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APPROACHES TO EVALUATING PROBABILITY OF COLLISION 
UNCERTAINTY  

 

Matthew D. Hejduk,* Lauren C. Johnson†  

While the two-dimensional probability of collision (Pc) calculation has served as 

the main input to conjunction analysis risk assessment for over a decade, it has 

done this mostly as a point estimate, with relatively little effort made to produce 

confidence intervals on the Pc value based on the uncertainties in the inputs.  

The present effort seeks to try to carry these uncertainties through the calcula-

tion in order to generate a probability density of Pc results rather than a single 

average value.  Methods for assessing uncertainty in the primary and secondary 

objects’ physical sizes and state estimate covariances, as well as a resampling 

approach to reveal the natural variability in the calculation, are presented; and an 

initial proposal for operationally-useful display and interpretation of these data 

for a particular conjunction is given. 

INTRODUCTION 

The development and operational integration of the probability of collision (Pc) calculation, 

which first entered the industry through the work of Foster and Estes1 and has since been refined 

by a number of practitioners,2 constituted a major event in conjunction assessment risk analysis.  

Before the Pc, risk assessment was based solely on the miss distance at the time of closest ap-

proach (TCA) between the two conjuncting objects, and this datum by itself is not particularly 

helpful because it does not take account of the expected estimation error in the state estimates for 

the primary and secondary objects—if both state estimates are very uncertain, then it is quite un-

likely that the two objects will actually achieve so close a miss.  The Pc calculation quickly re-

placed miss distance as the principal risk assessment parameter because it does explicitly consider 

the two objects’ state estimation uncertainties and produces an actual risk parameter—that is, a 

probability.  

As formulated, this calculation generates only a point estimate of a probability; it does not 

naturally produce confidence intervals or a probability density function (PDF) as part of the out-

put, from which a user could ascertain the uncertainty in the calculated parameter.  To be sure, 

uncertainty information is an input to the calculation in the form of the primary and secondary 

object covariance matrices; but there are meta-uncertainties about the covariance matrices (i.e., 

uncertainty about the uncertainty), as well as uncertainties in determining the sizes of the two ob-

jects in formulating the hard-body radius (HBR) for the Pc computation.  Additionally, there is a 

                                                      

* Chief Engineer, NASA Robotic CARA, Astrorum Consulting LLC, 10006 Willow Bend Drive, Woodway, TX  

76712. 
† Analysis Lead, NASA Robotic CARA, Omitron Inc., 555 E. Pikes Peak Ave, #205  Colorado Springs, CO  80903. 

(Preprint) AAS 16-241 



 2 

natural sampling variability in the calculation for which the nominal Pc calculation is the ex-

pected value but which has its own null distribution governed by the amount of determinacy in 

the two input covariances.  One would like to be able to include all of these perturbations in the 

calculation to produce a probability density of Pc values.  A probability density, if formulated and 

presented correctly, can more fully reveal a conjunction’s sensitivity to different input parameters 

by showing the change in probability density as different input parameters are altered.  It can also 

allow a more meaningful comparison of the result to a user’s single-parameter threshold for tak-

ing remediative action.  If, for example, the nominal value is below the remediation threshold but 

a good bit of the PDF lies above this threshold, a conservative user may opt for remediation even 

though the Pc point estimate would not have suggested it. 

The present analysis effort has attempted to parameterize covariance and HBR uncertainty, 

and to develop a resampling technique to reveal the natural variability in the Pc calculation, in a 

manner that can be folded into an overall Monte Carlo approach to produce a single output prob-

ability density that will take cognizance of all of these factors.  The purpose of the construct is 

thus to give users a sense of the dynamic range of the Pc and allow them to make risk assessment 

and remediation decisions based on percentile points from this probability density rather than the 

more opaque single-point expected value.  Test data to date indicate that the median value for the 

PDF often lies significantly below the expected value (not a surprising result for a right-skewed 

distribution), so users will also be able to see how much the nominal Pc differs from the median 

value, the latter of which being a more natural expression of central tendency.  What this pro-

posed construct will not do, or if it does it will be more by serendipity than design, is to provide a 

banded prediction of the nominal Pc value that will be generated from the next Conjunction Data 

Message (CDM).  It is to be hoped, of course, that much of the time it will in fact serve this role; 

but changes in satellite tracking sources and amounts, as well as unreliable atmospheric density 

predictions, can substantially alter the state estimates and covariances, and thus the Pc, in a very 

much non-predictable manner.  In such cases the new CDM presents the user not so much with an 

update but essentially a new problem, which is why the trending of conjunction risk assessment 

parameters is a difficult business that must be very carefully and modestly pursued.   

The following sections detail the parameterization of the covariance and HBR uncertainty, ex-

plain the resampling technique developed to reveal the natural variability in the Pc calculation, 

discuss the Monte Carlo approach used to unify these elements into a single results-generation 

session, and present a proposed display of results to a user. 

COVARIANCE UNCERTAINTY 

 Of all of the inputs to the Pc computation, the covariances of the primary and secondary 

objects (and especially of the latter, as it is typically much less well determined) introduce the 

most uncertainty—a somewhat ironic statement perhaps, as it speaks to the uncertainty of an es-

timate of uncertainty.  In certain situations, uncertainty in position covariance size can have a 

substantial effect on the calculated Pc.  The sensitivity of Pc to covariance size is illustrated in 

Figure 1, which shows the relationship between Pc and the covariance-size-to-miss-distance ratio.  

For simplicity, the combined covariance is presumed here to be spherical; but the same phenome-

non is observed when it is allowed to assume an ellipsoid in an arbitrary orientation.3 

The x-axis gives the ratio of the 1-sigma combined covariance size to the conjunction miss 

distance, and the y-axis the base-ten logarithm of the ratio of the calculated Pc to the maximum 

value the Pc can assume over the entire x-axis range.  As one moves from larger to smaller covar-

iances (as determined by the ratio previously described), the Pc slowly but steadily increases until 

it reaches a maximum (at a ratio value of 1/√2) and then very rapidly drops off after that.  If one 
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is situated on the left side of the peak, covariance uncertainty can affect the Pc somewhat; but if 

one is situated on the right side of the peak, then even small changes in the covariance size can 

drive very large changes in the covariance-to-miss-distance ratio and thus the resultant Pc.  Since 

in many situations it is not precisely clear where one is situated on the curve (given uncertainties 

in both covariance and future miss distance), it is important always to give proper attention to 

potential uncertainties in the covariance and if possible to account for them. 
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Figure 1.  Pc Decrement as a Function of Ratio of Covariance Size to Miss Distance. 

 

A straightforward and practical solution to this problem has been implemented in the JAC 

(JAVA for Assessment of Conjunctions) software package offered by the Conjunction Analysis 

and Evaluation Service:  Alerts and Recommendations (CAESAR) program sponsored by the 

French Centre National d’Études Spatiales (CNES).  A range on the “realism” of the primary and 

secondary covariances is determined, meaning the range of multiplicative factors by which the 

covariance might have to be scaled in order to represent the true error volume realistically.  In the 

past, the range typically applied was from 0.2 to 5, although the ranges currently used are be-

lieved to be somewhat smaller.  The primary and secondary covariances are, in nested fashion, 

scaled by factors in this range, the Pc under such conditions is computed, and the results are dis-

played in trade-space format, an example of which is given in Figure 2 below.4  In this figure, the 

scale factor for the primary is given on the x-axis and the scale factor for the secondary object on 

the y-axis.  The unscaled case occurs where these two axes intersect, and the color of the square 

indicates the resultant Pc; here, the brown color indicates a Pc of ~5E-04.  One can see that in-

creasing the size of either the primary or the secondary covariance by not a large amount at all (a 

scale factor of 2 or greater for either or both) puts the situation into the red zone, in which the Pc 

is greater than 1E-03.  If an owner/operator threshold for action were 1E-03, then reasonable un-

certainty in the covariance could allow the actual Pc to exceed 1E-03 and thus be actionable even 

though the nominal value (5E-04) falls below this level.  Considering this kind of uncertainty in 

the covariance is thus a prudent CA risk assessment activity. 
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Figure 2.  JAC CoPoC Sensitivity Display. 

This particular approach does, however, encounter two types of limitations:  it is not neces-

sarily following a realistic spread of scale factors for the particular conjuncting satellites (0.2 to 5 

may be far too large or perhaps even too small a span in a given situation), and it inherently pre-

sumes an equal likelihood that the real covariance could assume any of the sizes given in the 

span.  One approach that could be somewhat helpful would be to solve for a scale factor (or full 

covariance matrix correction) that would, on average, transform the covariance to its proper size; 

this would at least debias the scaling procedure, allowing it to start from a properly-determined 

mean value rather than the arbitrary starting point of no corrective scaling.  Approaches by Valla-

do and Seago,5 Cerven,6 and Hornwood et al.7 illustrate different methods for generating and cer-

tifying such corrections; unfortunately, these approaches as proposed do not give a probabilisti-

cally-enabled set of scale or transformation figures that can be used to assess the uncertainty in 

the covariance or, equivalently, the likelihood that the covariance could require a scale factor of a 

certain size*; but it is a simple and direct conceptual enhancement of any of these methods to pro-

duce output that can be used for this purpose. 

This enterprise is simplified considerably by a utility that was recently implemented at the 

Joint Space Operations Center (JSpOC) to evaluate the covariance propriety of the Special Per-

turbations (SP) catalogue.  Some years ago, functionality was introduced to build reference orbits 

for every catalogued object, much in the way precision reference orbits are constructed from sat-

ellite laser ranging data.8  The presence of these reference orbits enables a second utility to ana-

lyze every SP vector that is produced by propagating the vector and its covariance forward to 

propagation points of interest, comparing the propagated state to the reference state and thus gen-

erating position residuals, and combining the propagated covariance with the reference orbit co-

                                                      

* Cerven (2013) does outline an approach to providing covariances sized at upper and lower percentile points of the 

expected full range of values, but this method is not particularly well suited to producing a large number of values 

across the whole distribution, which would be necessary for Monte Carlo applications. 
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variance to generate a combined covariance at the propagation point.  Recent improvements to 

the process have instituted controls that greatly reduce the likelihood that the reference ephemeris 

and the propagated vector will share any observational data, as well as preserving the reference 

ephemeris covariance so that it can be combined with the propagated covariance to generate a 

total uncertainty of comparison.  The availability of these products enables the straightforward 

calculation of covariance realism statistics. 

The particular realism approach to use is here chosen in order to generate the particular final 

product for the present software tool, namely a set of scale factors that can probabilistically repre-

sent the covariance’s uncertainty.  If the products described in the above paragraph are generated 

for perhaps a year’s worth of data on a satellite, one could have several hundred sets of position 

residuals and propagated combined covariances for a particular satellite at a particular propaga-

tion state.  For each such pairing of position residuals (represented as a vector ε) and combined 

covariance C, one can compute the Mahalanobis distance 

 
TCM  1  (1) 

If the state estimate component errors are normally distributed (a necessary assumption if the 

covariance matrix as presently constructed is truly to represent the state estimate error), then the 

squares of the Mahalanobis distance calculations (M2) should constitute a chi-squared distribution 

of three degrees of freedom.9  This principle can be used to transform the set of Mahalanobis dis-

tances into a set of scale factors that represents the covariance uncertainty.  Each Mahalanobis 

distance value, it can be said, is itself the ideal scale factor for the covariance against which it is 

calculated, as it represents the factor by which the covariance must be pre- and post-multiplied in 

order to create the 3-DoF chi-squared expected value of 3.  However, it is not correct, or is at 

least a distortion of the situation, to presume that, for a single evaluation of a particular covari-

ance, the calculated Mahalanobis distance is a durable scale factor that could be applied to the 

entire family of covariances for that object at that propagation point to make all such covariances 

realistic.  While the Mahalanobis test statistic does have an expected value, this is merely the hy-

pothesized mean of an entire distribution of Mahalanobis test statistics; in such a situation one 

does not expect every sample to equal the expected value.   

 A simple approach can transform the Mahalanobis values into the desired uncertainty sta-

tistics.  Presuming that a reasonably large sample of these Mahalanobis values for a particular 

object is available, one can rank-order the set and compare each calculated Mahalanobis value to 

the 3-DoF chi-squared cumulative distribution function value for the appropriate percentile point; 

the ratios of these two values do create scale factors that can be used to represent covariance un-

certainty.  As an example, suppose 100 M-values for an object are available; their squared values 

are calculated and then rank-ordered, and the 80th value has a value of 7.5.  The 3-DoF chi-

squared distribution at the 80th percentile has a value of 4.61.  The ratio of these two values is 

1.62; this is the value by which the covariance should be multiplied (or, if one prefers, pre- and 

post-multiplied by 1.27, which is the square root of 1.62) to be sized realistically, based on this 

one comparison in the context of the rest.  The set of 100 such corrections can be used as a set of 

covariance realism scale factors from which to draw for Monte Carlo applications.  Because they 

are a result of a large sample, these values already follow an appropriate distribution; so drawing 

from this sample set randomly will give proper probabilistic representation of the likelihood of 

particular scale factors.  One can either perform these draws from the entire sample set or, if 

computation time becomes an issue, divide the sample into equiprobable bins and use a gridded 

combinatorial or Latin Hypercube approach. 
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HARD-BODY RADIUS 

After the nominal miss distance and combined covariance, the hard-body radius (HBR), which 

governs the area in the conjunction plane over which the position probability density will be inte-

grated, is the remaining input to the Pc calculation.  So long as the combined covariance is rea-

sonably larger than the nominal miss distance and this miss distend itself reasonably larger than 

the hard-body radius, the Pc follows a linear relationship in log-log space with the hard-body ra-

dius10; so one can perform the more computationally-burdensome parts of the 2-D Pc calculation 

(which can involve numerical integration) and then apply any HBR perturbations to that result set 

as a scaling parameter.  This obviates the need to perturb the HBR parameter within a larger 

Monte Carlo construct, thus increasing computational efficiency.  There are many approaches to 

determining the HBR for any given conjunction, each having its own advantages and disad-

vantages; the particular methods planned and implemented for the Pc Uncertainty framework will 

be surveyed and explicated here. 

A common approach is to circumscribe the primary and secondary objects each with a sphere 

and define a HBR sphere that is the sum of these two radii; a diagram illustrating this approach is 

given in Figure 3 below.   

 

Figure 3.  Primary, Secondary, and Combined Bounding Spheres. 

Because the size of the secondary is generally not known, one usually makes a very conserva-

tive guess at its size, and then often adds even further conservatism to the final value by choosing 

an overall HBR that is larger than the sum of the postulated radii.  If one elects to proceed in this 

manner, then one has specified a fixed HBR11; and there can thus be no perturbation of this input 

within the overall calculation. 

Primary Object 

In trying to improve the estimate for the HBR of the primary, one can make a simplified geo-

metric model of the spacecraft (or use a high-precision model, if it exists) and project the three-

dimensional model into an arbitrarily-situated plane; if the full array of possible aspect rotations 

of the spacecraft are instantiated and projected into the plane and the projected area of each calcu-

lated, this set of projected areas forms a PDF of the possible different presented areas in the con-

junction plane.  One can then take percentile points from this distribution and construct in the 

conjunction plane a circle with the equivalent area to use for the 2-D Pc calculation; one can also 

take a step back from this and simply define a circumscribing circle for each projection.  Figure 4 

shows as an example the geometrical configuration and results set for the Orbiting Carbon Obser-

vatory 2 (OCO-2) satellite.  The left pane shows the satellite in an arbitrary projection with a cir-

cumscribing circle drawn about it.  The blue circles show the minimum, maximum, and average 

size of the circumscribing circles about each of the realized projections of the satellite into a 
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plane.  Because the satellite (with solar panels considered) is long and relatively thin, a large 

range of circumscribing circles is possible:  the flat projection shown in the left pane of the figure 

produces a large circumscribing circle, whereas a projection in which the long width of the satel-

lite is normal to the projection plane will be very small and produce a small circumscribing circle; 

the ratio of smallest to largest circle is about 1 : 4.5, and the average size of circumscribing circle 

(across all of the possible projections into the plane) is 3.6, which is much closer to the maximum 

than the minimum value.  The green circles represent the size projected areas themselves, here 

shown as areas of circles rather than the irregular shapes of the actual projections.  They are sub-

stantially smaller, and their overall range of values is also tighter. 

 

Figure 4.  Projection Example and Projected Circumspection and Area Comparison for OCO-2 (siz-

es denominated in meters). 

“Ball-and-stick” models that make use of properly-dimensioned simple shapes can perform 

quite well in comparison to higher-fidelity models.  For example, a cylinder and flat-plate model 

of the Hubble Space Telescope (HST), constructed as a proof of concept, produced an average 

projected area that differed from that of a high-precision model value12 by less than 5%.  The 

amount of HBR reduction wrought by the use of such a technique can be considerable.  In the 

case of HST, the circumscribing sphere has a radius of 8.1 m, but the radius of the circle that has 

an equivalent area to the median projected area of the spacecraft is 4.3 m.  In any case, the full 

PDF of these projected areas can serve as a source of probabilistic perturbations to the HBR. 

If the steering law of the spacecraft is known, then it is possible to determine the precise as-

pect orientation of the spacecraft at TCA.  Since the conjunction plane is also known, if a geomet-

ric model of the spacecraft has been produced the model can be projected directly into the con-

junction plane and thus the actual projected area for this particular event (for the primary, at least) 

can be determined precisely.  One can convert this to a convenient shape to facilitate its combina-

tion with the size of the secondary object, or one can try to take direct cognizance of the particu-

lar shape by performing a contour integral about the object’s boundary as part of the 2-D Pc cal-

culation.  This latter approach must address the additional difficulty of how to grow the projected 

shape to account for the secondary object.   
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Secondary Object 

Estimating the size for the secondary presents different challenges.  If the secondary is an in-

tact spacecraft, it is in principle possible to obtain dimensions for it and thus perform an average 

projected-area calculation following the methodology described above.  Intact payloads are too 

numerous and varied to make determining individual models practical, so one might quickly as-

sign one of a few basic “canned” models and use the projected-area PDF associated with that 

model type, after appropriately scaling for the payload dimensions.  The same procedure can be 

followed with rocket bodies, and much more easily and probably successfully.  It must be empha-

sized that this approach presumes the availability of reliable dimensions, and furthermore one has 

little insight into the inherent errors of such published dimensions when they are available. 

The far more common case is to encounter debris as the secondary object, and such objects 

almost never have known dimensions.  The only available signature information about the object 

is the average radar cross-section (RCS) value presented in the CDM.  Were a full distribution of 

radar hit-level RCS values available for the object, it perhaps would be possible to pursue an ob-

ject-specific size estimation activity; as it is, one is forced to make assumptions and rely on ca-

nonical distributions, with the averaged RCS value the only object-specific datum. 

A study some years ago examined full hit-level RCS histories for all catalogued objects to de-

termine which canonical distributions best describe the actual RCS PDFs for different object 

types.13  Examined were the set of Swerling RCS distributions, originally developed for aircraft, 

that are applied to space objects in the planning software of most space surveillance radars, as 

well as other distributions suggested in the literature, such as the lognormal distribution.14  It was 

found that the Swerling I and Swerling III models (Gamma distributions with shape parameters 1 

and 2, respectively), along with a “middle” Swerling model consisting of a Gamma distribution 

with shape parameter 1.5, could reasonably represent the PDFs of about 62% of the catalogued 

debris objects.  Of these three models, the Swerling III is the one that includes the largest objects 

and therefore of the three is the most conservative choice; and given how little is actually known 

about sizes of catalogued debris, a conservative selection would seem appropriate.  The scale pa-

rameter for a two-parameter Gamma distribution is estimated by Maximum Likelihood methods 

as the sample mean divided by the shape parameter.  The RCS value provided on the CDM can 

arise from a number of different calculation approaches, depending on the reporting sensor; a 

conservative interpretation is to presume that it represents a median value and therefore must be 

converted to a mean value for a Swerling III distribution; this is done by multiplying the median 

value by a factor of 1.19 (a mean-to-median ratio that can be obtained by a straightforward Monte 

Carlo generation of the distribution).  With the assumptions given above, one can use the RCS 

value provided in the CDM to construct a properly-scaled PDF of the expected RCS distribution 

for the debris object. 

To be useful to the present enterprise, of course, this RCS distribution must be converted to a 

size distribution.  Fortunately, an experiment was conducted by the NASA Orbital Debris Pro-

gram Office that allowed the development of an algorithm to do this.15  A test satellite was ex-

ploded in a vacuum chamber, the pieces preserved, and thirty-nine representative pieces observed 

(in all orientations) by a small radar in an anechoic chamber over a large range of radar frequen-

cies.  From these data a functional relationship was defined between the resultant RCS and the 

object “size” or, more correctly, characteristic dimension (defined as the average of three orthog-

onal vectors inscribed in the object in a certain way).  This relationship has certain restrictions on 

its use:  it is intended only for debris objects and even then those smaller than 20 cm, and it is 

legitimately used only to convert a distribution of RCS values to a distribution of expected sizes 

(not to convert a single average RCS value to a single resultant average size).  While the relation-
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ship is best applied to measurements taken on a large group of objects, one does not stray far 

from the original intent in applying it to a constructed distribution of RCS values for a small de-

bris object.   

The procedure and its results can be illustrated through the graphs in Figure 5.  The average 

RCS value for the object is 0.02 m2, and using this value to calculate the needed scale parameter 

produces the Swerling III RCS distribution in the left pane.  This distribution is then converted by 

the use of the above-described size estimation model to a characteristic size distribution, which is 

shown in the right pane.  As can be seen from the actual values produced, if the primary object is 

of any reasonable size, the contribution of a small debris secondary object to the overall HBR will 

be very small. 

 

 

Figure 5.  RCS Swerling III RCS and Size Distributions for Satellite with Average RCS of 0.02 m2. 

PC CALCULATION NATURAL VARIABILITY 

 As mentioned previously, the two-dimensional Pc calculation yields a single point esti-

mate (essentially an averaged value) and, as presently constructed, does not give any confidence 

interval information or sense of the underlying distribution of which that point estimate is a repre-

sentation.  This fact has not escaped the notice of conjunction assessment practitioners, and one 

attempt to compensate for this is to calculate and examine the distribution of miss distance values.  

It is straightforward and not particularly computationally burdensome to generate this information 

with a simple Monte Carlo approach:  one can perform a random draw on the covariances propa-

gated to the time of closest approach (TCA) for the nominal solution, add the drawn perturbations 

to the nominal solutions, and, using rectilinear motion (this is a reasonable approximation for 

small perturbations within the conjunction region), determine the new TCA for this pair of posi-

tions and velocities and the miss distance that at that new TCA.   Executing a large number of 

repetitions of this procedure will produce the desired distribution, which one can then examine as 

either a probability density function or a cumulative distribution function.  In fact, one need not 

even resort to Monte Carlo, as a direct analytical solution for the miss distance distribution was 

derived by Chan16 and demonstrated in practical use by Coppola et al.17  While these data can be 

produced easily enough, the difficulty arises in how precisely to interpret them for operational 

purposes.  One can calculate the fraction of the miss distances that fall within the hard-body radi-

us and thus determine a collision probability, but this is just the computation of the Pc through a 

different means and thus a return to a single parameter.  One could examine the distribution of the 
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miss distances in the neighborhood of the HBR and thus understand how the Pc would vary if the 

HBR were altered slightly, but this is more a sensitivity investigation of the HBR and not of the 

miss vector distribution proper.  Finally, one could try to interpret the full presentation of the miss 

vector distribution as a PDF or cumulative distribution function (CDF), but it is difficult to draw 

operationally-useful conclusions from this since it is not framed as a parameter that relates direct-

ly to risk.  

An approach that has presented itself for experimentation is to choose a random position draw 

from the combined covariance and, using the miss distance that this produces as the nominal miss 

distance, to proceed to calculate the Pc with this new nominal miss and the unaltered combined 

covariance.  A large number of such repetitions would produce a collection of Pc values, whose 

distribution could then be characterized.  A resampling technique of this type for the present situ-

ation is not an unreasonable construct, but the approach as formulated here is not tenable because 

the combined covariance is correlated to the nominal miss vector, in terms of both size and orien-

tation.  One cannot generate a new nominal miss vector from sampling from the combined covar-

iance and then use, unmodified, the combined covariance as a reasonable representation of the 

position uncertainty about that new nominal miss vector. 

A clever modification by Frisbee18 of the resampling technique addresses this problem while 

at the same time bestowing additional benefits.  Beginning with the nominal miss vector and 

combined covariance, m componentized samples are taken from the combined covariance.  The 

mean of these samples is calculated and is combined with the “old” nominal miss to define a new 

nominal miss for this sample set.  A sample covariance of the m samples is then calculated and 

serves as the combined covariance for this sample set.  From this new nominal miss and covari-

ance, a Pc can then be calculated with one of the many 2-D calculation techniques.  Repeating 

this procedure n times will produce a distribution of Pc values that, it is proposed, can serve as a 

statement of the expected variability in the calculation. 

This form of the resampling approach addresses the problem of correlation between nominal 

miss distance and covariance by ensuring that the covariance, which is a sample covariance cal-

culated from the set of position draws from the original combined covariance, derives organically 

from the new nominal miss distance, which is the mean of these position samples.  It does, how-

ever, introduce a new difficulty, namely determining the number of samples m that should be tak-

en in each of the n repetitions of the resampling; and to answer this question one reflects on the 

orbit determination (OD) process that produced the position estimates for the primary and sec-

ondary states.  OD is an estimate of a mean state using a certain amount of sampling data from 

the actual orbit (i.e., observations), and the number of degrees of freedom (DoF) of the estimate is 

the difference between the total number of observables used in constructing the OD and the num-

ber of parameters estimated.  If a resampling procedure is used to determine confidence intervals 

for calculations that derive from a particular OD, the resampling should be configured so as to 

employ the same DoF as the OD to which it is related.  This would align with standard bootstrap-

ping rule that, to determine confidence intervals about a parameter estimated from n samples, the 

additional datasets to be drawn (with replacement) for the resampling should also all be of size n.  

The concept becomes somewhat muddied when applied to relative miss distances and com-

bined covariances, as they are the mix of two different OD solutions (one for the primary and one 

for the secondary), each of which may have very different levels of tracking.  Cleanliness, how-

ever, can be returned to the situation by applying the resampling approach independently to each 

object:  m position samples are drawn from the primary object’s covariance and a mean miss dis-

tance and sample covariance generated; the same is done for the secondary object, although the 

number of samples drawn may be different from m (to be discussed shortly); the two miss dis-
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tances are used to construct a new nominal miss, the two covariance matrices are combined into 

the single combined covariance, a 2-D Pc is calculated in the usual way, and the procedure is re-

peated n times to generate a Pc distribution.  A diagram that illustrates this process is given in 

Figure 6 below: 

 

 

Figure 6.  Pc Calculation Resampling Technique Schematic. 

As discussed earlier, the number of samples taken from either the primary or secondary covar-

iance to determine the mean state and sample covariance should be such that the DoF of those 

calculations should equal the DoF of the associated OD.  But how should the DoF of a JSpOC 

OD be determined? 

Space Surveillance Network radar observations, which constitute the great majority of the 

tracking data received and nearly all of the tracking data on near-earth objects (those with periods 

less than 225 minutes), typically each contain three observables:   a range measurement and two 

angle measurements.  These observations are usually furnished in “tracks” of observations, mean-

ing sets of observations arising from the same satellite-sensor observing session; three to ten ob-

servations collected and submitted this way would be a common situation.  One could conclude, 

therefore, that a track of ten observations would furnish 30 independent and useful observables; 

but the correlation among observations in the track (which are taken in close temporal proximity) 

is so large that these individual observations are hardly independent contributors to the OD.  It is 

thus not clear how many independent elements truly exist in an observation track, especially be-

cause the individual observations themselves are the product of a tracking filter.  To add yet more 

complication, the JSpOC OD process also presents some ambiguities in determining the number 

of parameters estimated in an OD.  Because along-arc solutions through fit-span segmentation are 

pursued for the non-conservative forces (atmospheric drag and solar radiation pressure), which 

result in multiple ballistic coefficient and solar radiation pressure coefficient solutions, it is not 

obvious precisely how many independent parameters are being estimated; and in any event there 

is no record available to the user of a CDM that indicates the number of segmentations pursued, 

so it is not possible to account for this in the risk assessment process anyway. 



 12 

Given these limitations, the following DoF estimation procedure is proposed.  Rather than try-

ing to identify the individual items of information content in a track of observations and similarly 

the individual parameters that are part of the state estimate in the OD process, one can manage the 

accounting by allowing the “state estimate” to be the unit of measure:  the generated state esti-

mate itself is one degree of freedom (one “state”), and the observational data will be quantized by 

the amount of such data that would allow a single state to be estimated.  Given some of the limita-

tions of and problems with Space Surveillance Network tracking information, how many such 

observations should be considered the equivalent data unit of the estimation of a single state?  

If the track of observations contains several metric observations and each of them further con-

tains three observables, then one can suppose that the track could contain about enough infor-

mation to perform a state estimate update.  To be sure, the update propriety for the non-

conservative force values (i.e., ballistic coefficient and solar radiation pressure coefficient) is 

likely to be unsatisfactory for a batch update process, but the group of observations should con-

tain about the amount of information necessary to execute a reasonable OD.  Similarly, rather 

than try to identify the total number of parameters estimated in an OD update in which along-arc 

methods are used, it seems acceptable simply to consider the OD output as the estimate of a sin-

gle state—not multiple parameters (even though of course it is composed of that) but a single es-

timated state.  Using this approach, the number of degrees of freedom in a particular OD update is 

calculated as the number of tracks of reasonable length minus one (the one “state” that is estimat-

ed).  This process requires further work for situations in which angles-only tracks are common, as 

it is probably not the case that that a track of angles-only observational data really is sufficient for 

a state estimate; but it does seem a reasonable initial procedure for near-Earth orbits. 

 Further work is also needed to determine the number of repetitions of the procedure—n 

from the above discussion—needed to reach a stability condition.  Preliminary efforts have indi-

cated that in most cases stability is reached with 5000 trials; but adequate performance may fre-

quently be possible with less, and such a result would bring a welcome reduction in the execution 

time. 

OMNIBUS EXECUTION AND RESULTS 

All three perturbation types described above (covariance realism, HBR, and Pc calculation 

natural variation) are folded into a nested Monte Carlo framework for omnibus execution.  For 

the present, an equiprobable gridding approach is taken for the covariance realism values in order 

to improve execution time; thirty equiprobable bins are defined for the scale factor probability 

density for the primary and thirty for the secondary, the median value from within each bin is 

used as the representative value for that bin, and all combinations of these gridded values (n x n) 

are applied to the primary and secondary covariances as part of the outer Monte Carlo loop.  The 

resampling approach is then run for each pair of scaled covariances, presently with 5000 samples 

per invocation.  The resampling results are then reduplicated to allow the assignment of a binned 

set of HBR values according to the joint probability density for the primary and secondary object 

sizes.   

Each of the perturbations (covariance realism, HBR, and resampling) is also run by itself, with 

the other two inputs either not executed or set to the nominal value, to see what probability densi-

ty is produced by the variation of that item alone; this reveals the sensitivity of the particular con-

junction to the particular item.  Reasonably well-tracked cases that nonetheless have schizophren-

ic covariance realism performance will, for example, show a large probability density spread for 

covariance realism perturbations but a relatively modest one for natural variation.   
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Figure 7 provides a proposed display of results.  The left panel gives the four probability den-

sities, shown here as cumulative distribution functions (CDFs) to allow the full range of probabil-

ity points to be displayed in a comparative context; the nominal Pc value is represented by the 

magenta dotted line.  The right panel redisplays this same information, this time giving 5th- to 

95th-percentile error bars, with a large dot at the median value.  While this panel gives less com-

plete insight into the full probability density of each item, it does give a more immediate visual 

take-away of how each of the perturbation sets and the combined output compare to the nominal 

value.  In the example given in the figure, natural variation of the calculation is more or less even-

ly balanced about the nominal value; but covariance realism considerations substantially push the 

risk  almost entirely below the nominal value, and adding a more realistic HBR decreases the risk 

alone by about half an order of magnitude.  The Total (blue) line, which collects all of the pertur-

bations together, falls mostly below the nominal value.  If a user’s remediation threshold were a 

Pc value of 1E-04, one might hesitate somewhat at pursuing active remediation for this conjunc-

tion, as 70% of the total perturbation Pc values fall below the 1E-04 threshold.  

 

 

Figure 7. JAC CoPoC Sensitivity Display. 

CONCLUSION AND FUTURE WORK 

A construct has been defined by which the characterized uncertainties of the primary objects’ 

covariances and HBR values, as well as the natural variation in the Pc calculation, can be used to 

generate a probability density of Pc outputs; this probabilistic output can be compared directly to 

Pc decision thresholds, allowing more informed decisions regarding the urgency of remediation 

activity. 



 14 

The construct is embryonic and is just beginning to be explored with larger datasets and off-

line operational exercise, and there are a number of areas to which additional analytical work will 

be applied.  Most important is a more thorough examination and benchmarking of the overall 

Monte Carlo technique, which as presently formulated includes certain simplifications in order to 

improve overall performance; comparison and stability studies need to be conducted in order to 

determine how much error the simplifications introduce, how many samples and bin divisions are 

required in order to meet certain accuracy criteria, etc.  More study will also be directed at the 

degree-of-freedom accounting approach used in the resampling technique, especially to extend 

the construct to angles-only observation tracks.  Finally, while the construct is not, as previously 

explained, intended to serve as a bounded predictor of future Pc updates, it is of interest how well 

it will actually serve this role; so an examination of this kind of performance against historical 

data will be quite interesting and valuable. 
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