

Theorem 3.1. If equation (18) can be symmetrized by introducing new variables w, and q is a
convex function of ϕ, then an entropy function S = S(q) is given by

ϕ = w>q − S, (23)

and the entropy fluxes Fi(q) satisfy
ψi = w>fi − Fi. (24)

Proof. The proof of this theorem can be found in references 26,28.

Mock proves the converse to be true:

Theorem 3.2. If S = S(q) is an entropy function of system (18), then w> = ∂S/∂q symmetrizes
(18).

Proof. The proof of this theorem can be found in references 27,28.

4The Hessian, ∂2S/∂q2, is actually symmetric positive definite (SPD).
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Contracting system (18) with the entropy variables, w, results in the differential form of the
(scalar) entropy equation,

∂S

∂q

∂q

∂t
+
∂S

∂q

∂fi
∂xi

=
∂S

∂t
+
∂Fi
∂xi

=
∂S

∂q

∂f
(V )
i

∂xi
=

∂

∂xi

(
w>f

(V )
i

)
−
(
∂w

∂xi

)>
f

(V )
i

=
∂

∂xi

(
w>f

(V )
i

)
−
(
∂w

∂xi

)>
ĉij

∂w

∂xj
.

(25)

Integrating equation (25) over the domain yields a global conservation statement for the entropy
in the domain

d

dt

∫
Ω

S dx =
[
w>f

(V )
i − Fi

]
∂Ω
−
∫
Ω

w>xi ĉij wxj dx. (26)

References 22,23 prove that the five-by-five matrices ĉij in the last term in the integral are positive
semi-definite. Note that the entropy can only increase in the domain based on data that convects
and diffuses through the boundaries, ∂Ω. The sign of the entropy change from viscous dissipation
is always negative.

Remark 3.1. The scalar equation (26) is an integral statement of entropy conservation but it is
not strictly valid in the presence of discontinuities (i.e., shocks). In fact, it does not account for
the dissipation of the entropy at a shock. Although the precise amount of entropy dissipated at a
discontinuity is not known a priori, what is known is the sign of the jump in entropy. Thus, a
general but not sharp statement of the global behavior of entropy in the entire domain is

d

dt

∫
Ω

S dx ≤
[
w>f

(V )
i − Fi

]
∂Ω
−
∫
Ω

w>xi ĉij wxj dx. (27)

Remark 3.2. A sufficient condition to ensure the convexity of the entropy function S = S(q) (and,
hence, a one-to-one mapping between the entropy variables, w, and the conservative variables, q, is
that ρ, T > 0 (for the proof see for instance, Appendix B.1 in reference 19). Expressly:

ζ>
∂2S

∂q2
ζ> > 0, ∀ζ 6= 0, ρ, T > 0.

This (physical and mathematical) restriction on density, ρ, and temperature, T , weakens the en-
tropy proof, making it less than full measure of nonlinear stability. Another mechanism must be
employed to bound ρ and T away from zero to guarantee positivity; positivity preservation will not
be considered herein.

3.3 Overview of the semi-discrete entropy analysis for the LGL points

The semi-discrete entropy estimate is achieved by mimicking term by term the continuous estimate
given in equation (26). As for the continuous case, the nonlinear stability (entropy stability)
analysis begins by contracting the discrete entropy variables, w>, with the semi-discrete version of
the system (18) (see for instance, references 1, 2). (For clarity of presentation, but without loss of
generality, the derivation is simplified to one spatial dimension. Tensor product algebra allows the
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results to be extended directly to three-dimensions.) The resulting global equation that governs
the semi-discrete decay of entropy is given by [1]

w>Pqt + w>∆f = w>∆f
(V ) + w>g(B) + w>g(Int), (28)

where
w =

(
w(q1)>, w(q2)>, . . . , w(qN )>

)>
.

The source terms g(B) and g(Int) contain the enforcement of boundary and interface conditions,
respectively. (Herein, the solution between adjoining elements or cells is allowed to be discontinuous.
Therefore, interface penalties g(Int) are needed to patch interfaces together). The entropy variables,
w, are defined at the solution points whereas the quantities with an over-bar, i.e., f and F, are
defined at the flux points (see Figure 1). The analysis of each semi-discrete term is presented
elsewhere [19]. The stability of the viscous

(
w>∆f

(V )
)

terms follow immediately by conventional
approaches for diagonal norm SBP operators and will not be repeated herein. The analysis of
the time derivative and inviscid terms is summarized next, while the form of the penalty terms is
presented in Section 6.

3.3.1 Time derivative

The time derivative in (28) is in mimetic form for diagonal norm SBP operators. The entropy
variables are defined by the expression w> = ∂S/∂q. Define the diagonal matrices ∂S/∂q = W =
Diag[w]. Since P is a diagonal matrix (see equation (14)) and arbitrary diagonal matrices commute,
the semi-discrete rate of change of entropy becomes

w>P ∂q
∂t

= 1>WP ∂q
∂t

= 1>PW
∂q
∂t

= 1>P ∂S
∂q

∂q
∂t

= 1>P ∂S
∂t
,

where
1 = (1, 1, . . . , 1)> ,

is a vector with N elements.5

3.3.2 Entropy consistent inviscid fluxes

The inviscid portion of equation (28) is entropy conservative if it satisfies

w>∆f = F (qN )− F (q1) = F (qN )− F (q1) = 1>∆F. (29)

Tadmor [25] uses the following rational to construct entropy conservative (entropy consistent)
three-point centered operators satisfying equation (29). Consider the term wi(f i − f i−1) in the
vector relation (29), which can be rewritten as [w>∆f−∆F] = 0. Adding and subtracting equivalent
terms yields the expression

wi
(
f i − f i−1

)
=

[
1
2 (wi+1 + wi) f i − 1

2 (wi + wi−1) f i−1

]
−

[
1
2 (wi+1 − wi) f i + 1

2 (wi − wi−1) f i−1

]
.

(30)

5N is the size of the 1D grid x.
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Note that in this section the subscripts i − 1, i and i + 1 are used to denote a scalar or vector
quantity at the i − 1, i or i + 1 collocated point, and should not be confused with the subscript
used, for instance, in (18) to indicate the coordinate direction. The first two bracketed terms on
the right-hand-side of equation (30) telescope across the domain in their current form (i.e., their
contributions within an element sum to zero). The last two terms telescope provided they satisfy
a consistency condition of the form

(wi+1 − wi) f
(S)
i = ψi − ψi−1, 2 ≤ i ≤ N (31)

(modulo slight changes at the end points of the domain), where f (S)
i denotes an entropy conservative

(or entropy consistent) flux.
A general strategy for constructing an entropy conservative flux, f (S)

i , that satisfies the point-
wise conditions

(wi+1 − wi) f
(S)
i = ψ̃i+1 − ψ̃i, i = 1, 2, . . . , N − 1 ; ψ̃1 = ψ1, ψ̃N = ψN (32)

is presented elsewhere [23]. Herein, the flux f
(S)
i is based on linear combinations of qij-weighted,

two-point entropy conservative fluxes fS = fS (u`, uk), which satisfy the following relation:

(w` − wk) fS (u`, uk) = ψ` − ψk. (33)

The dyadic shuffle conditions given by equation (33) are known to exist for Burgers’ equation and
the Euler equations [25,29].

The following theorem summarizes the work given in reference 23, and provides the general
formula for constructing f (S)

i of any order from a linear combination of dyadic entropy conservative
fluxes fS (u`, uk).

Theorem 3.3. A two-point high-order accurate entropy conservative flux satisfying equation (32)
with formal boundary closures can be constructed as

f
(S)
i =

N∑
k=i+1

i∑
`=1

2 q`k fS (u`, uk) , 1 ≤ i ≤ N − 1,

where fS (u`, uk) is any two-point non-dissipative flux function that satisfies the entropy conserva-
tion condition given by equation (33). The two-point high-order accurate entropy conservative flux,
f

(S)
i , satisfies an additional local entropy conservation property,

w>P−1∆f
(S) = P−1∆F =

∂F
∂x

(q) + Tp+1, (34)

or equivalently,
w>i

(
f

(S)
i − f (S)

i−1

)
=
(
F i − F i−1

)
, 1 ≤ i ≤ N, (35)

where

F i =
N∑

k=i+1

i∑
`=1

q`k

[
(w` + wk)> fS (u`, uk)− (ψ` + ψk)

]
, 1 ≤ i ≤ N − 1. (36)

Proof. For brevity, the proof is not included herein, but is reported elsewhere [23].
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4 Stability on staggered grids: Burgers’ equation

An energy/entropy analysis of the 1D Burgers’ equation is presented before that of the compressible
Navier-Stokes equations.

4.1 Data mechanics of the staggered grid approach

Define a staggered grid algorithm (Sta-Grd-Alg) for building discrete differentiation operators using
two sets of collocation points: x̃ and x of dimension M and N , respectively (see Figure 2). The
proposed algorithm is similar to that proposed by Kopriva and Kolias [7]. Assume that the time-
dependent solution is stored at the points x̃. Furthermore, assume that the extrema of x coincide
with the endpoints of the domain: x1 = xL, xN = xH , to facilitate imposition of interface or
boundary data.

u1 u2 u3 u4 u5

f̄5f̄4f̄0 f̄1 f̄3
f1 f2 f3 f4 f5

x̄0 x̄3x̄2x̄1 x̄4 x̄5

−1 −9
10 −

√
3
7

−16
45 0 +16

45
+
√

3
7

+9
10

+1

x1 x2 x3 x4 x5

f̄2

ũ3 ũ4ũ1 ũ2

x̃3 x̃4x̃1 x̃2

Figure 2. The one-dimensional discretization for the fourth-order accurate polynomial interpolation
(p = 4) with the staggered approach is illustrated. Solution points x̃ are identified with × and
auxiliary points x are identified with •. Flux points x (used to prove the entropy stability) are
identified with |.

Discrete differentiation of first or second order spatial terms (e.g., ∂f/∂x or ∂f (V )/∂x), by using
the Sta-Grd-Alg is accomplished as follows:

• Interpolate the discrete entropy variables from x̃ to x.

• Build the nonlinear fluxes f and f (V ) on the set of points x.

• Build the interface and/or boundary penalties at the extrema of x.

• Differentiate the fluxes on x, and impose the penalties by using the SAT approach.

• Interpolate the discrete flux derivatives and penalties back to x̃.

• Advance the solution with a time integration scheme by using the interpolated flux derivative
on x̃.

Tensor product arithmetic extends the approach directly to three spatial dimensions.6 An SBP-
SAT stability proof is now presented for the Sta-Grd-Alg. It is valid for all diagonal-norm SBP
operators.

6The Sta-Grd-Alg is valid for other grid distributions that do not support tensor product arithmetic.
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Define “tilde” variables and operators that act on the set of points x̃ (e.g., ũ, P̃ and D̃ ), and the
pair of interpolation operators ILG→LGL and ILGL→LG introduced in section 2.2.2. The ILG→LGL
operator transfers data from x̃ to x, while the ILGL→LG transfers data from x to x̃. Define the
interpolated solution vector u, and the diagonal velocity and viscosity matrices [u] and [ε] as

u = ILG→LGL ũ ; [u] = Diag[ILG→LGLũ] ; [ε] = Diag[ILG→LGLε̃] ; (37)

and the boundary operator nomenclature

e
(
xL
)

= (1, 0, · · · , 0)>M ,

u
(
xL
)

= u|x=−1 = u>e
(
xL
)
,

(Du)
(
xL
)

= (Du) |x=−1 = (Du)>e
(
xL
)
,

g
(
xL
)

= g|x=−1 = g>e
(
xL
)
,

(38)

with similar definitions for e
(
xH
)
, u
(
xH
)
, (Du)

(
xH
)
, and g

(
xH
)
. The subscript M in (38) denotes

the size of the vector e
(
xL
)
.

4.2 Stability of Burgers’ equation

Conventional energy estimates as well as entropy analysis exists for Burgers’ equation for all diag-
onal norm SBP operators [14, 23, 25]. Comparison of the two approaches provides insight on how
to proceed with the analysis of the compressible Navier-Stokes equations.

Consider the 1D viscous Burgers’ equation

∂u
∂t

+
∂f(u)
∂x

=
∂
(
εf (V )

(
∂u
∂x

))
∂x

, f(u) =
u2

2
, f (v)

(
∂u

∂x

)
=
∂u
∂x
, x ∈ [xL, xH ], t ∈ [0,∞),

u
(
xL, t

)
+
∣∣u (xL, t)∣∣

3
u
(
xL, t

)
− ε∂u

∂x

(
xL, t

)
− g

(
xL, t

)
= 0,

u
(
xH , t

)
−
∣∣u (xH , t)∣∣

3
u
(
xH , t

)
− ε∂u

∂x

(
xH , t

)
− g

(
xH , t

)
= 0,

u (x, 0) = g(0) (x) ,
(39)

where u = u(x, t) is the continuous solution vector, f = f(u) is a nonlinear flux function. The
boundary conditions in (39) are constructed such that the semi-discrete energy only increases with
respect to the imposed data and maintains the same form in the inviscid limit ε→ 0.

A general semi-discretization of (39) suitable for energy or entropy analysis is

d
dt ũ + ILGL→LGD f̂ (u) = ILGL→LGDEDu

−
(
u(xL)+|u(xL)|

3 u
(
xL
)
− ε(Du)

(
xL
)
− g

(
xL
))
ILGL→LGP−1 e

(
xL
)

+
(
u(xH)−|u(xH)|

3 u
(
xH
)
− ε(Du)

(
xH
)
− g

(
xH
))
ILGL→LGP−1 e

(
xH
) (40)

where the initial data is ũ(x, 0) = g(0)(x) and f̂(u) denotes a numerical discretization of the inviscid
flux (to be specified later). To simplify the notation in (40), the dependence on the time, t, has
been omitted.

16



Two stability proofs for Burgers’ equation are now presented. The first proof uses conventional
energy analysis and a canonical α-flux splitting technique, while the second proof uses entropy
analysis. Both proofs assume that the solution is stored at the LG points and is interpolated to
the LGL points to achieve a statement of stability.

4.2.1 Energy analysis

The flux f(u) in (39) can be written as the product of two functions, V (u) and W (u), (i.e.,
f(u) = V (u)W (u)). Expressing the divergence term ∂f(u)

∂x in (39) as a combination of divergence
and chain-rule forms, yields the following equation

∂u

∂t
+ α

∂f(u)
∂x

+ (1− α)
[
V (u)

∂W (u)
∂x

+
∂V (u)
∂x

W (u)
]

=
∂
(
εf (V )

(
∂u
∂x

))
∂x

. (41)

Equation (41) is referred to as α-splitting and for α = 2/3 it is denoted a “canonical” splitting of the
Burgers’ equation. Therefore, if we canonically split to the quadratic term in the semi-discretized
Burgers’ equation (40) and apply the Sta-Grd-Alg to all spatial terms, we get the following staggered
grid operator

d
dt ũ + 1

3 ILGL→LG (D [u] + [u]D) u = ILGL→LG D [ε]D u

−
(
u(xL)+|u(xL)|

3 u
(
xL
)
− ε (Du)

(
xL
)
− g

(
xL
))
ILGL→LG P−1 e

(
xL
)

+
(
u(xH)−|u(xH)|

3 u
(
xH
)
− ε (Du)

(
xH
)
− g

(
xH
))
ILGL→LG P−1 e

(
xH
)
,

(42)

with the initial data ũ(x, 0) = g(0)(x).

Theorem 4.1. The semi-discrete solution ũ defined in equation (42) is bounded for all time for
any diagonal norm SBP operator D, provided there exist interpolation operators ILG→LGL and
ILGL→LG that satisfy the constraint

P̃ ILGL→LG = I>LG→LGLP,

and provided the boundary data
∣∣g (xL)∣∣ and

∣∣g (xH)∣∣ are bounded.

Proof. The energy method is used to prove Theorem 4.1. The proof begins by contracting equation
(42) with the vector ũ>P̃ to yield the expression

d
dt

(
ũ>P̃ũ

)
+ 1

3 u> (Q [u] + [u]Q) u = u> D[ε]D u

−
(
u(xL)+|u(xL)|

3 u
(
xL
)
− ε (Du)

(
xL
)
− g

(
xL
))

u
(
xL
)

+
(
u(xH)−|u(xH)|

3 u
(
xH
)
− ε (Du)

(
xH
)
− g

(
xH
))

u
(
xH
)
.

(43)

The constraint given in Theorem 4.1 (see also equation (B29)) is used in all spatial terms to relate
the vector contraction ũ>P̃ on x̃, to an equivalent vector contraction on x.
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Further simplification of equation (43) by using the SBP propertyQ+Q> = B and the boundary
data yields the expression

d
dt

(
ũ>P̃ũ

)
= −ε(Du)>PDu− 1

3

(
u
(
xH
)3 − u (xL)3)

+ 1
3

(
u
(
xH
)3 − u (xL)3 +

∣∣u (xH)∣∣u (xH)2 − ∣∣u (xL)∣∣u (xL)2)
+ u

(
xL
)
g
(
xL
)

+ u
(
xH
)
g
(
xH
)
.

(44)

Provided that u
(
xL
)
6= 0 or u

(
xH
)
6= 0, the identity

yz = −1
2

(√
ay − 1√

a
z

)2

+
a

2
y2 +

1
2a
z2, a > 0, (45)

is used to bound the terms u
(
xL
)
g
(
xL
)

+ u
(
xH
)
g
(
xH
)
. The final expression becomes

d
dt

(
ũ>P̃ũ

)
= −ε(Du)>PDu + 1

2aL
g
(
xL
)2 + 1

2aH
g
(
xH
)2

−1
2

(√
(aH)u

(
xH
)
− 1√

aH
g
(
xH
))2
− 1

2

(√
(aL)u

(
xL
)
− 1√

aL
g
(
xL
))2

+
(
aH

2 −
|u(xH)|

3

)
u
(
xH
)2 +

(
aL

2 −
|u(xL)|

3

)
u
(
xL
)2
,

0 < aL ≤ 2
3

∣∣u (xL)∣∣ , 0 < aH ≤ 2
3

∣∣u (xH)∣∣ .
(46)

Thus, d
dt

(
ũ>P̃ũ

)
≤ −ε(Du)>PDu and establishes boundedness of the L2 norm of u provided that

the boundary data g
(
xL
)2 and g

(
xH
)2 are well behaved.

An expression equivalent to (46) is now derived using entropy analysis [25].

4.2.2 Entropy analysis

An entropy-entropy flux pair, (S, F ), a potential-potential flux pair, (φ, ψ), and the entropy variable,
w, for Burgers’ equation are [25]

(S, F ) =
(
u2

2
,
u3

3

)
; (φ, ψ) =

(
u2

2
,
u3

6

)
; u = w. (47)

Note that the entropy is guaranteed to be convex for all u (i.e., ∂2S/∂u2 = 1), and that the entropy
is (chosen) to be equivalent to the energy used in the SBP analysis.7

Consider the entropy analysis of equation (40). Apply the Sta-Grd-Alg to construct the
quadratic inviscid and linear viscous fluxes as well as the boundary penalties. As with the col-
located approach [1], the entropy and energy analyses of the time, viscous, and SAT terms are
equivalent when using the Sta-Grd-Alg, while differences appear in the analysis of the quadratic
flux term. In the entropy analysis, the quadratic flux is discretized using a diagonal norm SBP
operator: D = P−1Q. The Q operator is then rearranged into telescoping form by using the gener-
alized SBP relation given in Lemma 2.1. The resulting expression for the quadratic term discretized
using Sta-Grd-Alg is

1
2
∂u2

∂x
≈ P−1∆f(u).

7The entropy is not unique.
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The resulting semi-discrete staggered grid operator is then

d
dt ũ + ILGL→LG P−1∆ f(u) = ILGL→LG D [ε]D u

−
(
u(xL)+|u(xL)|

3 u
(
xL
)
− ε (Du)

(
xL
)
− g

(
xL
))
ILGL→LG P−1 e

(
xL
)

+
(
u(xH)−|u(xH)|

3 u
(
xH
)
− ε (Du)

(
xH
)
− g

(
xH
))
ILGL→LG P−1 e

(
xH
) (48)

with the initial data u(x, 0) = g(0)(x). What remains is to construct an entropy conserving flux
f(u) = f

(S)
i .

Theorem 3.3 guarantees the existence of an entropy conserving flux for the delta form opera-
tor P−1∆f(u), provided there exists a two-point entropy flux relation and a diagonal norm SBP
operator is used for D. Using the definition for the entropy variable u given in equation (47) and
Tadmor’s integral relation [25]

fS (uk, u`) =

1∫
0

g (w(uk) + ξ (w(u`)− w(uk))) dξ, g(w(u)) = f(u) (49)

yields a two-point entropy conservative flux

fS (u`, uk) =
1
6
(
u2
` + u`uk + u2

k

)
, (50)

which satisfies the two-point relation

(u` − uk) fS (u`, uk) =
1
6
(
u3
` − u3

k

)
. (51)

The high-order accurate entropy conserving flux guaranteed by Theorem 3.3 is given by

f
(S)
i =

N∑
k=i+1

i∑
`=1

2q`kfS (u`, uk) = 2
N∑

k=i+1

i∑
`=1

q`k
1
6
(
u2
` + u`uk + u2

k

)
, 1 ≤ i ≤ N − 1. (52)

Contracting the quadratic term ILGL→LGP−1∆f
(S) in equation (48) with the discrete vector(

P̃ũ
)>

yields the telescoping condition

u>∆f
(S) = 1>[u]∆f

(S) = 1>∆F =
(
FN − F 1

)
(53)

with

F i =
N∑

k=i+1

i∑
`=1

q`k

[
(u` + uk) fS (u`, uk)−

1
6
(
u3
` + u3

k

)]
, 1 ≤ i ≤ N − 1,

F 0 =
1
3
u3

0, FN =
1
3
u3
N .

(54)

Collecting all terms in the entropy analysis of Burgers’ equation yields an (entropy) estimate that
is identical to the energy estimate given in equation (46).
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4.2.3 Relating the energy and entropy analyses

The canonical splitting of the inviscid flux (f(u) =
(
u2

2

)
= V (u)W (u)) in Burgers’ equation

satisfies the necessary conditions of equation (A9). As such, all terms can be rearranged into a
single telescoping flux

1
2
∂u2

∂x
= α

∂f(u)
∂x

+ (1− α)
[
V (u)

∂W (u)
∂x

+
∂V (u)
∂x

W (u)
]
≈ P−1∆f(u).

The α− splitting of the conservative (equation (55a)) and chain rule (equation (55b)) forms of the
flux

(
u2

2

)
are decomposed as follows:

V (u) =
1
2
U U 1 ; W (u) = 1 (55a)

V (u) =
1
2
U 1 ; W (u) = U 1 (55b)

which produce the equivalent fluxes (see equation (A10))

f
a
i =

N∑
k=i+1

i∑
l=1

q`k

(
ukuk + u`u`

2

)
, 1 ≤ i ≤ N − 1, (56a)

f
b
i =

N∑
k=i+1

i∑
l=1

q`k

(
uku` + u`uk

2

)
, 1 ≤ i ≤ N − 1. (56b)

Combining the split Burgers’ fluxes (56) into equation (A10) yields the expression

f i = f
a
i + f

b
i = 2

N∑
k=i+1

i∑
l=1

q`k
1
6

(u2
` + u`uk + u2

k),

1 ≤ i ≤ N − 1, f0 =
1
2
u2

1, fN =
1
2
u2
N ,

(57)

for a splitting parameter α = 2/3.
Remark. Equation (40) invokes a canonical splitting of Burgers’ equation to facilitate the

energy analysis, and is valid for any diagonal norm SBP operator. Equation (53) relies on a two-
point dyadic entropy conservative flux of the form given as a necessary condition in Theorem 32.
Choosing u as the entropy variable in equation (47), enforces equality of the entropy and α-split
fluxes. (Compare the fluxes f (S)

i in equations (57) and (52).)
Remark. The compressible Navier-Stokes equations do not support a canonical decomposition

based on the α-split flux technique. Thus, conventional nonlinear energy analysis is not applicable
(to our knowledge). Nevertheless, the existence of a two-point entropy conservative flux satisfying
equation (32) enables entropy analysis to be used for all diagonal norm SBP operators.

Remark. The numerical approach is conservative. The inviscid and viscous fluxes are explicitly
conserved on the LGL points.
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5 The compressible Navier-Stokes equations in multiple dimen-
sions on staggered grids

5.1 Staggered grid in two dimensions

Extension of a 1D staggered operator to multiple dimensions can proceed in several ways. Figure 3
shows two popular staggered data structures in two spatial dimensions. Both approaches store the
solution at the tensor product LG points (i.e., the so called Gauss points) of order p (blue crosses).

The fully-staggered approach moved the data via 3D tensor product interpolations from LG
(supporting a polynomial of order p) to LGL (supporting a polynomial of order p+1) points (black
circles). The discrete operators reported in references 1, 2, 13, 30, are used on the LGL points to
construct the spatial residual. The temporal updates needed on the LG points are obtained by
restricting the LGL residuals back to the LG points. Extension to general curvilinear coordinates
follows immediately on the LGL points [1, 13].

The semi-staggered approach moves the data via 1D interpolations from the LG to LGL points
(black circles and green triangles). The inviscid terms are constructed via three 1D operations on
the semi-staggered LG-LGL points. The viscous terms are most easily formed by using a fully-
staggered approach. The semi-staggered operator has the advantage of not requiring corner data
in the inviscid operators. However, its extension to curvilinear coordinates is not straight forward
because of ambiguities in the geometric conservation law (GCL) terms. For this reason, the fully-
staggered approach is used exclusively herein.

(-1,+1) (+1,+1)

(-1,-1) (+1,-1)
(a) Fully-staggered.

(-1,+1) (+1,+1)

(-1,-1) (+1,-1)
(b) Semi-staggered.

Figure 3. Fully- and semi-staggered 2D tensor product elements.
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5.2 Tensor operators in three dimensions

Consider a single tensor product element and an entropy stable spatially discontinuous collocation
(SSDC) discretization with M = p+1 LG solution points in each coordinate direction8 [1,2,30,31];
the following element-wise matrices will be used:

P̃ =
(
P̃M ⊗ P̃M ⊗ P̃M ⊗ I5

)
,

ILG→LGL = (ILG→LGL)x1x2x3
= (ILG→LGL ⊗ ILG→LGL ⊗ ILG→LGL ⊗ I5) ,

ILGL→LG = (ILGL→LG)x1x2x3
= (ILGL→LG ⊗ ILGL→LG ⊗ ILGL→LG ⊗ I5) ,

Dx1 = (DN ⊗ IN ⊗ IN ⊗ I5) , · · · Dx3 = (IN ⊗ IN ⊗DN ⊗ I5) ,

Px1 = (PN ⊗ IN ⊗ IN ⊗ I5) , · · · Px3 = (IN ⊗ IN ⊗ PN ⊗ I5) ,

Px1x2 = (PN ⊗ PN ⊗ IN ⊗ I5) , · · · Px2x3 = (IN ⊗ PN ⊗ PN ⊗ I5) ,

P = Px1x2x3 = (PN ⊗ PN ⊗ PN ⊗ I5) ,

Bx1 = (BN ⊗ IN ⊗ IN ⊗ I5) , · · · Bx3 = (IN ⊗ IN ⊗ BN ⊗ I5) ,

∆x1 = (∆N ⊗ IN ⊗ IN ⊗ I5) , · · · ∆x3 = (IN ⊗ IN ⊗∆N ⊗ I5) ,

(58)

where P̃M is the norm of the LG points, while DN , PN , ∆N , and BN are the 1D SBP operators [31]
defined on the LGL points, and IN is the identity matrix of dimension N . I5 denotes the identity
matrix of dimension five.9 The subscripts in (58) indicate the coordinate directions to which the
operators apply (e.g., Dx1 is the differentiation matrix in the x1 direction). The symbol ⊗ represents
the Kronecker product. When applying these operators to the scalar entropy equation in space at
the LG points, a hat is used to differentiate the scalar operator from the full vector operator. For
example, ̂̃P =

(
P̃M ⊗ P̃M ⊗ P̃M

)
; P̂ = (PM ⊗ PM ⊗ PM ) . (59)

The vector of conservative variables of each element is ordered as

q̃ =
(
q̃
(
x̃(1)(1)(1)

)>
, q̃
(
x̃(1)(1)(2)

)>
, . . . , q̃

(
x̃(M)(M)(M)

)>) =
(
q̃>(1), q̃

>
(2), . . . , q̃

>
(M3)

)
, (60)

8Recall from Section 2.2.2 that with the staggered algorithm the number of LG and LGL points in 1D is denoted
by M and N , respectively.

9The 3D compressible Navier-Stokes equations form a system of five nonlinear partial differential equations.
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where the subscripts denote the ordering of the solution points in the coordinate directions. Assume
an equivalent definition and order for the entropy variables w̃; and an analogous definition for the
variables at the LGL points.10

The ILG→LGL operator transfers data from x̃ to x, while the ILGL→LG transfers data from x
to x̃. Define

w = ILG→LGL w̃ ; ĉij = ILG→LGL c̃ij ; [ĉij ] = Diag[ILG→LGL c̃ij ]. (61)

Using these definitions and the SBP operators (58), system (18) is discretized locally on an
isolated element as [13,31]

dq̃
dt

+ ILGL→LG
[
P−1
xi ∆xi f i −Dxi f

(V )
i

]
= ILGL→LG P−1

xi g(Int)
i , (62)

where Einstein notation is used to express the coordinate directions. The penalty interface terms
g(Int)
i with i = 1, 2, 3 are used to connect neighboring elements (see Section 6).

An entropy conservative reconstruction is used for the inviscid fluxes f i in equation (62) based
on the expression given in theorem 3.3 and the two-point entropy conservative flux, fS (u`, uk),
of Ismail and Roe [29]. The interpolated entropy variables w = ILG→LGL w̃ are used to build
the fluxes on the LGL points. The viscous fluxes are also computed using interpolated entropy
variables and the operators Dxi , i = 1, 2, 3, defined in (58). The viscous coefficient matrices ĉij are
again formed using interpolated data on the LGL points.

Remark 5.1. The interpolations from and to the LG points are carried out in computational space
by using an efficient tensor-product algorithm that requires only the knowledge of the 1D ILG→LGL
and ILGL→LG operators. The extension to general curvilinear coordinates follows immediately on
the LGL points [1, 2].

6 Entropy stable interface coupling

Consider two cubic tensor product elements by extending equation (62) to two adjoining elements.
Without loss of generality assume that all their faces are orthogonal to the three coordinate direc-
tions and are not boundary faces, i.e., they are not part of the boundary surface ∂Ω. The resulting
expressions become [13,31]

dq̃`
dt

+ ILGL→LG`
[
P−1
xi,`

∆xi,` f i,` −Dxi,` [ĉij,`] Θj,`

]
= ILGL→LG`P−1

xi,`
g(Int),q
i,` , (63a)

Θi,` −Dxiwl = P−1
xi,`

g(Int),Θ
i,` , (63b)

dq̃r
dt

+ ILGL→LGr
[
P−1
xi,r ∆xi,r f i,r −Dxi,r [ĉij,r] Θj,r

]
= ILGL→LGrP−1

xi,r g(Int),q
i,r , (63c)

Θi,r −Dxiwl = P−1
xi,r g(Int),Θ

i,r , (63d)

where the subscripts l and r denote the “left” and “right” elements. Θi,` and Θi,r are the vectors
of the gradient of the entropy variables on the left and right elements in the i direction, whereas

10With the staggered algorithm, the number of LGL points in 1D is denoted by N (see Section 2.2.2). Thus, N3 is
the number of LGL points in a 3D tensor-product element.
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g(Int),q
i,(·) and g(Int),Θ

i,(·) are the penalty interface terms on the conservative variable and the gradient
of the entropy variable, respectively [31]. As indicated in (61), the matrices [ĉij ] are block diagonal
matrices with N3 five-by-five blocks corresponding to the viscous coefficients of each LGL point.11

Note that (63) is obtained by using f (V )
i = ĉij wxj = ĉij Θj .

To obtain an equation for the entropy of the system, we follow the entropy stability analysis
presented in [1,31]. Therefore, multiplying the two discrete equations in the left element by w̃>l P̃ l

and ([ĉij,l]Θj,l)
>P l, respectively, and the two discrete equations in the right element by w̃>r P̃r and

([ĉij,r]Θj,r)
>Pr, respectively, the expression for the time derivative of the entropy function S in

each element is

d

dt
1̃> ̂̃P l S̃l + 2

∥∥∥∥√[ĉij,l] Θj,l

∥∥∥∥2

Pl

+ 1>
(
P̂x2x3,l B̂x1,lF1,l + P̂x1x3,l B̂x2,lF2,l + P̂x1x2,l B̂x3,lF3,l

)
= w>l (Px2x3,l Bx1,l [ĉ1j,l]Θj,l + Px1x3,l Bx2,l [ĉ2j,l]Θj,l + Px1x2,l Bx3,l [ĉ3j,l]Θj,l)

+ w>l
(
Px2x3,l g

(Int),q
1,l + Px1x3,l g

(Int),q
2,l + Px1x2,l g

(Int),q
3,l

)
+ ([ĉ1j,l]Θj,l)

> Px2x3,l g
(Int),Θ
1,l + ([ĉ2j,l]Θj,l)

> Px1x3,l g
(Int),Θ
2,l + ([ĉ3j,l]Θj,l)

> Px1x2,l g
(Int),Θ
3,l ,

(64a)

d

dt
1̃>P̂r S̃r + 2

∥∥∥∥√[ĉij,r] Θj,r

∥∥∥∥2

Pr

+ 1>
(
P̂x2x3,r B̂x1,rF1,r + P̂x1x3,r B̂x2,rF2,r + P̂x1x2,r B̂x3,rF3,r

)
= w>r (Px2x3,r Bx1,r [ĉ1j,r]Θj,r + Px1x3,r Bx2,r [ĉ2j,r]Θj,r + Px1x2,r Bx3,r [ĉ3j,r]Θj,r)

+ w>r
(
Px2x3,r g(Int),q

1,r + Px1x3,r g(Int),q
2,r + Px1x2,r g(Int),q

3,r

)
+ ([ĉ1j,r]Θj,r)

> Px2x3,r g(Int),Θ
1,r + ([ĉ2j,r]Θj,r)

> Px1x3,r g(Int),Θ
2,r + ([ĉ3j,r]Θj,r)

> Px1x2,r g(Int),Θ
3,r ,

(64b)
where the vectors 1̃ and 1 represent a vectors with M3 and N3 elements, respectively (i.e., 1̃ =
(1, 1, . . . , 1)>M3).

To simplify the notation, assume that the interface between the two tensor product cells lies at
x1 = 0. We also assume that all the points that lie on the other faces of the two cubes are treated
in an entropy stable fashion; their contribution can then be neglected without loss of generality.
Then, for our analysis, we can just focus on a pair of LGL interface nodes at x1 = 0. We then
introduce the operators e(−) and e(+), which “extract” from the cell-wise solution and flux vectors
only the variables associated to these LGL points (i.e., the node at the left, (−), and at the right,
(+), of the interface).12 Therefore, equations (64) reduce to

d

dt
1̃> ̂̃P l S̃l + 1>P̂x2x3,l F1,l + 2

∥∥∥∥√[ĉij,l]Θj,l

∥∥∥∥2

Pl

= w>l Px2x3,l [ĉ1j,l]Θj,l e(−) + w>l Px2x3,l g
(Int),q
1,l

+ ([ĉ1j,l]Θj,l)
> Px2x3,l g

(Int),Θ
1,l ,

(65a)

11In the staggered algorithm framework, N3 is the number of LGL points in a 3D tensor-product element.
12These two vectors are zero at all points except at the “(−), (+)” interface points.
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d

dt
1̃> ̂̃Pr S̃r − 1>P̂x2x3,r F1,r + 2

∥∥∥∥√[ĉij,r]Θj,r

∥∥∥∥2

Pr

= −w>r Px2x3,r [ĉ1j,r]Θj,r e(+) + w>r Px2x3,r g(Int),q
1,r

+ ([ĉ1j,r]Θj,r)
> Px2x3,r g(Int),Θ

1,r .

(65b)
The interface penalty terms are constructed as a combination of a local discontinuous Galerkin-type
(LDG-type) approach and an interior penalty (IP) technique [13]:

g(Int),q
1,l =

[
+f

(−)
1 − f (SS)

(
q(−), q(+)

)]
e(−) +

[
−1

2
(1 + α)

([
ĉ

(−)
1,j

]
Θ(−)
j −

[
ĉ

(+)
1,j

]
Θ(+)
j

)]
e(−)

+
[

1
2

[L]
(
w(−) −w(+)

)]
e(−),

(66a)

g(Int),Θ
1,l =

[
−1

2
(1− α)

(
w(−) −w(+)

)]
e(−), (66b)

g(Int),q
1,r =

[
−f

(+)
1 + f (SS)

(
q(−), q(+)

)]
e(+) +

[
+

1
2

(1− α)
([
ĉ

(+)
1,j

]
Θ(+)
j −

[
ĉ

(−)
1,j

]
Θ(−)
j

)]
e(+)

+
[

1
2

[L]
(
w(+) −w(−)

)]
e(+),

(66c)

g(Int),Θ
1,r =

[
+

1
2

(1 + α)
(
w(+) −w(−)

)]
e(+). (66d)

The LDG penalty terms involve the coefficients 1
2(1 ± α) and act only in the normal direction

to the face. The IP terms involve the block diagonal parameter matrix, [L] = Diag [L], with N3

five-by-five blocks, L, which are left unspecified for the moment.13

Herein, the solution between adjoining elements is allowed to be discontinuous. An inviscid
interface flux that preserves the entropy consistency of the interior high-order accurate spatial
operators [1] on either side of the interface f (SS)

(
q(−), q(+)

)
is constructed as

f (SS)
(
q(−), q(+)

)
= f (SC)

(
q(−), q(+)

)
+ Λ

(
w(+) − w(−)

)
, (67)

where f (SC)
(
q(−), q(+)

)
is the entropy conservative inviscid interface flux of any order [1,2,19,30,31]

(i.e., f (S)). This flux is constructed as in Theorem 3.3 by using the two-point entropy conservative
flux, fS (u`, uk), of Ismail and Roe [29]. Λ is a negative semi-definite interface matrix with zero
or negative eigenvalues. The superscripts (−) and (+) denote the collocated values on the left
and right side of the interface, respectively. The entropy stable flux f (SS)

(
q(−), q(+)

)
is more

dissipative than the entropy conservative inviscid flux f (SC)
(
q(−), q(+)

)
, as can be easily verified

by contracting f (SS)
(
q(−), q(+)

)
against the entropy variables [1]. Note that in reference 15, grid

interfaces for entropy stable finite difference schemes are studied and interface fluxes similar to (67)
are proposed.

13In the staggered algorithm framework, N3 is the number of LGL points in a 3D tensor-product element.
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Substituting expressions (66) and (67) in (65) and summing all the contributions of the two
elements results in

d

dt
1̃> ̂̃P l S̃l +

d

dt
1̃> ̂̃Pr S̃r + 2

[∥∥∥∥√[ĉij,l]Θj,l

∥∥∥∥2

Pl

+
∥∥∥∥√[ĉij,r]Θj,r

∥∥∥∥2

Pr

]
= Υ(I) + Υ(V ), (68)

where Υ(I) and Υ(V ) are the inviscid and the viscous interface terms. At the two interface nodes,
these terms are

Υ(I) =
(
w(+) − w(−)

)>
f (SS)

(
q(−), q(+)

)
−
(
ψ(+) − ψ(−)

)
=
(
w(+) − w(−)

)>
Λ
(
w(+) − w(−)

)
,

(69)

Υ(V ) =
(
w(+) − w(−)

)>
L
(
w(+) − w(−)

)
. (70)

Clearly, the interface contributions are dissipative if both the five-by-five matrices Λ and L are
negative semi-definite. The matrix Λ can be constructed using different approaches, e.g., using an
upwind operator that dissipates each characteristic wave based on the magnitude of its eigenvalue:

f ssc
(
q(−), q(+)

)
= f (SC)

(
q(−), q(+)

)
+ 1/2Y |λ| Y>

(
w(+) − w(−)

)
,

∂

∂q
f (q) = Y λY>,

∂q

∂w
= YY>,

(71)

where λ and Y are the diagonal matrix of the eigenvalues and the matrix of the eigenvectors,
respectively. Note that the relation ∂q/∂w = YY> is achieved by an appropriate scaling of
the rotation eigenvectors. Reference 1 constructs the matrix ∂q/∂w using the scaled eigenvectors
introduced by Merriam [32]. The imposed artificial viscosity satisfies the semi-discrete second law
of thermodynamics.

We are then left with the viscous interface term, Υ(V ). The parameter values α = 0 and
α = ±1 yield a symmetric LDG and a “flip-flop” narrow stencil (nearest neighbor) LDG penalty,
respectively [2,31]. An LDG value of α = 0 produces a global discrete operator that has a neutrally
damped spurious eigenmode. Herein, when α = 0, this mode is damped using the IP dissipation.
For a Reynolds number that approaches∞, we would like the five-by-five matrix L to go to zero so
that only the inviscid entropy stable penalty contributions in (66) are recovered. To achieve that,
the matrix L is constructed as

L = −β(Int) ĉ
(−)
11 + ĉ

(+)
11

2 (Px1)(1)(1)

, β(Int) > 0, (72)

where ĉ(−)
11 and ĉ

(+)
11 are the positive semi-definite viscous coefficient matrices at the left and right

side of the interface in the normal direction. The coefficient β(Int) can be used to modify the
strength of the IP penalty term, although excessively large values of β(Int) reduce the maximum
stable time step. Reference [2, 31] selects β(Int) to be the maximum value for which the explicit
stability constraint remains unaffected. The factor (Px1)(1)(1) in the denominator represents the
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normal local grid spacing, which is incorporated in the diagonal SBP operator P.14 This term is
introduced to get the correct dimension, and, as for the standard IP finite element approach, it
increases the strength of L with increased resolution.

7 Discussion: A theoretical cost analysis

A p-th order 3D tensor-product LGL element has (p+ 1)3 collocation points. The total cost of
the fully discrete, explicit-in-time operator, predominantly results from the inviscid and viscous
differentiation operators. Thus, the operation count for a conventional non-staggered element [1,2]
scales as (p+ 1)4. By a similar accounting, the operation count for the semi-staggered operator
scales as (p+ 1)(p+ 2)2 and (p+ 2)4 for the fully-staggered operator. The work ratio between the
conventional algorithms and the two staggered approaches is given by(

p+ 2
p+ 1

)s
= Wst (73)

with s = 2 (semi-staggered), and s = 4 (fully-staggered), respectively (assuming that the explicit
time stepping stability constraint is equivalent for all schemes).

The results shown in Section 8 demonstrate that the fully-staggered SSDC approach is signifi-
cantly more accurate than the conventional LGL SSDC operator for the same solution polynomial
and grid density. To determine which approach is more efficient, assume that two simulations
are performed on the same grid, and that rε is the ratio of errors between the conventional and
fully-staggered operators. A comparable accuracy can be achieved by increasing the number of
elements used in the conventional approach. Thus, assume that N e

Conv and N e
Stag are the number

of elements required by each approach to achieve the same error. The work ratio N e
Conv/N

e
Stag for

1D elements of polynomial order p, required to overcome the differential in accuracy, is therefore

rε =
(
N e
Conv/N

e
Stag

)p+1
. Now assume that the error is homogeneously distributed in D spatial

dimensions, and that a decrease in element size produces a proportional change in the explicit
temporal stability constraint. The resulting expression for the cost ratio is given by

(rε)
D+1
p+1 =

N e
Conv

N e
Stag

= Whr. (74)

Figure 4 shows the ratio of cost Wst
Whr

between the two approaches as a function of the polynomial
order p. Five error ratios are assumed: rε = 2β, 0 ≤ β ≤ 4. The first comparison (rε = 1) assumes
the two approaches to be of comparable accuracy. The last rε = 16 assumes that the staggered
operator is 16 times more accurate. This simple estimate suggests that the fully staggered approach
is cost effective, despite the increased operation count.

8 Numerical results: Accuracy and robustness

8.1 Isentropic Euler vortex propagation

The test case considered in this section is the (inviscid) propagation of a vortex for which an exact
solution is known. This is an excellent test problem for verifying the accuracy and functionality of

14Herein, (Pxi)(1)(1) with i = 1 appears in the definition of L because the interface between the two elements is

orthogonal to the x1 direction [13,31].
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Figure 4. Cost comparison of conventional LGL [1,2] and fully-staggered SSDC operators.

the inviscid components of a compressible Navier-Stokes solver. It is fully described by

f(x1, x2, x3, t) = 1−
[
(x1 − x1,0 − U∞ cos(α) t)2 + (x2 − x2,0 − U∞ sin(α) t)2

]
,

T (x1, x2, x3, t) =
[
1− ε2vM2

∞
γ−1
8π2 exp (f(x1, x2, x3, t))

]
,

ρ(x1, x2, x3, t) = T
1

γ−1 ,

u1(x1, x2, x3, t) = U∞ cos(α)− εv x2−x2,0−U∞ sin(α)t
2π exp

(
f(x1,x2,x3,t)

2

)
,

u2(x1, x2, x3, t) = U∞ sin(α)− εv x1−x1,0−U∞ cos(α)t
2π exp

(
f(x1,x2,x3,t)

2

)
,

u3(x1, x2, x3, t) = 0,

(75)

where U∞, M∞, and (x1,0, x2,0, x3,0) are the module of the freestream velocity, the Mach number,
and the coordinates of the vortex center, respectively. In this study, the values U∞ = M∞c∞,
εv = 5.0, M∞ = 0.5, γ = 1.4, and α = 45o are used; and the domain is described by

x1 ∈ (−5, 5), x2 ∈ (−5, 5), x3 ∈ (−1, 1), (x1,0, x2,0, x3,0) = (0, 0, 0), t ≥ 0.

The boundary conditions are prescribed by penalizing the numerical solution against the exact
solution by using an SAT approach [33], whereas the interface coupling between two adjoining
elements is imposed using the entropy stable treatment proposed in references 1,13.

The accuracy of the following entropy stable schemes is investigated using uniform Cartesian
and unstructured nonuniform grids:

• Fully-staggered SSDC algorithm with pLG = 1, 2, 3, 4, 5, 10 and pLGL = 2, 3, 4, 5, 6, 11.

• Conventional LGL SSDC algorithm [1,13] with pLGL = 1, 2, 3, 4, 5, 10.

8.1.1 Uniform Cartesian grid

Different grid resolutions are examined, and the vortex is halfway out of the domain when the
error measure is evaluated. This measures the effect of the penalty boundary conditions and the
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interior scheme. Tables 1–6 show the convergence study for a sequence of maximum nine nested
grids.15 The number of cells in each coordinate direction is indicated in the first column of these
tables (i.e., “Resolution”). The L2 norm of the error decay asymptotes towards the designed rate
in each case (i.e., second order, third order, fourth order, fifth order, sixth order, and eleventh
order, respectively), for both fully staggered and the conventional SSDC approaches. We highlight
that the fully-staggered approach is significantly more accurate than the conventional algorithm for
the same grid resolution. However, simple counting arguments based on inviscid flux evaluations,
indicate that the cost of the staggered algorithm for a solution polynomial order p is comparable
to that of an LGL operator [1, 2], with a solution polynomial order of (p+ 1).

Table 1 Error convergence is shown for the fully-staggered pLG = 1, pLGL = 2 and conventional
LGL [1, 2] pLGL = 1 SSDC algorithms for the isentropic Euler vortex propagation on uniform
Cartesian grids.

Fully-staggered, pLG = 1, pLGL = 2 Conventional, pLGL = 1
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
2× 2× 2 1.42e-02 - 6.28e-02 - 9.78e-03 - 3.70e-02 -
4× 4× 2 8.73e-03 0.70 6.51e-02 -0.05 7.75e-03 0.33 5.11e-02 -0.46
8× 8× 2 3.86e-03 1.18 3.75e-02 0.80 7.41e-03 0.07 6.33e-02 -0.31

16× 16× 2 1.49e-03 1.37 1.52e-02 1.30 3.95e-03 0.91 4.08e-02 0.63
32× 32× 2 5.35e-04 1.47 6.07e-03 1.32 1.66e-03 1.25 1.88e-02 1.12
64× 64× 2 1.72e-04 1.64 1.95e-03 1.64 6.23e-04 1.42 7.38e-03 1.35

128× 128× 2 4.76e-05 1.85 5.30e-04 1.88 2.12e-04 1.56 2.49e-03 1.57
256× 256× 2 1.14e-05 2.06 1.27e-04 2.06 6.10e-05 1.79 6.96e-04 1.84
512× 512× 2 2.72e-06 2.07 3.22e-05 1.98 1.46e-05 2.07 1.65e-04 2.08

Table 2 Error convergence is shown for the fully-staggered pLG = 2, pLGL = 3 and conventional
LGL [1, 2] pLGL = 2 SSDC algorithms for the isentropic Euler vortex propagation on uniform
Cartesian grids.

Fully-staggered, pLG = 2, pLGL = 3 Conventional, pLGL = 2
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
2× 2× 2 1.31e-02 - 9.28e-02 - 6.57e-03 - 6.44e-02 -
4× 4× 2 3.52e-03 1.90 2.20e-02 2.07 6.14e-03 0.10 7.24e-02 -0.17
8× 8× 2 8.83e-04 2.00 8.38e-03 1.40 2.66e-03 1.21 3.11e-02 1.22

16× 16× 2 1.79e-04 2.30 2.78e-03 1.59 6.91e-04 1.94 1.13e-02 1.46
32× 32× 2 3.10e-05 2.53 5.54e-04 2.33 2.01e-04 1.78 5.24e-03 1.11
64× 64× 2 5.30e-06 2.55 8.86e-05 2.64 2.66e-05 2.92 7.15e-04 2.87

128× 128× 2 7.80e-07 2.77 1.32e-05 2.74 4.35e-06 2.61 1.15e-04 2.64
256× 256× 2 1.14e-07 2.78 2.19e-06 2.60 6.57e-07 2.73 1.75e-05 2.71
512× 512× 2 1.42e-08 3.00 2.67e-07 3.03 8.57e-08 2.94 2.60e-06 2.75

15The number of grid cells is doubled every time in each coordinate direction.
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Table 3 Error convergence is shown for the fully-staggered pLG = 3, pLGL = 4 and conventional
LGL [1, 2] pLGL = 3 SSDC algorithms for the isentropic Euler vortex propagation on uniform
Cartesian grids.

Fully-staggered, pLG = 3, pLGL = 4 Conventional, pLGL = 3
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
2× 2× 2 5.63e-03 - 3.30e-02 - 6.94e-03 - 8.21e-02 -
4× 4× 2 1.77e-03 1.67 2.12e-02 0.64 3.69e-03 0.91 5.18e-02 0.66
8× 8× 2 2.02e-04 3.13 3.60e-03 2.56 6.79e-04 2.44 1.12e-02 2.21

16× 16× 2 1.71e-05 3.56 3.22e-04 3.48 7.30e-05 3.22 1.76e-03 2.67
32× 32× 2 1.36e-06 3.66 2.76e-05 3.54 7.10e-06 3.36 1.60e-04 3.46
64× 64× 2 1.01e-07 3.75 1.84e-06 3.91 7.07e-07 3.33 1.94e-05 3.05

128× 128× 2 6.31e-09 4.00 1.15e-07 4.00 5.41e-08 3.71 1.80e-06 3.43
256× 256× 2 3.51e-10 4.17 6.41e-09 4.16 3.69e-09 3.88 1.45e-07 3.63
512× 512× 2 2.12e-11 4.05 4.48e-10 3.84 2.40e-10 3.94 1.12e-08 3.69

Table 4 Error convergence is shown for the fully-staggered pLG = 4, pLGL = 5 and conventional
LGL [1, 2] pLGL = 4 SSDC algorithms for the isentropic Euler vortex propagation on uniform
Cartesian grids.

Fully-staggered, pLG = 4, pLGL = 5 Conventional, pLGL = 4
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
2× 2× 2 4.14e-03 - 3.61e-02 - 5.76e-03 - 5.92e-02 -
4× 4× 2 6.04e-04 2.78 8.41e-03 2.10 1.41e-03 2.03 2.05e-02 1.53
8× 8× 2 3.17e-05 4.25 3.37e-04 4.64 1.17e-04 3.59 1.62e-03 3.66

16× 16× 2 1.68e-06 4.23 3.45e-05 3.29 7.24e-06 4.02 1.79e-04 3.18
32× 32× 2 6.40e-08 4.72 1.35e-06 4.68 3.91e-07 4.21 1.20e-05 3.90
64× 64× 2 2.26e-09 4.82 5.39e-08 4.65 1.76e-08 4.47 5.57e-07 4.43

128× 128× 2 7.36e-11 4.94 1.99e-09 4.76 7.16e-10 4.62 2.41e-08 4.53
256× 256× 2 - - - - 2.19e-11 5.03 8.37e-10 4.85

Table 5 Error convergence is shown for the fully-staggered pLG = 5, pLGL = 6 and conventional
LGL [1, 2] pLGL = 5 SSDC algorithms for the isentropic Euler vortex propagation on uniform
Cartesian grids.

Fully-staggered, pLG = 5, pLGL = 6 Conventional, pLGL = 5
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
2× 2× 2 2.73e-03 - 3.49e-02 - 3.05e-03 - 5.75e-02 -
4× 4× 2 1.81e-04 3.91 1.34e-03 4.71 5.25e-04 2.54 5.62e-03 3.36
8× 8× 2 8.68e-06 4.38 1.98e-04 2.75 2.60e-05 4.33 7.85e-04 2.84

16× 16× 2 1.25e-07 6.12 2.76e-06 6.16 7.52e-07 5.11 2.46e-05 5.00
32× 32× 2 2.63e-09 5.57 5.60e-08 5.63 1.90e-08 5.31 6.30e-07 5.29
64× 64× 2 4.18e-11 5.98 1.00e-09 5.80 4.00e-10 5.57 1.81e-08 5.12

128× 128× 2 - - - - 7.67e-12 5.71 3.71e-10 5.61
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Table 6 Error convergence is shown for the fully-staggered pLG = 10, pLGL = 11 and conventional
LGL [1, 2] pLGL = 10 SSDC algorithms for the isentropic Euler vortex propagation on uniform
Cartesian grids.

Fully-staggered, pLG = 10, pLGL = 11 Conventional, pLGL = 10
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
2× 2× 2 1.23e-04 - 1.36e-03 - 1.33e-04 - 2.41e-03 -
4× 4× 2 4.35e-07 8.15 5.75e-06 7.88 1.83e-06 6.18 3.14e-05 6.26
8× 8× 2 6.17e-10 9.46 1.79e-08 8.33 3.30e-09 9.12 1.11e-07 8.15

16× 16× 2 2.07e-12 8.22 1.57e-11 10.15 1.27e-12 11.35 5.28e-11 11.03
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8.1.2 Unstructured nonuniform grids

The goal of this study is to investigate whether the fully-staggered algorithm is effectively (p+ 1)-
order accurate for more realistic meshes (p is the order of the polynomial supported by the LG
points). As for the case of uniform Cartesian grids, different grid resolutions are examined, and
the vortex is halfway out of the domain when the error measure is evaluated. A nested family of
grids is constructed by replicating N times the “unstructured grid kernel” shown in Figure 5.

Figure 5. “Unstructured grid kernel” used to construct a sequence of nested grids for the inviscid
vortex test case.

Tables 7–12 show the convergence study for a sequence of twelve nested grids. The number of
“unstructured grid kernels” in each coordinate direction is indicated in the first column of these
tables. For the fully-staggered SSDC algorithm, the L2 norm of the error decay asymptotes towards
the designed rate (i.e., (p+1)) and, in each case, is more accurate than the conventional LGL SSDC
algorithm for the same grid resolution. The conventional path converges instead to p.
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Table 7 Error convergence is shown for the fully-staggered pLG = 1, pLGL = 2 and conventional
LGL [1,2] pLGL = 1 SSDC algorithms for the isentropic Euler vortex propagation on highly nonuni-
form grids.

Fully-staggered, pLG = 1, pLGL = 2 Conventional, pLGL = 1
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
1× 1× 2 1.19e-02 - 1.34e-01 - 8.22e-03 - 8.77e-02 -
2× 2× 2 6.31e-03 0.91 8.16e-02 0.72 1.07e-02 -0.38 2.20e-01 -1.33
3× 3× 2 5.12e-03 0.51 7.39e-02 0.25 1.02e-02 0.11 1.37e-01 1.18
4× 4× 2 3.57e-03 1.25 5.52e-02 1.01 1.07e-02 -0.14 1.94e-01 -1.21
5× 5× 2 2.56e-03 1.49 4.94e-02 0.50 1.02e-02 0.21 2.02e-01 -0.18
6× 6× 2 1.87e-03 1.73 2.95e-02 2.83 8.82e-03 0.78 1.70e-01 0.96
7× 7× 2 1.52e-03 1.36 2.91e-02 0.08 7.36e-03 1.18 1.46e-01 0.98
8× 8× 2 1.26e-03 1.39 2.36e-02 1.58 6.36e-03 1.09 1.14e-01 1.81
9× 9× 2 1.04e-03 1.61 2.27e-02 0.33 5.82e-03 0.75 1.08e-01 0.47

10× 10× 2 8.76e-04 1.65 2.06e-02 0.93 5.43e-03 0.66 1.06e-01 0.20
11× 11× 2 7.52e-04 1.61 1.69e-02 2.06 5.06e-03 0.75 1.02e-01 0.38
12× 12× 2 6.54e-04 1.59 1.60e-02 0.63 4.70e-03 0.84 1.16e-01 -1.43
13× 13× 2 5.75e-04 1.61 1.62e-02 -0.16 4.39e-03 0.87 1.13e-01 0.29
14× 14× 2 5.09e-04 1.67 1.45e-02 1.54 4.11e-03 0.87 1.05e-01 1.06
15× 15× 2 4.53e-04 1.66 1.27e-02 1.83 3.87e-03 0.88 9.40e-02 1.56
16× 16× 2 4.07e-04 1.66 1.17e-02 1.33 3.65e-03 0.90 8.30e-02 1.92

Table 8 Error convergence is shown for the fully-staggered pLG = 2, pLGL = 3 and conventional
LGL [1,2] pLGL = 2 SSDC algorithms for the isentropic Euler vortex propagation on highly nonuni-
form grids.

Fully-staggered, pLG = 2, pLGL = 3 Conventional, pLGL = 2
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
1× 1× 2 5.25e-03 - 3.96e-02 - 9.21e-03 - 1.47e-01 -
2× 2× 2 1.62e-03 1.70 1.88e-02 1.07 3.95e-03 1.22 7.74e-02 0.92
3× 3× 2 1.38e-03 0.39 2.28e-02 -0.47 3.14e-03 0.56 6.92e-02 0.28
4× 4× 2 7.71e-04 2.03 2.18e-02 0.15 2.53e-03 0.76 7.05e-02 -0.07
5× 5× 2 3.21e-04 3.92 7.48e-03 4.80 1.65e-03 1.90 5.91e-02 0.79
6× 6× 2 2.04e-04 2.49 4.28e-03 3.07 1.14e-03 2.06 3.37e-02 3.08
7× 7× 2 1.47e-04 2.11 3.35e-03 1.58 8.75e-04 1.70 2.81e-02 1.19
8× 8× 2 1.08e-04 2.34 2.87e-03 1.15 6.86e-04 1.82 2.14e-02 2.02
9× 9× 2 8.10e-05 2.43 2.14e-03 2.49 5.37e-04 2.08 1.75e-02 1.73

10× 10× 2 6.18e-05 2.57 1.56e-03 3.01 4.26e-04 2.19 1.59e-02 0.90
11× 11× 2 4.76e-05 2.75 1.41e-03 1.06 3.50e-04 2.08 1.21e-02 2.82
12× 12× 2 3.71e-05 2.86 1.27e-03 1.20 2.95e-04 1.95 9.28e-03 3.08
13× 13× 2 2.95e-05 2.85 8.69e-04 4.75 2.54e-04 1.88 7.92e-03 1.97
14× 14× 2 2.39e-05 2.85 6.44e-04 4.05 2.21e-04 1.84 7.48e-03 0.78
15× 15× 2 1.97e-05 2.82 5.82e-04 1.45 1.95e-04 1.82 7.05e-03 0.85
16× 16× 2 1.64e-05 2.80 4.59e-04 3.67 1.74e-04 1.81 6.48e-03 1.31
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Table 9 Error convergence is shown for the fully-staggered pLG = 3, pLGL = 4 and conventional
LGL [1,2] pLGL = 3 SSDC algorithms for the isentropic Euler vortex propagation on highly nonuni-
form grids.

Fully-staggered, pLG = 3, pLGL = 4 Conventional, pLGL = 3
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
1× 1× 2 2.33e-03 - 3.57e-02 - 4.76e-03 - 5.64e-02 -
2× 2× 2 4.73e-04 2.30 6.71e-03 2.41 1.02e-03 2.22 2.04e-02 1.47
3× 3× 2 2.39e-04 1.69 7.59e-03 -0.31 9.00e-04 0.32 2.19e-02 -0.18
4× 4× 2 8.94e-05 3.42 2.14e-03 4.40 4.70e-04 2.26 1.87e-02 0.54
5× 5× 2 4.59e-05 2.99 1.27e-03 2.34 2.79e-04 2.34 1.05e-02 2.59
6× 6× 2 2.27e-05 3.86 6.72e-04 3.49 1.67e-04 2.80 7.92e-03 1.55
7× 7× 2 1.32e-05 3.51 4.66e-04 2.37 9.27e-05 3.83 4.74e-03 3.33
8× 8× 2 8.58e-06 3.24 4.55e-04 0.18 5.82e-05 3.49 3.00e-03 3.43
9× 9× 2 5.76e-06 3.39 3.41e-04 2.44 4.05e-05 3.07 1.82e-03 4.23

10× 10× 2 3.93e-06 3.61 2.45e-04 3.16 3.04e-05 2.73 1.23e-03 3.71
11× 11× 2 2.76e-06 3.71 1.79e-04 3.30 2.34e-05 2.74 1.11e-03 1.13
12× 12× 2 2.01e-06 3.66 1.33e-04 3.35 1.82e-05 2.91 8.80e-04 2.65
13× 13× 2 1.50e-06 3.64 9.99e-05 3.62 1.43e-05 2.97 7.65e-04 1.76
14× 14× 2 1.14e-06 3.68 7.53e-05 3.82 1.16e-05 2.87 6.45e-04 2.30
15× 15× 2 8.81e-07 3.77 5.80e-05 3.78 9.57e-06 2.77 5.79e-04 1.55
16× 16× 2 6.91e-07 3.76 4.53e-05 3.81 8.01e-06 2.75 4.79e-04 2.96

Table 10 Error convergence is shown for the fully-staggered pLG = 4, pLGL = 5 and conven-
tional LGL [1,2] pLGL = 4 SSDC algorithms for the isentropic Euler vortex propagation on highly
nonuniform grids.

Fully-staggered, pLG = 4, pLGL = 5 Conventional, pLGL = 4
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
1× 1× 2 6.59e-04 - 8.13e-03 - 2.02e-03 - 4.01e-02 -
2× 2× 2 1.08e-04 2.61 1.98e-03 2.04 2.90e-04 2.80 5.48e-03 2.87
3× 3× 2 5.77e-05 1.54 2.05e-03 -0.09 1.70e-04 1.32 8.78e-03 -1.16
4× 4× 2 2.09e-05 3.52 1.40e-03 1.32 8.33e-05 2.48 4.12e-03 2.63
5× 5× 2 5.91e-06 5.67 3.26e-04 6.54 3.27e-05 4.19 2.14e-03 2.93
6× 6× 2 2.52e-06 4.67 7.79e-05 7.85 1.18e-05 5.58 9.91e-04 4.23
7× 7× 2 1.23e-06 4.63 6.04e-05 1.66 8.90e-06 1.85 6.95e-04 2.30
8× 8× 2 6.58e-07 4.71 4.17e-05 2.77 5.62e-06 3.44 3.77e-04 4.59
9× 9× 2 3.90e-07 4.44 2.46e-05 4.49 3.59e-06 3.82 2.19e-04 4.59

10× 10× 2 2.43e-07 4.48 1.29e-05 6.14 2.39e-06 3.83 1.64e-04 2.75
11× 11× 2 1.56e-07 4.67 9.68e-06 2.99 1.66e-06 3.86 1.20e-04 3.31
12× 12× 2 1.02e-07 4.91 7.30e-06 3.24 1.20e-06 3.71 7.67e-05 5.12
13× 13× 2 6.75e-08 5.11 4.36e-06 6.44 9.03e-07 3.55 6.29e-05 2.47
14× 14× 2 4.65e-08 5.03 2.42e-06 7.97 6.93e-07 3.57 5.40e-05 2.06
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Table 11 Error convergence is shown for the fully-staggered pLG = 5, pLGL = 6 and conven-
tional LGL [1,2] pLGL = 5 SSDC algorithms for the isentropic Euler vortex propagation on highly
nonuniform grids.

Fully-staggered, pLG = 5, pLGL = 6 Conventional, pLGL = 5
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
1× 1× 2 2.93e-04 - 5.48e-03 - 6.72e-04 - 1.35e-02 -
2× 2× 2 2.44e-05 3.58 5.74e-04 3.26 6.53e-05 3.36 2.53e-03 2.41
3× 3× 2 1.02e-05 2.15 4.46e-04 0.62 3.72e-05 1.39 1.67e-03 1.02
4× 4× 2 2.65e-06 4.70 8.64e-05 5.70 1.36e-05 3.49 7.67e-04 2.70
5× 5× 2 7.36e-07 5.75 2.93e-05 4.85 5.77e-06 3.86 3.68e-04 3.30
6× 6× 2 2.36e-07 6.24 1.24e-05 4.73 2.90e-06 3.78 1.83e-04 3.83
7× 7× 2 1.00e-07 5.54 4.80e-06 6.15 1.06e-06 6.51 7.48e-05 5.80
8× 8× 2 4.97e-08 5.26 2.57e-06 4.66 5.10e-07 5.50 3.09e-05 6.62
9× 9× 2 2.55e-08 5.67 2.08e-06 1.83 2.98e-07 4.56 1.93e-05 3.97

10× 10× 2 1.41e-08 5.64 1.25e-06 4.83 1.81e-07 4.74 1.03e-05 5.98
11× 11× 2 8.02e-09 5.90 6.86e-07 6.28 1.16e-07 4.66 6.76e-06 4.43
12× 12× 2 4.78e-09 5.94 3.84e-07 6.68 7.68e-08 4.75 5.05e-06 3.35
13× 13× 2 2.99e-09 5.86 2.35e-07 6.11 5.21e-08 4.84 4.48e-06 1.51
14× 14× 2 1.93e-09 5.88 1.76e-07 3.88 3.63e-08 4.87 3.62e-06 2.87

Table 12 Error convergence is shown for the fully-staggered pLG = 10, pLGL = 11 and conventional
LGL [1, 2] pLGL = 10 SSDC algorithms for the isentropic Euler vortex propagation on highly
nonuniform grids.

Fully-staggered, pLG = 10, pLGL = 11 Conventional, pLGL = 10
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
1× 1× 2 1.73e-06 - 2.70e-05 - 2.87e-06 - 1.16e-04 -
2× 2× 2 1.23e-08 7.13 4.74e-07 5.83 6.50e-08 5.46 4.50e-06 4.69
3× 3× 2 2.71e-09 3.73 1.57e-07 2.72 1.41e-08 3.78 1.12e-06 3.43
4× 4× 2 3.12e-10 7.51 1.49e-08 8.19 1.46e-09 7.88 1.19e-07 7.79
5× 5× 2 3.52e-11 9.78 4.26e-09 5.62 2.16e-10 8.56 2.64e-08 6.76
6× 6× 2 4.19e-12 11.66 4.20e-10 12.71 2.99e-11 10.84 2.80e-09 12.30
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8.2 Viscous shock

The second test case considered in this section is the propagation of a viscous shock for which
an exact time-dependent solution is known. The compressible Navier-Stokes equations support
an exact solution for the viscous shock profile, under the assumption that the Prandtl number is
Pr = 3

4 . Mass and total enthalpy are constant across a shock. Furthermore, if Pr = 3
4 then the

momentum and energy equations are redundant. If we assume that the shock is propagating along
the x1 coordinate direction,16 the single momentum equation across the shock is given by

αv ∂v
∂x1
− (v − 1)(v − vf ) = 0 ; −∞ ≤ x1 ≤ ∞ , t ≥ 0;
v = u1

u1,left
; vf = u1,right

u1,left
; α = γ−1

2γ
µ

Pr ṁ ,
(76)

where ṁ is the constant mass flow across the shock. An exact solution is obtained by solving the
momentum equation (76) for the velocity profile, v:

x1 = 1
2α
(
Log |(v − 1)(v − vf )|+ 1+vf

1−vf Log
∣∣∣ v−1
v−vf

∣∣∣) . (77)

A moving shock is recovered by applying a uniform translation to the solution. A full derivation of
this solution appears in the thesis of Fisher [22]. In this study, the values U∞ = M∞c∞, M∞ = 2.5,
Re∞ = 10, and γ = 1.4 are used. The viscous shock, which at t = 0 is located at the center of the
computational domain, is propagated in the direction parallel to the horizontal axis. The domain
is described by

x1 ∈ (−10, 10), x2 ∈ (−10, 10), x3 ∈ (−1, 1), t ≥ 0.

The boundary conditions on the faces perpendicular to the horizontal axis are prescribed by penal-
izing the numerical solution against the exact solution; periodic boundary conditions are used on
the remaining four boundary faces of the computational domain. This is an excellent test problem
for verifying the accuracy and functionality of the inviscid and viscous components of a compressible
Navier-Stokes solver.

The accuracy of the following entropy stable schemes is investigated using uniform Cartesian
and unstructured nonuniform grids:

• Fully-staggered SSDC algorithm with pLG = 1, 2, 3, 4, 5, 10 and pLGL = 2, 3, 4, 5, 6, 11.

• Conventional LGL SSDC algorithm [1,13] with pLGL = 1, 2, 3, 4, 5, 10.

8.2.1 Uniform Cartesian grids

Different grid resolutions are examined, and the viscous shock has been propagated halfway out of
the domain when the error measure is evaluated. This measures the effect of the penalty boundary
condition and the interior scheme. Tables 13–18 show the convergence study for a sequence of
maximum nine nested grids (the number of grid cells is doubled in each direction every time). The
number of cells in each coordinate direction is indicated in the first column of these tables (i.e.,
“Resolution”). The L2 norm of the error decay asymptotes towards the designed rate in each case,
for both fully-staggered and the conventional LGL SSDC schemes. As for the Euler vortex test case,
we note that the fully-staggered approach is more accurate than the conventional algorithm for the

16This is assumption is just used to simplify the notation.
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same grid resolution. However, simple counting arguments based on inviscid flux and viscous flux
evaluations, indicate that the cost of the staggered algorithm for a solution polynomial order p is
comparable to that of an LGL operator [1, 2], with a solution polynomial order of (p+ 1).

Table 13 Error convergence is shown for the fully-staggered pLG = 1, pLGL = 2 and the conven-
tional LGL [1,2] pLGL = 1 SSDC algorithms for the viscous shock on uniform Cartesian grids.

Fully-staggered, pLG = 1, pLGL = 2 Conventional, pLGL = 1
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
2× 2× 2 1.61e-01 - 6.15e-01 - 6.45e-02 - 2.31e-01 -
4× 4× 2 3.16e-02 2.35 1.24e-01 2.31 7.26e-02 -0.17 2.67e-01 -0.21
8× 8× 2 1.27e-02 1.32 5.56e-02 1.16 3.64e-02 1.00 1.77e-01 0.59

16× 16× 2 3.23e-03 1.97 1.87e-02 1.57 1.36e-02 1.42 7.76e-02 1.19
32× 32× 2 8.78e-04 1.88 6.20e-03 1.60 4.23e-03 1.69 2.42e-02 1.68
64× 64× 2 2.25e-04 1.96 1.84e-03 1.75 1.12e-03 1.91 7.60e-03 1.67

128× 128× 2 5.62e-05 2.00 4.76e-04 1.95 2.79e-04 2.01 1.97e-03 1.95
256× 256× 2 1.38e-05 2.02 1.18e-04 2.01 6.81e-05 2.04 4.52e-04 2.13
512× 512× 2 3.43e-06 2.01 2.85e-05 2.05 1.67e-05 2.03 1.03e-04 2.13

Table 14 Error convergence is shown for the fully-staggered pLG = 2, pLGL = 3 and the conven-
tional LGL [1,2] pLGL = 2 SSDC algorithms for the viscous shock on uniform Cartesian grids.

Fully-staggered, pLG = 2, pLGL = 3 Conventional, pLGL = 2
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
2× 2× 2 2.15e-02 - 9.04e-02 - 7.58e-02 - 2.08e-01 -
4× 4× 2 8.66e-03 1.31 3.14e-02 1.52 2.29e-02 1.73 1.26e-01 0.73
8× 8× 2 1.65e-03 2.39 8.80e-03 1.84 9.27e-03 1.30 8.48e-02 0.57

16× 16× 2 4.01e-04 2.04 2.88e-03 1.61 2.62e-03 1.82 3.14e-02 1.43
32× 32× 2 4.11e-05 3.29 2.77e-04 3.38 3.44e-04 2.93 4.15e-03 2.92
64× 64× 2 5.33e-06 2.95 3.72e-05 2.90 4.12e-05 3.06 5.91e-04 2.81

128× 128× 2 7.18e-07 2.89 5.21e-06 2.83 5.18e-06 2.99 7.64e-05 2.95
256× 256× 2 1.04e-07 2.79 7.51e-07 2.79 6.69e-07 2.95 9.81e-06 2.96
512× 512× 2 1.35e-08 2.94 1.55e-07 2.28 8.93e-08 2.91 1.28e-06 2.94
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Table 15 Error convergence is shown for the fully-staggered pLG = 3, pLGL = 4 and the conven-
tional LGL [1,2] pLGL = 3 SSDC algorithms for the viscous shock on uniform Cartesian grids.

Fully-staggered, pLG = 3, pLGL = 4 Conventional, pLGL = 3
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
2× 2× 2 2.19e-02 - 8.39e-02 - 5.00e-02 - 3.15e-01 -
4× 4× 2 3.97e-03 2.46 1.55e-02 2.43 1.13e-02 2.15 1.26e-01 1.32
8× 8× 2 5.12e-04 2.96 3.49e-03 2.15 2.98e-03 1.92 3.43e-02 1.87

16× 16× 2 2.65e-05 4.27 1.52e-04 4.52 1.56e-04 4.25 1.79e-03 4.26
32× 32× 2 1.96e-06 3.76 1.38e-05 3.46 1.17e-05 3.74 1.75e-04 3.35
64× 64× 2 1.45e-07 3.76 1.12e-06 3.63 7.79e-07 3.91 1.31e-05 3.74

128× 128× 2 1.09e-08 3.73 8.53e-08 3.71 4.89e-08 3.99 7.85e-07 4.07
256× 256× 2 7.08e-10 3.95 9.73e-09 3.13 3.03e-09 4.01 4.70e-08 4.06

Table 16 Error convergence is shown for the fully-staggered pLG = 4, pLGL = 5 and the conven-
tional LGL [1,2] pLGL = 4 SSDC algorithms for the viscous shock on uniform Cartesian grids.

Fully-staggered, pLG = 4, pLGL = 5 Conventional, pLGL = 4
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
2× 2× 2 6.27e-03 - 2.59e-02 - 3.75e-02 - 1.32e-01 -
4× 4× 2 6.72e-04 3.22 4.10e-03 2.66 6.14e-03 2.61 6.88e-02 0.94
8× 8× 2 1.33e-04 2.34 8.25e-04 2.31 3.86e-04 3.99 5.21e-03 3.72

16× 16× 2 5.96e-06 4.48 3.87e-05 4.41 4.68e-05 3.04 7.04e-04 2.89
32× 32× 2 1.58e-07 5.23 1.10e-06 5.14 9.90e-07 5.56 2.23e-05 4.98
64× 64× 2 5.07e-09 4.96 4.38e-08 4.65 2.90e-08 5.09 7.67e-07 4.86

128× 128× 2 1.69e-10 4.91 1.40e-09 4.96 9.32e-10 4.96 2.38e-08 5.01
256× 256× 2 6.23e-12 4.76 5.69e-11 4.62 3.09e-11 4.91 1.07e-09 4.48

Table 17 Error convergence is shown for the fully-staggered pLG = 5, pLGL = 6 and the conven-
tional LGL [1,2] pLGL = 5 SSDC algorithms for the viscous shock on uniform Cartesian grids.

Fully-staggered, pLG = 5, pLGL = 6 Conventional, pLGL = 5
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
2× 2× 2 7.63e-03 - 3.14e-02 - 2.81e-02 - 2.16e-01 -
4× 4× 2 6.93e-04 3.46 4.29e-03 2.87 1.69e-03 4.06 7.02e-03 4.94
8× 8× 2 3.73e-05 4.22 2.11e-04 4.35 2.18e-04 2.96 3.29e-03 1.10

16× 16× 2 3.30e-07 6.82 2.74e-06 6.26 1.79e-06 6.92 2.85e-05 6.85
32× 32× 2 7.59e-09 5.44 6.09e-08 5.49 4.39e-08 5.35 1.15e-06 4.63
64× 64× 2 1.29e-10 5.87 1.22e-09 5.64 6.70e-10 6.03 1.80e-08 5.99

128× 128× 2 2.08e-12 5.96 2.40e-11 5.66 1.08e-11 5.96 3.35e-10 5.75
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Table 18 Error convergence is shown for the fully-staggered pLG = 10, pLGL = 11 and the conven-
tional LGL [1,2] pLGL = 10 SSDC algorithms for the viscous shock on uniform Cartesian grids.

Fully-staggered, pLG = 10, pLGL = 11 Conventional, pLGL = 10
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
2× 2× 2 1.69e-03 - 7.22e-03 - 3.05e-03 - 1.46e-02 -
4× 4× 2 5.99e-06 8.14 3.34e-05 7.76 3.70e-05 6.36 5.75e-04 4.67
8× 8× 2 3.95e-08 7.25 2.48e-07 7.07 1.27e-07 8.19 2.29e-06 7.97

16× 16× 2 1.94e-11 10.99 1.48e-10 10.72 6.58e-11 10.91 1.64e-09 10.45
32× 32× 2 4.96e-13 5.29 7.91e-12 4.22 4.77e-13 7.11 1.70e-11 6.58
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8.2.2 Unstructured nonuniform grids

A family of nested grids is constructed for the grid convergence study, by replicating N times the
“unstructured grid kernel” shown in Figure 6. The viscous shock test case is again used to assess
the accuracy of the fully-staggered approach on fully nonuniform grids. Tables 19–24 show the
convergence study for a sequence of maximum six nested grids. As was the case in the previous study
performed with the inviscid propagation of the Euler vortex, the fully-staggered SSDC approach is
more accurate than the conventional SSDC algorithm for the same grid resolution. Furthermore,
for the fully-staggered algorithm, the L2 norm of the error decay asymptotes towards the designed
rate (i.e., (p+ 1)) whereas the conventional path converges to order p.

Figure 6. “Unstructured grid kernel” used to construct a sequence of nested grids for the viscous
shock test case.

Table 19 Error convergence is shown for the fully-staggered pLG = 1, pLGL = 2 and the conven-
tional LGL [1, 2] pLGL = 1 SSDC algorithms for the viscous shock on highly nonuniform unstruc-
tured grids.

Fully-staggered, pLG = 1, pLGL = 2 Conventional, pLGL = 1
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
2× 2× 2 1.89e-02 - 1.43e-01 - 5.07e-02 - 2.56e-01 -
4× 4× 2 7.85e-03 1.27 6.85e-02 1.06 2.57e-02 0.98 2.05e-01 0.32
8× 8× 2 2.45e-03 1.68 3.08e-02 1.15 1.16e-02 1.15 1.04e-01 0.98

16× 16× 2 6.46e-04 1.92 8.35e-03 1.88 6.18e-03 0.91 7.80e-02 0.42
32× 32× 2 1.58e-04 2.03 2.15e-03 1.96 3.04e-03 1.02 4.12e-02 0.92
64× 64× 2 4.04e-05 1.97 6.39e-04 1.75 1.92e-03 0.67 2.77e-02 0.57
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Table 20 Error convergence is shown for the fully-staggered pLG = 2, pLGL = 3 and the conven-
tional LGL [1, 2] pLGL = 2 SSDC algorithms for the viscous shock on highly nonuniform unstruc-
tured grids.

Fully-staggered, pLG = 2, pLGL = 3 Conventional, pLGL = 2
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
2× 2× 2 5.23e-03 - 4.10e-02 - 1.28e-02 - 1.44e-01 -
4× 4× 2 1.03e-03 2.34 1.51e-02 1.44 4.67e-03 1.46 9.41e-02 0.62
8× 8× 2 1.54e-04 2.74 2.67e-03 2.49 1.23e-03 1.92 3.53e-02 1.41

16× 16× 2 2.34e-05 2.72 5.03e-04 2.41 2.02e-04 2.61 5.88e-03 2.59
32× 32× 2 3.74e-06 2.65 8.29e-05 2.60 3.63e-05 2.48 7.34e-04 3.00
64× 64× 2 5.30e-07 2.82 1.25e-05 2.73 8.31e-06 2.13 1.37e-04 2.42

Table 21 Error convergence is shown for the fully-staggered pLG = 3, pLGL = 4 and the conven-
tional LGL [1, 2] pLGL = 3 SSDC algorithms for the viscous shock on highly nonuniform unstruc-
tured grids.

Fully-staggered, pLG = 3, pLGL = 4 Conventional, pLGL = 3
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
2× 2× 2 1.60e-03 - 1.74e-02 - 5.49e-03 - 1.15e-01 -
4× 4× 2 1.79e-04 3.16 2.96e-03 2.56 1.21e-03 2.19 3.80e-02 1.60
8× 8× 2 1.15e-05 3.96 1.42e-04 4.39 7.51e-05 4.01 2.03e-03 4.23

16× 16× 2 8.67e-07 3.73 1.38e-05 3.36 6.23e-06 3.59 3.13e-04 2.69
32× 32× 2 6.45e-08 3.75 1.25e-06 3.47 6.13e-07 3.34 2.90e-05 3.44
64× 64× 2 4.65e-09 3.79 1.01e-07 3.63 7.13e-08 3.11 2.71e-06 3.42

Table 22 Error convergence is shown for the fully-staggered pLG = 4, pLGL = 5 and the conven-
tional LGL [1, 2] pLGL = 4 SSDC algorithms for the viscous shock on highly nonuniform unstruc-
tured grids.

Fully-staggered, pLG = 4, pLGL = 5 Conventional, pLGL = 4
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
2× 2× 2 3.46e-04 - 3.82e-03 - 2.35e-03 - 6.95e-02 -
4× 4× 2 4.68e-05 2.88 7.66e-04 2.32 1.52e-04 3.95 4.63e-03 3.91
8× 8× 2 1.76e-06 4.73 3.83e-05 4.32 1.22e-05 3.63 6.35e-04 2.87

16× 16× 2 6.61e-08 4.74 1.97e-06 4.28 3.89e-07 4.98 1.34e-05 5.57
32× 32× 2 2.22e-09 4.90 7.09e-08 4.79 1.53e-08 4.66 6.96e-07 4.26
64× 64× 2 7.45e-11 4.80 3.23e-09 4.46 7.95e-10 4.27 4.03e-08 4.11
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Table 23 Error convergence is shown for the fully-staggered pLG = 5, pLGL = 6 and the conven-
tional LGL [1, 2] pLGL = 5 SSDC algorithms for the viscous shock on highly nonuniform unstruc-
tured grids.

Fully-staggered, pLG = 5, pLGL = 6 Conventional, pLGL = 5
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
2× 2× 2 2.28e-04 - 3.77e-03 - 6.79e-04 - 9.36e-03 -
4× 4× 2 8.23e-06 4.79 2.03e-04 4.22 5.46e-05 3.64 3.18e-03 1.56
8× 8× 2 2.25e-07 5.19 1.05e-05 4.26 5.13e-07 6.73 2.74e-05 6.86

16× 16× 2 4.02e-09 5.81 2.32e-07 5.51 1.67e-08 4.94 1.17e-06 4.55
32× 32× 2 6.37e-11 5.98 5.05e-09 5.52 3.52e-10 5.57 3.10e-08 5.24

Table 24 Error convergence is shown for the fully-staggered pLG = 10, pLGL = 11 and the con-
ventional LGL [1, 2] pLGL = 10 SSDC algorithms for the viscous shock on highly nonuniform
unstructured grids.

Fully-staggered, pLG = 10, pLGL = 11 Conventional, pLGL = 10
Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate
2× 2× 2 1.43e-06 - 2.92e-05 - 8.30e-06 - 5.38e-04 -
4× 4× 2 9.84e-09 7.18 2.71e-07 6.75 3.70e-08 7.81 2.70e-06 7.64
8× 8× 2 7.05e-12 10.45 4.24e-10 9.32 2.40e-11 10.59 2.89e-09 9.87
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8.3 Taylor-Green vortex

The goal of this section is to demonstrate that nonlinearly stable schemes do not require stabi-
lization techniques (e.g., de-aliasing, filtering, limiting, over-integration procedures) for successful
computations of under-resolved turbulent flows.

The Taylor-Green vortex test case is used as a benchmark model problem, and is solved on the
periodic cube [−πL ≤ x, y, z ≤ +πL]. The initial condition is given by the following analytical
expressions
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where u1, u2, u3 are the components of the velocity in the x1-, x2-, and x3-directions, p is the
pressure, and ρ is the density. The flow is initialized to be isothermal, i.e., p/ρ = p0/ρ0 = RT0.
The Reynolds number for this flow is defined as Re = (ρ0V0L)/µ, where µ is the dynamic vis-
cosity. Starting from the initial condition, the nonlinear interactions of different flow scales yield
vortex breakdowns. This nonlinear process is initially anisotropic and laminar; but subsequently, it
develops into fully anisotropic turbulence that decays with the typical spectral energy distribution.

Because our framework solves the compressible Navier-Stokes equations, we choose a Mach
number of M = 0.08, which leads to a flow field that is essentially incompressible. This allows
for a fair comparison with some of the incompressible simulations reported in literature. Herein,
two Reynolds numbers are considered: Re = 800 and Re = 1, 600. The Prandtl number is set to
Pr = 0.71.

8.3.1 Re = 800

In this section, we report the results for Re = 800 on a uniform Cartesian grid with four hexahedrons
in each coordinate direction. Therefore, the total number of elements in the grid is also N e = 43 =
64. We compute the numerical solution with the sixteenth- (pG = 15, pLGL = 16), and seventeenth-
order (pG = 16, pLGL = 17) accurate fully-staggered algorithms. The numerical solutions presented
herein are compared with the direct numerical simulation (DNS) of Brachet et al. [34]. Figure
7 shows the kinetic energy dissipation rate of our computations and the reference data. The
computation with a formally seventeenth-order accurate scheme compares very well with the DNS
results, even on this very coarse grid.

8.3.2 Re = 1, 600

The simulation is run using a fully unstructured grid that contains 42 hexahedrons. The distribution
of the element in the 2D plane is shown in Figure 8.

Figure 9 shows the kinetic energy dissipation rate of our computations and the reference data of
Carton de Wiart et al. [35]. The grid is too coarse to accurately resolve the flow field, however, the
computation with a formally seventeenth-order accurate scheme is stable through all the simulation.
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Figure 7. Evolution of the time derivative of the kinetic energy for the Taylor-Green vortex at
Re = 800, M = 0.08; fully-staggered SSDC algorithm.

Figure 8. Plane distribution of the elements used for the Taylor-Green vortex at Re = 1, 600,
M = 0.08.

This is a feat unattainable with alternative approaches based on high-order accurate linear stable
schemes.

8.4 Computation of a square cylinder in a supersonic free stream

The development of a high-order accurate entropy stable discretization aims to provide the next
generation of robust high-fidelity numerical solvers for complex fluid flow simulations, for which
standard suboptimal algorithms suffer greatly or fail completely. By computing the flow past a 3D
square cylinder at Re∞ = 104 and M∞ = 1.5, we provide numerical evidence of such robustness for
the complete entropy stable high-order spatial discretization. This supersonic flow is characterized
by a very large range of length scales, strong shocks, and expansion regions that interact with each
other, leading to complex flow patterns. During the past three decades, this fluid flow problem has
been thoroughly investigated by several researchers for aerodynamic applications (see for instance,
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Figure 9. Evolution of the time derivative of the kinetic energy for the Taylor-Green vortex at
Re = 1, 600, M = 0.08; fully-staggered SSDC algorithm.

references 36,37).
The domain of interest spans one square cylinder edge in the x3 direction, and at the two planes

perpendicular to this coordinate direction, periodic boundary conditions are used. The flow is
computed using an unstructured grid with 43, 936 hexahedrons. A fourth-order accurate (pLG = 3,
pLGL = 4) fully staggered entropy stable discretization without any stabilization technique is used.
The body surface is considered adiabatic and the wall boundary conditions are imposed using the
entropy stable approach presented in reference 2. The solution is initialized using a uniform flow
at M∞ = 1.5 with zero angle of attack. This test case was also used in reference 2 to assess the
robustness of the conventional SSDC algorithm.

A strong shock is formed in front of the bluff body in the beginning of the simulation. Subse-
quently, the discontinuity moves upstream until it reaches a “stationary” position that is about 2.15
square cylinder edges from the frontal surface of the body. During this phase, additional weaker
shocks, which originate from the four sharp corners of the body, interact with the subsonic regions
formed near the walls. This complicated flow pattern, yields the formation of shocklets in the wake
of the square cylinder.

A global view of the “high order grid,” the Mach number, density, temperature and entropy
contours at t = 100 are shown in Figure 10. The shock has already reached a stationary position
at t = 100, and the flow past the square cylinder is completely unsteady, characterized by subsonic
and supersonic regions. The formation of shocklets in the near wake region are clearly visible.

An extensive parametric study of Mach numbers (1.1 < M < 1.8) and grids (10K − 40K el-
ements) was performed using the supersonic square cylinder. All high Mach number simulations
performed to date suggest that the staggered and conventional approaches have comparable ro-
bustness. The failure mode for both approaches is a negative density that develops in the vicinity
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(a) High order grid.
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(b) Mach number; ∆M = 0.0095.
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(c) Density; ∆ρ = 0.0090.
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Figure 10. Unsteady flow past a 3D square cylinder at Re∞ = 104 and M∞ = 1.5; fourth-order
accurate fully-staggered SSDC method (pLG = 3, pLGL = 4) without stabilization technique;
t = 100.
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of a strong shock.

9 Conclusions

A summation-by-parts, simultaneous-approximation-term (SBP-SAT) framework is used to de-
velop a generalized entropy stable spectral element formulation that includes a broader selection
of collocation points. A necessary condition for an entropy-stable, staggered operator is a restric-
tion/prolongation interpolation pair that satisfies a precise Galerkin constraint (see equation (16)).
This constraint is automatically satisfied when interpolating between the LG and LGL points,
provided the polynomial order of the LGL points exceeds that of the LG points (as well as other
less desirable combinations). Thus, the primary goals herein are to 1) extend the entropy stable
mechanics to a staggered configuration that collocates the solution variables at the Legendre-Gauss
(LG) points and the fluxes at the Legendre-Gauss-Lobatto (LGL) points, and 2) to establish the
competitive advantages (if any) of the new entropy stable staggered algorithm relative to the algo-
rithms presented in references 1,2.

Conventional energy analysis as well as entropy analysis are used on the 1D viscous Burg-
ers’ equation, to prove the nonlinearly stability of the staggered operators for arbitrary order,
diagonal-norm SBP operators. The comparison of the energy and entropy estimates on Burgers’
equation provides insight on how to proceed with the entropy stability analysis of the compressible
Navier-Stokes equations for staggered operators. Next, the entropy analysis techniques presented
in references 1, 2 are used to develop an entropy conservative, staggered grid, spectral collocation
operator for the 3D compressible Navier-Stokes equation. Entropy conservative/stable inviscid in-
terface operators are then developed for the staggered formulation. The viscous interface coupling is
based on an LDG/IP approach analogous to the coupling operators presented in references 1,2. The
resulting spectral collocation operators are design order accurate for arbitrary order, conservative
on the LGL points, and satisfy the additional secondary constraint of entropy stability. Extension
to curvilinear meshes [22,23] and entropy stable solid wall BCs [13,31] follow immediately.

Extensive numerical tests for the 3D Euler and compressible Navier-Stokes equations reveal
that the new staggered grid entropy stable algorithms are significantly more accurate than the
collocated Legendre-Gauss-Lobatto operators of equivalent polynomial order, that are presented in
references 1, 2. They are however, more costly to implement. The cost of a flux evaluation for the
staggered algorithm of solution polynomial order p is comparable to that of an Legendre-Gauss-
Lobatto points operator [1, 2] of solution polynomial order (p + 1). Preliminary studies using an
explicit temporal integrator indicate that the increased accuracy of the staggered approach nearly
offsets the additional cost. Further investigation is required to fully establish the cost efficacy
of over-collocated fluxes (including the spectral difference and the flux reconstruction operators),
relative to conventional collocated fluxes. An ongoing investigation continues that includes 1)
the effects of implicit temporal integrators and 2) data movement on current and next generation
hardware; computationally intensive yet extremely accurate, low memory footprint algorithms could
be competitive in the future.

This work provides an essential step towards an operational entropy stable framework of ar-
bitrary order. An obvious extension of this work is the development of entropy stable, h- and/or
p-refinement operators. Both scenarios require data interpolation from adjoining interfaces onto
a common intermediate mortar, with quadrature points that do not in general coincide. A long
term goal includes entropy stable operators for other element types including triangles, prisms and
tetrahedra.
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Appendix A

Summation-by-parts

A.1 Complementary grids

Define on the interval −1 ≤ x ≤ 1, the vector of discrete points

x = (x1, x1, . . . , xN−1, xN )>, −1 ≤ x1, x2, . . . , xN−1, xN ≤ 1. (A1)

Because the approximate solution is constructed at these points, they are referred to as solution
points. Furthermore, define a set of intermediate points prescribing bounding control volumes about
each solution point. These (N +1) points are referred to as flux points as they are similar in nature
to the control volume edges employed in the finite-volume method. The distribution of the flux
points depends on the discretization operator. The spacing between the flux points is implicitly
contained in the SBP operator P. In fact, the diagonal elements of P are equal to the spacing
between flux points (see figure 1),

x = (x0, x1, . . . xN )> , x0 = x1, xN = xN ,

xi − xi−1 = P(i)(i), i = 1, 2, . . . , N.
(A2)

In operator notation, this is equivalent to

∆x = P1, 1 = (1, 1, . . . , 1)> , (A3)

and ∆ is as defined in equation (A6). Note that in equation (A2), the solution and flux points
coincide at the left and right extremes of the domain. Thus

f0 = f(q1), fN = f(qN ). (A4)

This duality is needed to define unique operators and is important in proving entropy stability.

A.2 Telescopic flux form

All SBP derivative operators D can be manipulated into the telescopic flux form,

∂f
∂x

(q) = P−1Qf + Tp+1 = P−1∆f + Tp+1, (A5)

where the N × (N + 1) matrix ∆ is defined as

∆ =


−1 1 0 0 0 0
0 −1 1 0 0 0

0 0
. . . . . . 0 0

0 0 0 −1 1 0
0 0 0 0 −1 1

 . (A6)

The ∆ operator calculates the undivided difference of the two adjacent fluxes. The existence of a
telescopic form for all SBP operators is reiterated in the following lemma, presented without proof.
(The original proof appears elsewhere [38].)
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Lemma A.1. All differentiation matrices that satisfy the SBP convention given in equation (2)
are telescoping operators in the P-norm and can be expressed as in equation (A5).

This telescopic flux form admits a generalized SBP property. All SBP operators defined in
equation (2) can be manipulated to transfer the action of the discrete derivative onto a test function
with an equivalent order of approximation. The telescopic flux form defined in equation (A5)
combined with the flux consistency condition (A4) results in a more generalized relation,

φ>PP−1∆f = φ>(B̃ − ∆̃)f = f(qN )φN − f(q1)φ1 − φ∆̃f , (A7)

where

∆̃ =


0 −1 0 0 0 0
0 1 −1 0 0 0

0 0
. . . . . . 0 0

0 0 0 1 −1 0
0 0 0 0 1 0

 , B̃ =


−1 0 0 0 0 0
0 0 0 0 0 0

0 0
. . . . . . 0 0

0 0 0 0 0 0
0 0 0 0 0 1

 ,

and
1
δx
φ>∆̃ =

(
dφ

dx

)>
+O(N−1),

with δx the local grid spacing. This is equivalent to the commonly used explanation of SBP in
indicial form,

N∑
i=1

φi
(
f i − f i−1

)
= f(qN )φN − f(q1)φ1 −

N−1∑
i=1

f i (φi+1 − φi) . (A8)

The action of the derivative is still moved onto the test function but at first order accuracy. Note
that although this generalized property is used herein to construct entropy conservative fluxes, it
is also instrumental for satisfying the Lax-Wendroff theorem [18] in weak form.

A.3 α-split fluxes

Conservative or chain-rule fluxes constructed on the solution points x by using the SBP derivative
operators, have a discretely equivalent representation on the flux points x [23] (see Figure 1).
Consider the general flux of the form f(u) = V (u)W (u). Next, α-split the flux into a combination of
conservative and chain-rule form and discretize with any diagonal norm SBP operator. The resulting
α-split discrete operator has an equivalent telescoping flux representation of the form [23,38]

αP−1QVw + (1− α)
(
VP−1Qw +WP−1Qv

)
= P−1∆f . (A9)

(Again, V and W are diagonal matrices with the v and w vectors injected onto the matrix diago-
nals.) The telescoping flux is constructed point-wise by using the expression

f i = 2
N∑

k=i+1

i∑
l=1

q`k

[
α
v(u`)w(u`) + v(uk)w(uk)

2
+ (1− α)

v(u`)w(uk) + v(uk)w(u`)
2

]
,

1 ≤ i ≤ N − 1, f0 = v(u1)w(u1), fN = v(uN )w(uN ),

(A10)

where the coefficient q`k corresponds to the (`, k) row and column in Q, respectively.
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Appendix B

Polynomial methods

B.1 Definitions

Define on the interval −1 ≤ x ≤ 1, the vectors of discrete point values,

x̃ = [x̃1, x̃2, . . . , x̃M−1, x̃M ]>, −1 ≤ x̃1, x̃2, . . . , x̃M−1, x̃M ≤ 1,
x = [x1, x2, . . . , xN−1, xN ]>, −1 ≤ x1, x2, . . . , xN−1, xN ≤ 1.

(B1)

Herein, the discrete points x̃ and x are chosen to be the Legendre-Gauss (LG) points and the
Legendre-Gauss-Lobatto (LGL) points, respectively.

Next, define the interpolation operators that move data between x̃ and x. Assume that an
infinitely smooth function f(x) is defined on the interval −1 ≤ x ≤ 1. Reading the function f and
derivative ∂f/∂x at the discrete points x̃ and x, we define the vectors

f(x̃) = [f(x̃0), f(x̃1), . . . , f(x̃M−1), f(x̃M )]>,

f(x) = [f(x0), f(x1), . . . , f(xN−1), f(xN )]>,

df
dx

(x̃) =
[
df

dx
(x̃0),

df

dx
(x̃1), . . . ,

df

dx
(x̃M−1),

df

dx
(x̃M )

]>
,

df
dx

(x) =
[
df

dx
(x0),

df

dx
(x1), . . . ,

df

dx
(xN−1),

df

dx
(xN )

]>
.

(B2)

Define the Lagrange basis polynomials relative to the discrete points, x̃, as

Lj(x) =
∏M

k=1
k 6=j

x− x̃k
x̃j − x̃k

, 1 ≤ j ≤M, (B3)

with a similar definition for the discrete points x

Lj(x) =
∏N

k=1
k 6=j

x− xk
xj − xk

, 1 ≤ j ≤ N. (B4)

With a slight abuse of notation, define the vector of Lagrange basis polynomials relative to the
vectors x̃ and x as

L(x; x̃) = (L0(x; x̃),L1(x; x̃), . . . ,LM−1(x; x̃),LM (x; x̃))>,
L(x; x) = (L0(x; x),L1(x; x), . . . ,LN−1(x; x),LN (x; x))>.

(B5)

This notation makes explicit reference to the set of collocation points from which the basis polyno-
mials are derived. Finally, the vector of Lagrange basis polynomials can be evaluated at any set of
points, thus creating a second-order tensor (matrix). For example, evaluating L(x; x̃) at the points
x would yield

L(x; x̃) = (L0(x; x̃),L1(x; x̃), . . . ,LM−1(x; x̃),LM (x; x̃))>, (B6)
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where each element of the M vector being an N vector, e.g.,

Lj(x; x̃) = (Lj(x0; x̃), Lj(x1; x̃), · · · , Lj(xN−1; x̃), Lj(xN ; x̃))>. (B7)

Note that L(x̃; x̃) = δij , where δij represents the Kronecker’s delta.

B.2 Differentiation

The interpolation polynomial fN (x) (of order p = N − 1) that collocates f(x) at the points x̃ is
given by

f(x) ≈ fN (x) = L(x; x̃)>f(x̃). (B8)

The objective is to construct collocation derivative operators in terms of the Lagrange basis poly-
nomials on the interval.

Theorem B.1. The derivative operator that exactly differentiates an arbitrary p-th order polyno-
mial (p = N − 1) at the collocation points x̃ is

D = (dij) =
(
dLj
dx

(yi; x̃)
)
. (B9)

Proof. Differentiating equation (B8) once yields the expression

dfN (x)
dx

=
(
dL
dx

(x; x̃)
)>

f(x̃). (B10)

Evaluating equation (B10) at a set of points (e.g., x̃), results in an expression of the form df
dx = Df ,

from which equation (12) follows immediately.

Thus, the differentiation operator, D, for the collocation points x̃ can be expressed in terms of
the derivative of the Lagrange basis polynomials L(x; x̃). A Galerkin technique can also be used
to derive an equivalent differentiation operator.

Theorem B.2. The derivative operator that exactly differentiates an arbitrary p-th order polyno-
mial (p = N − 1) at the collocation points x̃ is

D = (dij) = P̂−1 Q̂. (B11)

Proof. First note that in addition to expression (B10), the exact derivative, df(x)
dx , of the function

f(x) can be approximated by

df

dx
(x) ≈ dfN

dx
(x) = L(x; x̃)>

df
dx

(x̃). (B12)

In general, expressions (B10) and (B12) are not equivalent. The Galerkin statement demands that
the integral error between the two expressions be orthogonal to a set of Lagrange polynomials.
Specifically that

1∫
−1

L(x; x̃)

(
L(x; x̃)>

df
dx

(x̃) −
(
dL
dx

(x; x̃)
)>

f(x̃)

)
dx = 0 (B13)
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which can be expressed in the equivalent form

P̂ df
dx

(x̃) = Q̂f(x̃) (B14)

with
P̂ = (pij) =

∫ 1
−1 L(x; x̃)L(x; x̃)> dx,

Q̂ = (qij) =
∫ 1
−1 L(x; x̃)

(
dL
dx (x; x̃)

)>
dx.

(B15)

Equation (B11) would follow immediately if P̂ is symmetric positive definite (SPD), and therefore
invertible. The fact that P̂ is symmetric follows immediately from definition (B15). Positive
definiteness is more subtle. Following the definition of SPD, we pre- and post-multiply P̂ by an
arbitrary discrete vector ψ, yielding

ψ>P̂ψ =
∫ 1
−1ψ

>L(x; x̃)L(x; x̃)>ψ dx =
∫ 1
−1 ψ(x)2 dx, (B16)

an expression, which is strictly greater than zero, unless ψ is the null vector. Thus, the matrix P̂
is SPD, therefore invertible, and (B11) follows immediately.

Remark. Once we have established that P̂ is invertible, we can proven (B11) directly by showing
that P̂ D = Q̂. This is accomplished by simplifying, after substituting the definitions of P̂, D and
Q̂.

A proof that Q̂ is nearly skew-symmetric is as follows.

Theorem B.3. The matrix Q̂ =
∫ 1
−1 L(x; x̃)

(
dL
dx (x; x̃)

)>
dx is structurally of the form

Q̂+ Q̂> = B. (B17)

Thus, by virtue of the structure of P̂ and Q̂, the differentiation operator, D, is indeed an SBP
operator defined by (2).

Proof. Integrating by parts the definition of Q̂ yields the expression

Q̂ =
∫ 1
−1 L(x; x̃)

(
dL
dx (x; x̃)

)>
dx = L(+1; x̃) L(+1; x̃)> − L(−1; x̃) L(−1; x̃)>

−
∫ 1
−1

(
dL
dx (x; x̃)

)
L(x; x̃)> dx.

(B18)

All Lagrange polynomials based on the LGL collocation points vanish on the boundaries for 1 <
i, j < N . Thus, the boundary matrices reduce to the form

L(+1; x̃) L(+1; x̃)> − L(−1; x̃) L(−1; x̃)> = δiN δjN − δi1 δj1.

Writing equation (B18) in indicial nomenclature leads to qij + qji = δiN δjN − δi1 δj1, which is the
desired result.
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B.2.1 Collocation and mass lumping

A Legendre collocation operator may be constructed by approximating the integrals in equations
(B15) by the LGL quadrature formula. Let

η = (η1, η2, . . . ηN−1, ηN )> (B19)

be the nodes of the LGL quadrature formula (i.e., the zeroes of the polynomial
d(Pn−1(x)(1−x2))

dx [39]),
and let ωl, 1 ≤ l ≤ N be the quadrature weights. Define L(ηl; x) as the vector of Lagrange basis
polynomials evaluated at the quadrature point ηl; i.e.,

L(ηl; x) = (L1(ηl; x), L2(ηl; x), . . . , LN (ηl; x))>.

Using these definitions, the mass and stiffness matrices P and Q are given by the expressions

P =
∑

l L(ηl; x)(L(ηl; x))>ωl, Q =
∑

l L(ηl; x)
(
dL
dx (ηl; x)

)>
ωl. (B20)

Theorem B.4. The matrix P is diagonal for collocations points located at the LGL quadrature
points, i.e., x = η. Furthermore, the diagonal coefficients of P are the integration weights ωl, 1 ≤
l ≤ N used in the quadrature [21].

Proof. Recall that the Lagrange polynomials evaluated at the knot points satisfy the property
Li(xj) = δij . Thus, the result follows immediately from the definition of the norm P =∑

l L(ηl; x)(L(ηl; x))>ωl.

Remark. Replacing the full P-norm in (B15) with a lower-order diagonal operator is sometimes
referred to as “mass lumping”.

Note that in general, P̂ 6= P. The LGL formula is exact for polynomials of degree 2p−1, where
p = N − 1. However,

∫ 1
−1 L(x; x)(L(x; x))> dx is of degree 2p. Thus, the integration differs for

the highest order term (i.e., 2p-th order term). Indeed, the two matrix norms differ by a rank one
perturbation, i.e P̂ = P + γpDpe0(Dpe0)> where e0 = (1, 0, · · · , 0)>, Dp is the highest derivative
supported by the polynomial, and γp depends on polynomial order.

The matrices Q̂ and Q are equivalent. This follows from the fact of the two matrices are defined
by the polynomials

∫ 1
−1 L(x; x)

(
dL
dx (x; x)

)>
dx that have a combined rank of 2p − 1. Therefore,

integration is exact when using the LGL integration formula.
The uniqueness of the differentiation matrix D yields the expression

D = P̂−1Q̂ = P−1Q.

This statement does not contradict the fact that P̂ 6= P. Indeed, the Sherman-Morrison formula [40]
can be used to show that the difference (i.e., P̂−1 − P−1) lies in the null space of the singular Q
matrix.

B.3 Interpolation

We seek interpolation operators that take the discrete values f(x̃) of an arbitrary polynomial
function fM (x), from one set of points to another, (e.g., interpolating fM (x) from x̃ to x). Define
the two sets of discrete points as follows:

x̃ = (x̃1, x̃2, · · · , x̃M−1, x̃M )>, −1 ≤ x̃1, x̃2, · · · , x̃M−1, x̃M ≤ 1,

x = (x1, x2, · · · , xN−1, xN )>, −1 ≤ x1, x2, · · · , xN−1, xN ≤ 1.
(B21)
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A Galerkin approach is used to build the interpolation operators.

Theorem B.5. An interpolation pair that translates polynomial information between two sets of
points x̃ and x can be expressed as

IN→M = P̃−1 RM−N , IM→N = P̂−1 R>M−N (B22)

with

P̃ =

1∫
−1

L(x; x̃)L(x; x̃)>dx, P̂ =

1∫
−1

L(x; x)L(x; x)>dx, RM−N =

1∫
−1

L(x; x̃)L(x; x)>dx. (B23)

Proof. First define two distinct polynomial representations of the same function f(x), using La-
grange polynomials and discrete function values. Assume that M and N are not equal. The
polynomial representations are

f(x) ≈ fM (x) = L(x; x̃)>f(x̃), f(x) ≈ fN (x) = L(x; x)>f(x). (B24)

Next, demand that the two polynomials approximations of f(x) be as close as possible in an
integral sense. Two Galerkin statements for the minimization of the differences in polynomials are

1∫
−1

L(x; x̃)
(
L(x; x̃)>f(x̃) − L(x; x)>f(x)

)
dx = 0, (B25)

1∫
−1

L(x; x)
(
L(x; x̃)>f(x̃) − L(x; x)>f(x)

)
dx = 0, (B26)

and enforce integral minimization of interpolation error between two distinct sets of Lagrange
polynomials, (i.e., those constructed with respect to x̃ and x).

Rearranging equation (B25) and (B26) yields

f(x̃) = P̃−1 RM−N f(x) = IN→M f(x), f(x) = P̂−1 R>M−N f(x̃) = IM→N f(x̃) (B27)

with

P̃ =

1∫
−1

L(x; x̃)L(x; x̃)>dx, P̂ =

1∫
−1

L(x; x)L(x; x)>dx, RM−N =

1∫
−1

L(x; x̃)L(x; x)>dx. (B28)

We have already established the invertibility of P̂ and P̃.

Remark. Equation (B22) immediately implies

P̃ IN→M = I>N→M P̂. (B29)
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B.3.1 Mass lumping LGL norms

Entropy stability is achieved with a mass-lumped diagonal operator P (i.e., equation (B20)). Equa-
tion (B29) plays a pivotal role in all staggered entropy proofs. Thus, an equivalent relation that
holds for P =

∑
l L(ηl; x)(L(ηl; x))>ωl must be derived.

A Legendre collocation interpolation operators may be constructed by approximating the inte-
grals in equations (B23) with the LG and LGL quadrature formula.

Theorem B.6. The mass lumped expression

P̃ ILGL→LG = I>LG→LGLP (B30)

with P =
∑

l L(ηl; x)(L(ηl; x))>ωl is valid provided the number of LGL points exceeds by at least
one the number of LG points (i.e., N > M).

Proof. Define DN as the matrix D raised to the power N . Substituting the relationship P̂ =
P + γN DNe0

(
DNe0

)> into equation (B29) yields the expression

P̃ ILGL→LG = I>LG→LGL
(
P + γN DNe0

(
DNe0

)>)
= I>LG→LGLP + γN I>LG→LGLDNe0

(
DNe0

)>
.

(B31)
If the vector condition

(
DNe0

)>ILG→LGL = 0 holds, then (B30) is satisfied.
Let ξ be a matrix of basis vectors of polynomial degree M on the LG points. The action of the

interpolation operator ILG→LGL on ξ is a rotation of each basis vector from the LG to LGL points.
Note that the rotation does not change the polynomial order of any of the vectors.

Now, recall that the vector DNe0 is the undivided difference on the LGL. Thus, if N > M ,
then the undivided difference of a polynomial of degree ≤M will be the zero vector for each of the
M basis vectors. Because the vectors are arbitrary, the vector condition

(
DNe0

)>ILG→LGL = 0
must hold.

Remark. For the work presented herein, M = p and N = p+ 1.
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