NASA’s Human System Risk Assessment Process

Dave Francisco
Human System Risk Board Chair/Integrator
HMTA Risk Reduction Manager

Elkin Romero
Human System Risk Integrator
(Today’s Presenter)

2016 Human Research Program – Investigators’ Workshop
February 11, 2016
Integrated Human System Risk Management Structure

Policy, Operations, and Research → Human Health/Performance Risk Framework

- **HQ - Office of the Chief Health and Medical Officer (OCHMO)** – **Health and Medical Authority (HMTA)** – Level I
 - Medical Policy, Health and Performance Standards, and Bioethics
 - Risk Assessment and Mitigation - via the JSC Chief Medical Officer (JSC CMO) – Level II

- **Crew Health and Safety (CHS)**
 - Medical Operations & Occupational Health (career health care/post career monitoring)

- **Human Research Program (HRP)**
 - Perform scientific research necessary to understand & reduce health & performance risks for space exploration

- **AES & STMD** – Technology/Protocol Development

- **International Space Station (ISS), Orion, Commercial Crew Programs**
 - Implementation of Medical Operations
 - Medical Requirements, Tests and hardware

OCHMO

HMTA via HSRB

Risk Assessment & Mitigation
- Crew Health & Safety
- Human Research Program
- Space Biology
- CASIS
- AES
- STMD

Terrestrial – Government, Private

Program Requirements/
Countermeasure Implementation
- ISS
- CCP
- MPCV/Orion

Evidence/Experience Base
NASA Human Health and Performance

Goal: Enable Successful Space Exploration by Minimizing the Risks of Spaceflight Hazards

Spaceflight/Design Reference Missions

Hostile Spaceflight Environment
Altered Gravity
Radiation
Isolation
Hostile/Closed Environment Distance from Earth

Medical Ops
Occupational Surveillance
Environmental Research

Human Risks
Bone & Muscle loss, Radiation Exposure, Toxic Exposure, etc.

Standards to Requirements

Evidence
Risk
Standards

Deliverables:
Technologies Countermeasures (prevention & treatment)
Design Reference Missions (DRMs) Categories

All of the Human System Risks are evaluated against the following DRMs:

<table>
<thead>
<tr>
<th>DRM Categories</th>
<th>Mission Duration</th>
<th>Gravity Environment</th>
<th>Radiation Environment</th>
<th>Earth Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Earth Orbit</td>
<td>6 months</td>
<td>Microgravity</td>
<td>LEO - Van Allen</td>
<td>1 day or less</td>
</tr>
<tr>
<td></td>
<td>1 year</td>
<td>Microgravity</td>
<td>LEO - Van Allen</td>
<td>1 day or less</td>
</tr>
<tr>
<td>Deep Space Sortie</td>
<td>1 month</td>
<td>Microgravity</td>
<td>Deep Space</td>
<td>< 5 days</td>
</tr>
<tr>
<td>Lunar Visit/Habitation</td>
<td>1 year</td>
<td>1/6g</td>
<td>Lunar</td>
<td>5 Days</td>
</tr>
<tr>
<td>Deep Space Journey/</td>
<td>1 year</td>
<td>Microgravity</td>
<td>Deep Space</td>
<td>Weeks to Months</td>
</tr>
<tr>
<td>Habitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planetary Visit/Habitation</td>
<td>3 years</td>
<td>Fractional/Microgravity</td>
<td>Planetary*</td>
<td>Months</td>
</tr>
</tbody>
</table>

*Planet has no magnetic poles, limited atmosphere

Examples of Missions that would fall into the DRM Categories:

Low Earth Orbit – ISS6, ISS12, Commercial Suborbital, Commercial Visits to ISS, future commercial platforms in LEO

Deep Space Sortie: MPCV test flights, moon fly around or landing, visits to L1/L2, deep space excursion

Lunar Habitation: Staying on the surface more than 30 Days (less than 30 days would be similar)

Deep Space Habitation: L1/L2 Habitation, Asteroid visit, journey to planets

Planetary Habitation: Living on a planetary surface, MARs & extended journey in microgravity to and from
Hazards of Spaceflight
Hazards Drive Human Spaceflight Risks

Altered Gravity - Physiological Changes
- Balance Disorders
- Fluid Shifts
- Cardiovascular Deconditioning
- Muscle Atrophy
- Bone Loss

Distance from Earth
Drives the need for additional “autonomous” medical care capacity – cannot come home for treatment

Space Radiation
- Acute In-flight effects
- Long term cancer risk

Hostile/ Closed Environment
- Vehicle Design
- Environmental – CO₂ Levels
- Toxic Exposures, Water, Food
- Decreased Immune Function

Isolation & Confinement
- Behavioral aspect of isolation
- Sleep disorders
Evidence is gathered from in-flight medical and research operations, spaceflight analogs, terrestrial analogs, and/or animal data. Data must be correlated from NASA medical (LSAH), research (LSDA), environmental & terrestrial data bases.

NASA/HMTA Human Risks Evidence Base

- **Medical Data** (mandatory)
 - Medical data generally does not require informed consent and may only be used for:
 - Medical care by clinician
 - Occupational Surveillance

- **Environmental & Operational Data**
 - Data gathered to understand the occupational environment, such as:
 - CO2 levels, acoustic, landing loads, radiations levels, mission operations

- **Research Data** (voluntary)
 - Research data requires informed consent by the subject & the data.
 - Ground analogs
 - Includes animal research

- **Terrestrial Data**
 - Related terrestrial incidence, treatment and research

- ¾ of Risk Evidence from Operational Medical/Environmental/ Occupational Surveillance Programs

- ¼ of Risk Evidence from Research Programs (Focus on Human System Risks understanding and countermeasure development)

Correlation of data by subject matter experts & physicians.

Generation of Metrics to assess Human System Risks
Summary of Human Risks of Spaceflight
Grouped by Hazards – 30 Human Risks

Altered Gravity Field
1. Spaceflight-Induced Intracranial Hypertension/Vision Alterations
2. Renal Stone Formation
3. Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Space Flight
4. Bone Fracture due to spaceflight Induced changes to bone
5. Impaired Performance Due to Reduced Muscle Mass, Strength & Endurance
6. Reduced Physical Performance Capabilities Due to Reduced Aerobic Capacity
7. Adverse Health Effects Due to Host-Microorganism Interactions
8. Urinary Retention
9. Orthostatic Intolerance During Re-Exposure to Gravity
10. Cardiac Rhythm Problems
11. Space Adaptation Back Pain

Radiation
1. Space Radiation Exposure on Human Health (cancer, cardio and CNS)

Distance from Earth
1. Adverse Health Outcomes & Decrement in Performance due to Inflight Medical Conditions
2. Ineffective or Toxic Medications due to Long Term Storage

Isolation
1. Adverse Cognitive or Behavioral Conditions & Psychiatric Disorders
2. Performance & Behavioral health Decrement Due to Inadequate Cooperation, Coordination, Communication, & Psychosocial Adaptation within a Team

Hostile/Closed Environment - Spacecraft Design
1. Acute and Chronic Carbon Dioxide Exposure
2. Performance decrement and crew illness due to inadequate food and nutrition
3. Reduced Crew Performance and Injury Due to Inadequate Human-System Interaction Design (HSID)
4. Injury from Dynamic Loads
5. Injury and Compromised Performance due to EVA Operations
6. Adverse Health & Performance Effects of Celestial Dust Exposure
7. Adverse Health Event Due to Altered Immune Response
8. Reduced Crew Health and Performance Due to Hypobaric Hypoxia
9. Performance Decrement & Adverse Health Outcomes Resulting from Sleep Loss, Circadian Desynchronization, & Work Overload
10. Decompression Sickness
11. Toxic Exposure
12. Hearing Loss Related to Spaceflight
13. Injury from Sunlight Exposure
14. Crew Health Due to Electrical Shock

Concerns
1. Clinically Relevant Unpredicted Effects of Meds
2. Intervertebral Disc Damage upon & immediately after re-exposure to Gravity
Factors that Influence Human Risk – by Mission Phase

Pre-Mission
- Generic Factors
 - Screening Criteria
 - Pre-flight treatment(s)
 - Pre-flight training
 - Flight Assignments
 - Age, sex, physiological

In-Mission
- Generic Factors
 - Mission Duration
 - Mission location
 - LEO, BLEO
 - Countermeasures

Determines/Reduces Total Risk Posture

Post-Mission
- Generic Factors
 - Reconditioning
 - Post mission Screening
 - Occupational Health Care for Astronauts
 - Duty/lifestyle constraints
 - Treatments

Radiation Example
- Radiation Factors
 - Shielding
 - Mission Duration
 - LEO vs. BLEO
 - Solar Min vs. Max
 - Operational Planning
 - Risk Assessment
 - Dosimetry
 - Personalized Cancer Screening
 - Cancer Treatment

*In development

HMTA considers pre, in and post mission factors/countermeasures to evaluate risks and ensure crew health.
Sample Risk – Human System Risk Board (HSRB) Assessment Performed for all 30 Risks

Risk Title: Risk of Impaired Performance Due to Reduced Muscle Mass, Strength & Endurance

Risk Statement: Given that exposure to a microgravity environment causes skeletal muscles to undergo reduced mass, strength, and endurance, there is a possibility that mission task performance would be impaired or tasks could not be performed.

<table>
<thead>
<tr>
<th>Primary Hazard:</th>
<th>Secondary Hazard:</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ-gravity</td>
<td>Closed Environment (spacecraft design), radiation</td>
</tr>
</tbody>
</table>

Contributing Factors: Mission Design, Microgravity, Cardiovascular Changes, Diet, Hydration, Radiation, Closed Environment

State of Knowledge: Fitness for duty standard; maintain 80% of preflight muscle mass and strength. No capability for direct strength measurements on orbit due to environment unquantifiable, but considered to be contributing cardiovascular and vestibular/sensorimotor alterations associated with space flight (reference "Issue: Dissipation of the shuttling effect in the lower extremities of the astronauts"").

Countermeasures: Risk title and statement are generated. Primary hazard (only one) and then secondary hazards (can be multiple) are determined. Any contributing factors are listed.

Drivers: The assumption is that “ISS-like” countermeasures will be available for all future exploration DRMs. **OPS Likelihood:** ALL DRMs: Activities with the highest impact are emergency egress & rescue of an incapacitated crew member. Probability of these occurrences is ≤0.1%. Additionally, (**Planetary:** Surface EVA (freq./type) would also be impacted and the probability is >1% due to transit duration effect on muscle strength/endurance. **Ops Consequence, All DRMs:** Death if unable to emergency egress or rescue an incapacitated crew member. In addition, (**Planetary:** Significant Reduction of Performance (shorter duration EVA, less strenuous activities) for surface operations.

- **LTH Likelihood:** All DRMs: ~25% of crew do NOT maintain 80% of preflight values during a 6 month ISS mission with CEVIS, ARED & T2. **LTH Consequence:** All DRMs ex. **Planetary:** Crew return to baseline within 3 months with limited intervention. **Planetary:** Anticipate taking longer to return to baseline - 1 year recovery.

Risk Disposition Rationale: For all missions except Planetary, the risk is accepted but optimization of countermeasure is desired (particularly inflight exercise hardware). For **Planetary:** Mitigation is required to provide effective countermeasures with less mass and volume.
Sample Risk – Human System Risk Board (HSRB) Assessment Performed for all 30 Risks

Risk Title: Risk of Impaired Performance Due to Reduced Muscle Mass, Strength & Endurance

Risk Statement: Given that exposure to a microgravity environment causes skeletal muscles to undergo reduced mass, strength, and endurance, there is a possibility that mission task performance would be impaired or tasks could not be performed.

Primary Hazard: μ-gravity
Secondary Hazard: Closed Environment (spacecraft design), radiation

Contributing Factors: Mission Design, Microgravity, Cardiovascular Changes, Diet, Hydration, Radiation, Closed Environment

Countermeasure:
- **Prevention:** Pre-flight training, inflight exercise, diet, aerobic & resistive hardware.
- **Treatment:** Post flight reconditioning

State of Knowledge:

- Fitness for duty standard; maintain 80% of baseline muscle strength. Pre-flight standard: Pre-flight muscle strength & function shall be within normal values for age & sex of the astronaut population. Ample data from shuttle and ISS document pre & post flight strength assessment (see metric). No capability for direct strength measurements on ISS. Limited in flight time course of change in muscle strength. Impact of radiation environment unquantifiable, but considered to be contributing cardiovascular factor (reference radiation risk). Capability for emergency egress is also tightly coupled with vestibular/sensorimotor alterations associated with space flight (reference sensorimotor risk).

DRM Categories

<table>
<thead>
<tr>
<th>DRM Categories</th>
<th>Mission Duration</th>
<th>LxC OPS</th>
<th>Risk Disposition</th>
<th>LxC LTH</th>
<th>Risk Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Earth Orbit</td>
<td>6 Months</td>
<td>1 x 4</td>
<td>Accepted/Optimize</td>
<td>3 x 1</td>
<td>Accepted</td>
</tr>
<tr>
<td></td>
<td>1 Year</td>
<td>1 x 4</td>
<td>Accepted/Optimize</td>
<td>3 x 1</td>
<td>Accepted</td>
</tr>
<tr>
<td>Deep Space Sortie</td>
<td>1 Month</td>
<td>1 x 4</td>
<td>Accepted/Optimize</td>
<td>3 x 1</td>
<td>Accepted</td>
</tr>
<tr>
<td>Lunar Visit/</td>
<td>1 Year</td>
<td>1 x 4</td>
<td>Accepted/Optimize</td>
<td>3 x 1</td>
<td>Accepted</td>
</tr>
<tr>
<td>Habitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep Space Journey/Hab</td>
<td>1 Year</td>
<td>1 x 4</td>
<td>Accepted/Optimize</td>
<td>3 x 1</td>
<td>Accepted</td>
</tr>
<tr>
<td>Planetary</td>
<td>3 Years</td>
<td>1 x 4/3 x 3</td>
<td>Requires Mitigation</td>
<td>3 x 2</td>
<td>Requires Mitigation</td>
</tr>
</tbody>
</table>

Notes:
- L x C Drivers: The assumption is that “ISS-like” countermeasures are available for all future exploration DRMs. Categorization is based on the highest impact assessment from each member. Risk Disposition:
 - **Accepted:** No action required.
 - **Optimize:** Monitoring and corrective action needed.
 - **Requires Mitigation:** Mitigation with less mass and volume required.
 - **Requires Mitigation:** Mitigation with less mass and volume required.

State of Knowledge is a summary of the evidence. Detailed evidence is listed in the presentation package of each risk and a summary is added as a metric (see next page).

Risk Disposition Rationale: For all missions except Planetary, the risk is accepted but optimization of countermeasure is desired (particularly inflight exercise hardware). For Planetary: Mitigation is required to provide effective countermeasures with less mass and volume.
Metric for Risk of Impaired Performance Due to Reduced Muscle Mass, Strength & Endurance

% of Crew with Muscle loss greater than standard

- **ISS 6 months**
 - N=22
 - 36%
- **ISS 6 months**
 - N=25
 - 25%
- **ISS 6 months**
 - N=5
 - 20%
- **ISS 12 months**
 - N=?
 - TBD

Data based on LSAH/Exercise Lab data assessment, MRIDs and Sprint Research Data 7/2013

% Crew that do **NOT** meet Health and Fitness Muscle Standard

- < 20% loss of pre-flight baseline
- Knee Flex Strength

Countermeasure(s)

- **iRED TVIS, CEVIS**
 - Non-Standard* Exercise Prescription
- **ARED T2, CEVIS**
 - Non-Standard* Exercise Prescription
- **ARED T2, CEVIS**
 - SPRINT Research Exercise Prescription
- **ARED T2, CEVIS**
 - Non-Standard* Exercise Prescription

(*) “Non-Standard” indicates customized exercise prescriptions
Projectized Approach to Human System Risk Mgmt

Each risk matures as it follows the CRM Process

Deliverables Required

<table>
<thead>
<tr>
<th>Knowledge/Research:</th>
<th>Responsible</th>
<th>Budget ($M) - FY 14-18</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARED Kinematics</td>
<td>HRP</td>
<td>$0.5M</td>
<td></td>
</tr>
<tr>
<td>ISS SPRINT</td>
<td>HRP</td>
<td>$1M</td>
<td></td>
</tr>
<tr>
<td>Other (Actv/Prime)</td>
<td>MAIN/BR</td>
<td>~$7M</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technology:</th>
<th>Responsible</th>
<th>Budget ($M) - FY 14-18</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portable Load Sensing Evals.</td>
<td>HRP/ISS/EA</td>
<td>$600K/2015</td>
<td></td>
</tr>
<tr>
<td>Adv. Exercise Concept Evals. ISS</td>
<td>HRP</td>
<td>$6.3M</td>
<td></td>
</tr>
<tr>
<td>MPCV Exercise Concept Dev.</td>
<td>HRP</td>
<td>$1.5M</td>
<td></td>
</tr>
<tr>
<td>Adv Exercise Risk Mitigation</td>
<td>TBD</td>
<td>~$7M</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operational Protocols:</th>
<th>Responsible</th>
<th>Budget ($M) - FY 14-18</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCR Std - Exercise Prescriptions</td>
<td>ISS/CHS</td>
<td>$4M</td>
<td></td>
</tr>
<tr>
<td>MedB 5.1.3 (Ft Fit., IsoTestingCMS)</td>
<td>ISS</td>
<td>$3.3M</td>
<td></td>
</tr>
<tr>
<td>ISS Ex. HW – Sustaining, Log, Main.</td>
<td>ISS</td>
<td>$27M</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Guidelines/Requirements/Standards:</th>
<th>Responsible</th>
<th>Budget ($M) - FY 14-18</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Updates</td>
<td>ISS/CHS/HRP</td>
<td>$6M</td>
<td></td>
</tr>
<tr>
<td>Requirements for MPCV</td>
<td>CHS</td>
<td>$0.5M</td>
<td></td>
</tr>
</tbody>
</table>

Note: All tasks costs are shared with the Aerobic risk except for MedB5.1-3

*Italics indicates desired work for which a Program sponsor has not been identified (not included in totals)

 Deliverables required to mitigate the risk are tracked at a high level. Detailed tracking maintained by funding programs.

Total Budget 2014-18 = $54M
Risks to Standard - Requirement Flow

Risks
- Bone Fracture due to Spaceflight-induced Changes to Bone
- Reduced Physical Performance Capabilities Due to Reduced Aerobic Capacity
- Impaired Performance Due to Reduced Muscle Mass, Strength & Endurance

Standard(s)

<table>
<thead>
<tr>
<th>Standard(s)</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Flight Health Standard</td>
<td>ISS</td>
</tr>
<tr>
<td>NASA-STD-3001, VOLUME 1, CREW HEALTH</td>
<td>SSP 50260</td>
</tr>
<tr>
<td>March 2007, In process of update</td>
<td>International</td>
</tr>
<tr>
<td>4.2.8 Permissible Outcome Limit for Muscle Strength Standard</td>
<td>Space Station Medical Operations</td>
</tr>
<tr>
<td>4.2.8.2 Countermeasures shall maintain in-flight skeletal muscle strength at or above 80% of baseline values.</td>
<td>Requirements Document - MORD</td>
</tr>
</tbody>
</table>

Standards to Program Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Commercial Crew</th>
<th>MPCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISS</td>
<td></td>
<td>MCV Human System Integration Requirements - HSIR</td>
</tr>
<tr>
<td>SSP 50260</td>
<td></td>
<td>3.5.4.1 Exercise Capability [HS6032]</td>
</tr>
<tr>
<td>International</td>
<td></td>
<td>The system shall provide the capability for aerobic and resistive exercise training for 30 continuous minutes each day per crewmember for missions greater than 8 days.</td>
</tr>
<tr>
<td>Space Station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document - MORD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **N/A – due to limited duration of mission**
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 Months</td>
<td>12 Months</td>
</tr>
<tr>
<td>VIIP</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Renal Stone Formation</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Inadequate food and nutrition</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Risk of Space Radiation Exposure</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Medications Long Term Storage</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Acute and Chronic Carbon Dioxide</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Inflight Medical Conditions</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Cognitive or Behavioral Conditions</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Risk of Bone Fracture</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Human-System Interaction Design</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Team Performance Decrements</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Cardiac Rhythm Problems- Under Review</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Reduced Muscle Mass, Strength</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Reduced Aerobic Capacity</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Sensorimotor Alterations</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Injury from Dynamic Loads</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Sleep Loss</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Altered Immune Response</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Celestial Dust Exposure</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Host-Microorganism Interactions</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Injury due to EVA Operations</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Decompression Sickness</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Toxic Exposure</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Hypobaric Hypoxia</td>
<td>RM</td>
<td>RM</td>
</tr>
<tr>
<td>Space Adaptation Back Pain</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Urinary Retention</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Hearing Loss Related to Spaceflight</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Orthostatic Intolerance</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Injury from Sunlight Exposure</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Risk of electrical shock</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

A – Accepted RM - Requires Mitigation Green – low/very low consequence Yellow – low to medium consequence Red – high consequence
Summary

• Human Health/Performance Risk Framework – Level I (Policy) & Level II (Operations & Research)

• Risk Assessments for Space Exploration are based on DRM Categories as actual DRMs are not available (conceptual) – These categories were designed to envelope the different DRMs

• 5 hazards of Spaceflight engender the 30 identified HS risks

• All factors that influence human risk pre/in/post-flight are evaluated together to ensure crew health

• Systematic development of individual risk crew summaries with risk statements, hazards, state of knowledge, metrics, LxC ratings, deliverables, etc. evolve via the Continuous Risk Management (CRM) process

• The individual risk plans are “Projectized” via high-level budget pie charts and high-level schedules via Gantt charts

• Portfolio Management approach will take advantage of risk dispositions and common elements identified within individual risks to develop priorities and broad range mitigation strategies

Thank you!
Human Risks

Backup